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ABSTRACT

The power spectrum of the evolving solar wind shows evidence of a spectral break between an inertial range
(IR) of turbulent fluctuations at higher frequencies and a “1/f ” like region at lower frequencies. In the ecliptic
plane at ∼1 AU, this break occurs approximately at timescales of a few hours and is observed in the power
spectra of components of velocity and magnetic field. The “1/f ” energy range is of more direct coronal origin
than the IR, and carries signatures of the complex magnetic field structure of the solar corona, and of footpoint
stirring in the solar photosphere. To quantify the scaling properties we use generic statistical methods such as
generalized structure functions and probability density functions (PDFs), focusing on solar cycle dependence and
on anisotropy with respect to the background magnetic field. We present structure function analysis of magnetic
and velocity field fluctuations, using a novel technique to decompose the fluctuations into directions parallel
and perpendicular to the mean local background magnetic field. Whilst the magnetic field is close to “1/f ,”
we show that the velocity field is “1/f α” with α #= 1. For the velocity, the value of α varies between parallel
and perpendicular fluctuations and with the solar cycle. There is also variation in α with solar wind speed. We
have examined the PDFs in the fast, quiet solar wind and intriguingly, whilst parallel and perpendicular are
distinct, both the B field and velocity show the same PDF of their perpendicular fluctuations, which is close
to gamma or inverse Gumbel. These results point to distinct physical processes in the corona and to their
mapping out into the solar wind. The scaling exponents obtained constrain the models for these processes.
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1. INTRODUCTION

The solar corona expands non-uniformly into space as a
supersonic plasma outflow known as the solar wind (Parker
1958). The solar wind carries signatures of coronal dynamics
as well as locally generated turbulent phenomena, which span a
broad range of scales.

In situ spacecraft observations of fluctuations in solar wind
parameters such as velocity and magnetic field (for example,
Ruzmaikin et al. 1993 in the ecliptic plane and Horbury et al.
1995 in polar flows) typically reveal an inertial range (IR)
of turbulence with a “5/3” inverse power-law scaling at high
frequencies and a flatter “1/f ”-like scaling range at lower
frequencies (Matthaeus & Goldstein 1986). The breakpoint
between these two ranges is seen to evolve radially (Bavassano
et al. 1982; Horbury et al. 1996) with the IR extending to
lower frequencies with increasing radial distance, suggesting
a turbulent energy cascade in the solar wind. The solar wind
also has a background magnetic field and is therefore a highly
anisotropic plasma environment (Shebalin et al. 1983; Oughton
et al. 1994). The strength of this background field relative to the
amplitude of the fluctuations determines whether the turbulence
is “strong,” i.e., the amplitude of fluctuations is comparable
to that of the background magnetic field (Sridhar & Goldreich
1994; Goldreich & Sridhar 1995) or “weak,” i.e., the background
magnetic field is dominant (Ng & Bhattacharjee 1997; Galtier
et al. 2000). This IR has been extensively studied using time
series analysis techniques including power spectra (Marsch &
Tu 1990a), probability density functions (PDFs; Marsch & Tu
1997; Padhye et al. 2001; Bruno et al. 2004) and generalized
structure functions (GSFs; e.g., Horbury & Balogh 1997; Hnat

et al. 2005; Sorriso-Valvo et al. 2007; Chapman & Hnat 2007;
Nicol et al. 2008).

In this paper, we focus on the low frequency “1/f α” range,
where the observed α ∼ 1 for magnetic field fluctuations, which
is ubiquitous in the solar wind and seen at all latitudes and radial
distances. It is dominated by signatures of coronal origin (see
Matthaeus & Goldstein 1986), unlike the turbulence seen at
higher frequency, which is locally evolving. Indeed, at lower
frequencies, the dominant process may be transport, however,
it is still possible that local scaling could arise, for example,
from coronal processes advected outward by the expanding solar
wind. Multifractal scaling can arise from a variety of processes
with non-Gaussian statistics Sornette (2004), of which in situ
generated turbulence is just a subset. The location of the spectral
breakpoint between the inertial and “1/f ” ranges depends on
latitude and radial distance, but it is always possible to see “1/f ”
scaling at low frequencies. The power spectral density (PSD) of
the “1/f ” range in the interplanetary magnetic field has been
extensively studied by Matthaeus & Goldstein (1986) and at
1 AU in the magnitude of the solar wind bulk velocity v and
magnetic field B by Burlaga & Forman (2002). There is also
an extensive body of work on the Gaussian and non-Gaussian
properties of PDFs of fluctuations in solar wind parameters at
these very large scales (Marsch & Tu 1997; Burlaga & Forman
2002; Sorriso-Valvo et al. 2004; Bavassano et al. 2005) and over
a wide range of heliospheric radii. Burlaga & Forman (2002)
used large-scale velocity fluctuations at 1 AU on timescales
of 1 hr to a year to quantify the standard deviation, kurtosis,
and skewness of PDFs over these scales. Studies of the “1/f ”
range in the solar wind thus provide a unique perspective on
the physics of coronal processes over the solar cycle. For the
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first time we consider components of v and B defined relative
to the local magnetic field, and we systematically distinguish
between intervals of fast and slow solar wind at solar maximum
and minimum. Here we will focus on the anisotropy of the
fluctuations by using a novel decomposition technique, and
will take advantage of the long time series available from the
Advanced Composition Explorer (ACE) spacecraft to compare
not only fast and slow solar wind streams but also periods of
minimum and maximum solar activity.

In the IR, vector quantities such as in situ velocity and
magnetic field can be resolved for components both parallel and
perpendicular with respect to the background magnetic field B.
The duration of the timescale over which the background field
is computed is important and both large-scale B (Matthaeus
et al. 1990) and average local B as a function of the scale
of the fluctuations (Chapman & Hnat 2007; Horbury et al.
2008) have been considered in the context of IR turbulence.
In terms of quantifying scaling, these approaches are generic
and the focus of the present paper is to incorporate these ideas
in statistical studies of the “1/f ” range. In this region, we are
not straightforwardly concerned with in situ turbulence, rather
with some other scaling signal which is a consequence of a
combination of remote processes at the corona and convection
as well as active mixing. The natural coordinate set is therefore
far from clear; here, we explore the idea that the background
magnetic field orders processes such as magnetohydrodynamics
(MHD) turbulent mixing and convection. We will test whether
the statistical properties of the fluctuations in v and B are related:
specifically, whether they show the same PDF and scaling
exponents. We need to select a single coordinate system in which
to project both v and B fluctuations to facilitate comparison
and here we choose this to be oriented with respect to the
local background B field. The observed scaling would also be
anticipated to depend quantitatively on solar cycle and to differ
between fast (∼750 km s−1) or slow (∼350 km s−1) solar wind
streams. High-speed flows originate in coronal holes (Krieger
et al. 1973), whereas low-speed flows arise from dense coronal
streamers (Gosling et al. 1981), while solar rotation causes high-
and low-speed flows to interact at low latitudes. We will perform
generalized structure function analysis (GSF; Sornette 2004) on
data sets spanning these intervals in order to quantify the scaling
properties of the magnetic and velocity field fluctuations both
parallel and perpendicular to the background magnetic field B.

The location of the spectral breakpoint between the inertial
and “1/f ” ranges differs in fast and slow streams (Horbury
et al. 2005; Bruno & Carbone 2005), presumably because at
a given heliocentric distance the turbulence in the slow solar
wind has had more time to develop than in the fast solar wind.
Furthermore, the crossover between IR and “1/f ” is much
clearer in fast than in slow solar wind. Here, we will see that
projecting velocity and magnetic field parallel and perpendicular
to B provides a clear indicator of where this crossover occurs.
We compare the position of this breakpoint in fast and slow solar
wind streams and at periods of maximum and minimum solar
activity. We first see that the PSDs of the vector components
of the velocity v and magnetic field B suggest anisotropy in
the “1/f ” range. We then decompose v and B into parallel and
perpendicular fluctuations with respect to the local background
magnetic field B. For the simple case of quiet fast solar wind, we
compare the PDFs of the fluctuations to see which components
may or may not share the same underlying generating process.
For completeness, we also consider the PDF for the density
fluctuations δρ. We compare the GSFs for fast and slow solar

wind at solar maximum and minimum. Finally, using the GSFs,
we obtain values for the scaling exponents in the “1/f ” range
and find that these are clearly distinct for δv‖,⊥ and δb‖,⊥.

2. THE DATA SETS

The ACE spacecraft (Stone et al. 1998) orbits the Lagrangian
point sunward of the earth (∼1 AU). For the present analysis
we study plasma parameters (magnetic field B and velocity v)
averaged over 64 s from the MAG/SWEPAM teams (Smith et al.
1998; McComas et al. 1998): for the year 2007, representative
of a period of minimum solar activity; and for the year 2000,
which was a period of maximum solar activity. This provides
data sets of ∼4.8×105 samples per year. In order to separate fast
and slow solar wind behavior yet still preserve a data set with
sufficient points to perform GSF to explore the “1/f ” dynamic
frequency range, we divide the data set into intervals (! 6000
points or 4.5 days) of fast and slow streams, where the cutoff
between fast and slow is taken at 450 km s−1 (e.g., Horbury et al.
2005). These intervals then form one long fast solar wind data
set of ∼7.4 × 104 points, and one long slow solar wind data set
of ∼1.4 × 105 points for the year 2007 and a fast data set of
∼4.1 × 104 points and a slow data set of ∼1.1 × 105 points for
the year 2000. To evaluate spectral properties, we apply Fourier
techniques to the original continuous intervals of fast and slow
solar wind. When we perform statistical analysis using the PDFs
of fluctuations in Section 3, each data set is treated as a single
ensemble. As we preserve the time indicators for the data, the
pairs of data points are always drawn from within continuous
intervals of fast or slow streams.

We first provide an overview of the “1/f ” range of these data
intervals by plotting the PSD F (f ) of the components of v and
B in the RT N coordinate system, where R is the sun-spacecraft
axis, T is the cross-product of R with the solar rotation axis,
and N is the cross-product of R with T. Generally, for a signal
x(t) of length N, the power spectrum F (f ) from the fast Fourier
transform (FFT) to frequency space is given by

F (f ) = 1
N

∣∣∣∣∣

N∑

t=1

x(t)e−2iπ(t−1)(f −1)/N

∣∣∣∣∣

2

(1)

for a range of frequencies f = n
Nfs

where n = [0 : N/2] and fs is
the sampling frequency. We take our original intervals of fast and
slow solar wind and truncate (or cut) them such that they all have
the same length of 6000 data points. Each interval is then split
up into windows of 212 = 4096 points with a 50% overlap on
the previous window. A Hamming window is applied to each of
these sub-intervals and the FFT is computed. An average is then
taken of these sub-interval FFTs to obtain the power spectrum
for each interval. The power spectra for all intervals are then
averaged to obtain the PSDs for fast and slow solar wind at
both solar maximum and minimum. At lower frequencies, the
magnetic field power spectrum F (f ) ∼ f α shows a spectral
slope α ∼ −1. Plotting F (f )/f α, α = −1 should therefore
give a horizontal line (on average). These plots are known
as compensated power spectra and are shown for the various
solar wind conditions in Figure 1. Figure 1 covers the expected
region of transition in the spectral index of v and B between
the IR and “1/f ” frequency ranges. However it is difficult to
tell precisely whether, for example, the PSD behavior between
10−5 Hz and 10−4 Hz really is “1/f α , α = 1,” particularly in
the slow solar wind. It also evident from Figure 1 that in some
cases in the “1/f α” range α varies with the solar cycle and with
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Figure 1. Compensated PSD F (f )/f α, α = −1 for velocity and magnetic field fluctuation components in the RT N coordinate system for the frequency range
10−5.5 to 10−3Hz. Results for the fast (continuous line) and slow (dashed line) are displayed separately. The dotted vertical lines delimit the frequency range
10−5 to 10−4Hz; this is expected to lie within the “1/f ” range, with the breakpoint between the inertial and “1/f ” ranges ∼10−4 Hz (Marsch & Tu 1990b; Horbury
et al. 1996). The three panels on the left-hand side are for solar maximum, while the right-hand side is solar minimum. The errors are found by considering one
standard deviation of the data sets over which the averages are taken.
(A color version of this figure is available in the online journal.)

solar wind speed, and that for both v and B the α can vary from
one component to another, and between v and B. This implies
anisotropy in the fluctuations and distinct scaling between v
and B.

From a statistical point of view, let us now characterize
this anisotropy by decomposing the velocity (or magnetic)
field fluctuations into parallel and perpendicular components
relative to the background magnetic field. We adopt the Taylor
hypothesis (Taylor 1938) to relate spatial and temporal scales
and fluctuations over a time lag τ in the velocity (or magnetic
field) vector components, defined as δv(t, τ ) = v(t +τ )−v(t). A
vector average for the magnetic field direction b̂(t, τ ) = B/|B|

is formed from a vector sum B(t) of all the observed vector
B values between t − τ/2 and t + 3τ/2. It follows that in
computing fluctuations over τ , the background field is averaged
over τ ′ = 2τ , which then defines the minimum (Nyquist)
interval necessary to capture wavelike fluctuations (Chapman
& Hnat 2007). Using this definition of b̂, the inner product

δv‖ = δv · b̂ = δvRb̂R + δvT b̂T + δvN b̂N (2)

vanishes for fluctuations which generate a velocity displacement
that is purely perpendicular to the background magnetic field
B as defined. The perpendicular fluctuation amplitude is then
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obtained from

δv⊥ =
√
δv · δv − (δv · b̂)2. (3)

We use these definitions to construct differenced time series
δv⊥(t, τ ), δb⊥(t, τ ), δv‖(t, τ ) and δb‖(t, τ ) over a range of τ
intervals within the “1/f ” range, that is τ from a few hours up
to a day.

We note that our definition of the perpendicular component
is a scalar unsigned quantity, this can be thought of as an angle-
averaged component in the plane perpendicular to the back-
ground field B. This relies on the assumption of isotropy in this
plane. In order to test this we decompose the perpendicular fluc-
tuations into two signed orthogonal components and compare
their PDFs. We first define two orthogonal unit vectors in the
perpendicular plane as

ê⊥,1 = b̂ × 〈v〉
|b̂ × 〈v〉|

(4)

and

ê⊥,2 = b̂ × ê⊥,1

|b̂ × ê⊥,1|
= b̂ × (b̂ × 〈v〉)

|b̂ × (b̂ × 〈v〉)|
, (5)

where 〈v〉 is the mean velocity over the total considered
time period and b̂ is a unit vector in the direction of the
local background magnetic field as defined previously. Velocity
fluctuations along these axis are then formed by the following
inner products:

δv⊥,1 = δv · ê⊥,1 (6)

and
δv⊥,2 = δv · ê⊥,2. (7)

These quantities are computed for the entire τ range examined
and normalized by their mean and standard deviation in order to
be compared. Figure 2 shows that any anisotropy present in the
perpendicular plane is very weak, justifying our assumption
of isotropy and our use of a scalar, unsigned perpendicular
fluctuation as defined by Equation (3). The fluctuations depart
from Gaussian at large values (the tails). We compute the
excess kurtosis of the fluctuations to estimate the extent of
this departure from Gaussian. The excess kurtosis is defined
as

〈
δv4

⊥,1&2

〉/〈
δv2

⊥,1&2

〉2 − 3. For a normal distribution it is
therefore equal to zero. We find values of kurtosis in the range
∼[0.27–0.72] for both perpendicular velocity components for
the “1/f ” range τ = 320–1003 minutes. The values are small
compared to some solar wind kurtosis measurements, which
can reach ∼10 (e.g., Feynman & Ruzmaikin 1994), nevertheless
they confirm the non-Gaussian nature of the PDFs.

3. PDF ANALYSIS

We first examine the PDFs of these fluctuations and explore
their possible functional forms. For a self-affine process, knowl-
edge of the functional form of the PDF, and of the Hurst expo-
nent H, is sufficient in principle to build a stochastic differential
equation model for the process (e.g., Sornette 2004; Chapman
et al. 2005; Kiyani et al. 2007). To compare their functional
form, the PDFs can be renormalized using (e.g., Greenhough
et al. 2002)

P [(y − 〈y〉)] = σ−1P [σ−1(y − 〈y〉)], (8)
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Figure 2. Perpendicular velocity fluctuations δv⊥,1 (“·”) and δv⊥,2 (“×”) in the
fast solar wind at solar minimum for the “1/f ” range. The normalized PDFs
are plotted on semilog y axes. For clarity, plots for only three representative
values of τ are shown for each component, whereas the fitted curve is computed
using all the τ intervals between 320 and 1003 minutes. A Gaussian fit to the
normalized PDF curves for both δv⊥,1 and δv⊥,2 is shown.
(A color version of this figure is available in the online journal.)

where 〈· · ·〉 denotes the ensemble mean and σ is the standard
deviation of the distribution. From a statistical point of view,
where fluctuations arise from a single physical process, rescaling
of PDFs using Equation (8) leads to the “collapse” of the PDFs
for the different τ onto a single function that characterizes the
underlying process (e.g., Greenhough et al. 2002; Dudson et al.
2005; Dendy & Chapman 2006; Dewhurst et al. 2008; Hnat et al.
2008). Let us apply this technique to parallel and perpendicular
velocity and magnetic field fluctuations in the fast solar wind
at solar minimum. Figure 3 shows that the PDFs for the δv‖
and δv⊥ components each collapse onto single curves that are
distinct from each other. The PDF for δv‖ is asymmetric about
δv‖ = 0, and we have investigated this asymmetry by sorting
the fluctuations with respect to the sign of δvR into δv+

‖ and
δv−

‖ . The resulting GSFs and scaling exponents display the
same fractal characteristics as δv‖, implying that δv+

‖ and δv−
‖

arise from the same physical process. Figure 4 shows that the
PDFs for δb‖ and δb⊥ each collapse onto single curves that
are distinct from each other. The curve for δb‖ is distinct from
that for δv‖ and the PDF has stretched exponential tails, which
implies that these fluctuations may originate in multiplicative or
fractionating process (Frisch & Sornette 1997). The curves for
δb⊥ and δv⊥ look remarkably similar and we will explore this
later. The functional forms of these distributions are investigated
in Figure 5. A Gaussian distribution (Wadsworth 1997)

f (x|µ, σ ) = 1

σ
√

2π
e

−(x−µ)2

2σ2 (9)

approximately fits the normalized PDFs of the δv‖ fluctuations
in the “1/f ” range shown in Figure 3 with the following fitting
parameters and 95% confidence bounds: µ = 0 ± 0.003 (mean)
and σ = 1 ± 0.002 (standard deviation). Note that since we
normalized the curves to µ and σ , an exact fit would have been
µ = 0 and σ = 1 here. In contrast, the normalized PDFs of
the δv⊥ fluctuations in the “1/f ” range also shown in Figure 3
are clearly not Gaussian. Here they are fitted with two different
heavy-tailed distributions: first, we take the inverse Gumbel
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Figure 3. Parallel (upper) and perpendicular (lower) velocity fluctuations δv‖,⊥ in the fast solar wind at solar minimum for the “1/f ” range. The left panels show the
PDFs of raw fluctuations sampled across intervals τ between 320 and 1003 minutes. The right panels show the same curves normalized using Equation (8).
(A color version of this figure is available in the online journal.)

distribution given by

f (x|k, µ, σ ) = 1
σ

exp
(

−exp
(

− (x − µ)
σ

)
− (x − µ)

σ

)
.

(10)
This distribution corresponds to a maximum extreme value
distribution or the limiting distribution of samples obtained by
repeatedly selecting the maximum from an ensemble of events,
which in turn, have a distribution with finite variance, e.g.,
Gaussian or exponential (Sornette 2004). Second, a lognormal
distribution (Wadsworth 1997) defined by

f (x|µ, σ ) = 1

xσ
√

2π
e

−(lnx−µ)2

2σ2 (11)

is fitted. It can be seen from Figure 5 that the inverse Gumbel
gives a good fit to the PDF of the δv⊥ fluctuations.

Turning to the magnetic field, Figure 5 shows that, unlike δv‖,
for δb‖ there is a strong departure from the Gaussian distribution
in the tails of the PDF, which are closer to stretched exponential,
reminiscent of turbulence. The PDFs of the δb⊥ fluctuations
in the “1/f ” range are fitted with the same two heavy-tailed
distributions as δv⊥. Table 1 summarizes the fitting parameters
for the different heavy tailed distributions for both δv⊥ and δb⊥.

There is little difference between the raw and collapsed PDFs,
as δb‖,⊥ is closer to “1/f ” scaling.

As we have seen, δb⊥ and δv⊥ appear to be strongly similar
in their statistics and Figure 6 overlays the normalized PDFs

Table 1
Fitting Parameters Obtained from Maximum Likelihood Estimates

Gumbel Parameters

µ ± σ ±
δv⊥ 1.324 0.002 0.764 0.001
δb⊥ 1.325 0.002 0.770 0.001

Lognormal Parameters

µ ± σ ±
δv⊥ 0.410 0.001 0.625 0.001
δb⊥ 0.406 0.001 0.633 0.001

Note. Fitting parameters obtained from maximum likelihood estimates for the
Gumbel and lognormal distributions for δv⊥ and δb⊥ in the fast solar wind at
solar minimum.

for δb⊥ and δv⊥ in the fast quiet solar wind. We see that they
are almost identical. A possible interpretation is that both sets
of fluctuations have the same physical process at their origin.
It was also found that a gamma distribution (Wadsworth 1997)
and (Graves et al. 2002, for example), was a good fit to the
perpendicular fluctuations in the velocity and magnetic fields.

For completeness, we also examine the ion density fluctu-
ations δρ in the fast quiet solar wind. From Matthaeus et al.
(2007), one might expect these to show similar scaling behavior
to the δb‖,⊥ fluctuations, however in Figure 7 we see that this
is not the case. The density PDFs have very sharp peaks with
extended tails and are asymmetric. The rescaling collapse works
well at the center of the PDFs, but not toward the tails.
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Figure 4. Parallel (upper) and perpendicular (lower) magnetic field fluctuations δb‖,⊥ in the fast solar wind at solar minimum for the “1/f ” range. The left panels
show the PDFs of raw fluctuations sampled across intervals τ between 320 and 1003 minutes. The right panels show the same curves normalized using Equation (8).
(A color version of this figure is available in the online journal.)

To conclude this section, let us summarize our analysis of the
PDFs of fluctuations in the fast quiet solar wind.

1. Figures 3 and 4 (right-hand sides) show scaling collapse for
δv‖,⊥ and δb‖,⊥.

2. Figure 5 (left-hand side) shows that δv‖ and δb‖ are distinct.
This is manifest in both a different functional form of the
rescaled PDFs and different scaling of the moments.

3. δb‖ is nearly symmetric and has stretched exponential tails,
consistent with a multiplicative process, whereas δv‖ is
more asymmetric and is close to Gaussian.

4. Figure 6 shows that δv⊥ and δb⊥ have the same PDF
functional form and are reasonably well fitted by the gamma
and Gumbel distributions with similar fitting parameters,
suggesting a common source for the fluctuations.

4. GSF ANALYSIS FOR COMPARISON OF QUIET FAST
AND SLOW STREAMS

Scaling can be quantified by computing the GSFs of the
fluctuations, 〈|δyτ |m〉, where 〈· · ·〉 denotes ensemble averaging,
m is the order of the moment and δyτ = y(t + τ ) − y(t) is
the fluctuation in a signal y(t) over a time τ . Assuming weak
stationarity and a degree of self-similarity, GSFs can be related
to the scale τ of the fluctuation by a scaling exponent ζ (m),
when

Sm = 〈|δyτ |m〉 ∼ τ ζ (m) (12)

whereas the PSD measures ζ (2) only (e.g., Marsch & Tu 1997;
Horbury & Balogh 1997). We anticipate scaling for the data
sets considered here, given the indication of a “1/f ” range
in the PSDs in Figure 1, however, power spectra alone cannot
distinguish between fractal and multifractal behavior (Chapman
et al. 2005). From Equation (12), the scaling exponents ζ (m)
are given quantitatively by the slopes of the GSFs. Generally
for perfectly self-affine processes, ζ (m) can be described by a
linear equation ζ (m) = Hm, where H is the Hurst exponent.
Each successful computation of a GSF at increasingly high-
order yields additional information about the nature of the PDF
of fluctuations. For practical applications of the GSF analysis
to a broad range of data sets, see for example: MHD turbulence
simulations, Merrifield et al. (2005, 2006, 2007); solar wind
turbulence, Horbury & Balogh (1997); Hnat et al. (2005);
Chapman & Hnat (2007); Nicol et al. (2008); geomagnetic
indices, Hnat et al. (2003); laboratory plasma turbulence,
Budaev et al. (2006); Dewhurst et al. (2008); Hnat et al. (2008)
and references therein. We now apply these methods to the
observations. Figure 8 shows the GSFs up to m = 4 for
δv‖, δv⊥, δb‖, and δb⊥ for fast and slow solar wind at solar
minimum. The series is differenced over τ = n × 640 s for
n = 1 to 160, that is for a range covering 10–1706 minutes
(∼28 hr). The finite length of the data sets considered means
that the statistics calculated for any given single ensemble
can in principle be affected by the presence of large outliers,
which are insufficiently numerous to be fully sampled. We
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Figure 5. Parallel and perpendicular velocity and magnetic field fluctuations δv‖,⊥ and δb‖,⊥ in the fast solar wind at solar minimum for the “1/f ” range. For clarity,
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check that this does not bias our results via the method of
Kiyani et al. (2006; see also Kiyani et al. 2007), which by
subtracting outliers verifies whether calculated exponents are

robust against statistical fluctuations in the outliers. The raw
and 0.4% conditioned GSFs are shown for comparison in
Figure 8. For the low-order moments that we consider here,
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we see that the difference is small, so that the finite length of
our data sets does not significantly affect our conclusions. The
raw data are used for the plots of the probability densities of
the fluctuations in Section 3. Figure 8 is consistent with the
results shown previously, namely that v and B fluctuations

exhibit very different behavior in the “1/f ” range, which
corresponds to large τ intervals. A simple self-affine noise
process with PSD ∼ 1/f α , α ∼ 1 would on such a plot have
ζ (2) → 0 since α = 1 + ζ (2). If the process is fractal then
ζ (m) = αm → 0 for all m. Thus we see that at τ > 178 min.,
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(A color version of this figure is available in the online journal.)

the GSFs for δb‖,⊥ “flatten” in the ∼1/f range, consistent with
previously reported results based on the PSD (Matthaeus &
Goldstein 1986; Matthaeus et al. 2007). The δv‖,⊥ GSFs on
the contrary steepen at τ > 178 minutes, showing a scaling
process and exponents distinct from those of δb‖,⊥. These are
closer to a value of ζ (2) ∼ 1, which, again for a simple noise
process, is consistent with PSD ∼1/f 2. This is what we have
seen in the PDF curve renormalization of the previous section:
the δb‖,⊥ raw PDFs were close to the renormalized PDFs, since
the normalization is with respect to the first two moments S1
and S2, which for δb‖,⊥ vary weakly as a function of scale τ .
Equation (12) tells one that the scaling behavior of the process
is contained in the ζ (m) exponents, given by the slopes of the
GSFs. We obtain these values by linear fits to the log–log GSF
plots.

Whilst these results confirm the “1/f ” scaling of fluctuations
in B on long timescales, reported previously by for example
Matthaeus & Goldstein (1986), they also highlight the distinct
scaling of v, which we will investigate next. These GSF plots of
fluctuations oriented with respect to the background field also
clearly show the crossover between the IR and “1/f ” for fast
and slow solar wind. The “1/f ” range is much shorter in the
slow streams, consistent with previous observations (e.g., Bruno
& Carbone 2005; Horbury et al. 2005). The minimum value of
τ that we will use for the following analysis can be seen to be
greater than the breakpoint τ for both velocity and magnetic

field fluctuations. It is also interesting to note that although the
PDFs of δv⊥ and δb⊥ in the fast quiet solar wind show the same
functional form (Figure 6), their GSF scalings are very different.
This may suggest that the fluctuations δv⊥ and δb⊥ originate in
a common coronal source, but their subsequent development
differs in the evolving and expanding solar wind.

Figures 9 and 10 compare the GSFs for fast and slow solar
wind streams at solar maximum (2000) and minimum (2007);
for clarity only the 0.4% conditioned results are shown.

Figures 9 and 10 suggest that the scaling properties of δv⊥
and δb⊥ do not change with solar cycle in fast solar wind.
However δv‖ does, while the solar cycle dependence of δb‖
is indeterminate. The divergences at τ " 103 minutes in the
fast solar wind at solar maximum may be due to finite size
effects: the data set for solar maximum is shorter than for solar
minimum, because there are fewer long continuous time periods
of fast solar wind. Figures 9 and 10 also show that the scaling
properties of all four fluctuating quantities in the slow solar wind
differ between solar maximum and minimum, due to different
scaling exponents or a different breakpoint location.

Let us summarize our conclusions from the GSF analysis.

1. The breakpoints between the scaling properties measured
by GSF analysis are different between fast and slow solar
wind streams, and between periods of maximum and
minimum solar activity.
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Figure 10. Comparison of scaling properties of perpendicular fluctuations between fast (upper) and slow (lower) solar wind at solar maximum (left) in 2000 and solar
minimum (right) in 2007. Generalized structure functions Sm are plotted on log–log axes vs. sampling interval τ for τ = 10–1706 minutes and m = 1–4. Perpendicular
components of fluctuations in velocity (blue) and magnetic field (red) are shown.
(A color version of this figure is available in the online journal.)

2. These breakpoints do not necessarily coincide with the
breakpoint between IR and “1/f ” ranges inferred from
spectral analysis, however as mentioned earlier, it is difficult
to extract precise quantitative information from the power
spectra plots.

3. The IR extends to longer timescales in slow solar wind
streams and at periods of maximum solar activity (e.g.,
Horbury et al. 2005), this is particularly clear in the GSFs
of the perpendicular components in Figure 10.

4. The IR remains relatively robust for both slow and fast solar
wind streams and is independent of solar cycle. This is to
be expected if the IR is established by a turbulent cascade
within the evolving expanding solar wind, rather than by
initial conditions in the corona.

5. Intriguingly, δv⊥ and δb⊥ have the same behavior in the
“1/f ” range for fast solar wind at both solar maximum and
minimum. Their scaling looks similar for the slow solar
wind, but the breakpoint moves to longer timescales at solar
maximum.

6. All four quantities vary between fast and slow solar wind
and solar minimum and maximum.

5. QUANTIFYING THE SCALING EXPONENTS

Let us now quantify the observed scaling by measuring the
slopes of the GSFs to obtain estimates of the values of the
scaling exponents, ζ (m); the robustness of the scaling will also
be tested. In principle, values for ζ (m) are obtained from the

gradients of the log–log plots of Sm versus τ . In practice, these
are affected by the fact that both the length of the data set and the
range of τ over which we see scaling are finite. As a preliminary,
therefore, we outline a method to optimize this process to obtain
a good estimate of the exponents.

5.1. p-model and Brownian Walk Test Time Series

We begin by considering a simple self-affine process where
Sm ∼ τ ζ (m), ζ (m) = Hm. A fractal (self-affine) time series
will in principle always give the same value of H if computed
from any region, or range of values, of the PDF of fluctuations
(differences) sampled across a timescale τ . We seek to choose
the most statistically significant subset, and we do this by
recomputing H for different regions of the PDF; if the process is
fractal, we expect to find the same H. To probe the full range of
behavior in the PDF, including any extended tails, we need to test
for convergence to a single value of H for a wide dynamic range
of the PDF, for example ∼20σ . The largest values explored
by the PDF of the data are the least well sampled statistically.
It follows that if we successively remove these outliers, we
should see, for a fractal time series, rapid convergence to a
constant H value. This is shown in Figure 11 (top panel) for a
Brownian walk, see also Kiyani et al. (2007). The scaling for
a Brownian walk with normally distributed steps demonstrates
the expected behavior for a fractal process without heavy tails.
On the other hand, a multifractal process does not return a
single constant value of H as one changes the range of values
over which H is computed; this can be seen for the multifractal
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p-process (Meneveau & Sreenivasan 1987) in the lower panel
of Figure 11. A plot of the value of the exponent (here ζ (2))
as we successively remove outliers then can distinguish fractal
and multifractal processes. For processes that are fractal, it also
provides a more precise determination of the single exponent
H that characterizes the time series. The errors are obtained
by combining the least squares error in the ζ (m) value fitted
across the full range, with the standard deviation of the ζ (m)
values fitted across runs of data points that have varying lengths,
starting with a minimum length of about half the total fitting
range length, centered on the middle of the full fitting range.
This method is applied for all the exponent statistics throughout
this paper.

5.2. Fast Quiet Solar Wind Scaling

We now quantify the scaling exponents of δv‖ and δv⊥
fluctuations in the fast solar wind at solar minimum. The
corresponding GSFs are plotted in the top right panels of
Figures 9 and 10. We plot the exponents ζ (m), which are the
gradients of the fitted power laws, from τ = 320 to 1002 minutes
in Figure 12. In the lower panels, we show how the value of
ζ (2) changes as outliers are successively removed. Comparing
with Figure 11, we infer that δv‖ is fractal within errors and
δv⊥ is only very weakly multifractal (almost monofractal). For
the exponents, we obtain ζ‖(2) close to 1, suggestive of near
Gaussian behavior and (if the relation α = 1 + ζ (2) holds)

a PSD ∼ 1/f 2. In contrast, the exponent for perpendicular
fluctuations ζ⊥(2) is close to 0.5, implying a PSD ∼ 1/f 3/2.
Figure 13 compares the scaling exponents ζ (2) for δv‖ and
δv⊥ in fast and slow solar wind streams at solar minimum.
The corresponding GSFs are plotted in the right-hand pairs of
panels in Figures 9 and 10. Fluctuations of δv‖ in the slow solar
wind appear more strongly multifractal than in the fast wind.
For δv⊥ the slow solar wind displays a much higher exponent
value for slow (ζ (2) ∼ 0.8) than for fast (ζ (2) ∼ 0.5) streams,
reflecting the intrinsic differences between the fast and slow
solar wind, and the coronal plasma conditions and magnetic
field configuration at their origin. To summarize the observed
results:

1. Analysis of the scaling exponents reveals fractal or weakly
multifractal (very close to monofractal) scaling in the
fluctuations of velocity components in the fast solar wind,
with very different values for δv‖ (ζ (2) ∼ 0.95) and δv⊥
(ζ (2) ∼ 0.5) at solar minimum.

2. In the slow solar wind at solar minimum, the scaling
exponent ζ (2) of δv⊥ nearly doubles from ∼0.5 to ∼0.8. In
contrast, the scaling of δv‖ remains quantitatively similar
to its value in the fast wind (Figure 13), i.e., ζ (2) ∼ 0.95
but has a less well-defined monofractal character.

3. If we assume a regime in which the PSD f −α scaling
exponent α is related to ζ (2) by α = 1 + ζ (2), then we
obtain for the fast quiet solar wind: α ∼ 1 for δb‖,⊥ (as
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Figure 12. Scaling properties of fluctuations δv‖ and δv⊥ in the “1/f ” range, τ = 320–1002 minutes, in the fast solar wind at solar minimum. The upper panels show
the ζ (m) exponents plotted as a function of moment m = 1–4 for different percentages of removed points for δv‖ (left) and δv⊥ (right). The bottom panel shows ζ (2)
plotted against the percentage of removed points for δv‖ (blue, upper) and δv⊥ (red, lower).
(A color version of this figure is available in the online journal.)
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Figure 13. Comparisons of ζ (2) at solar minimum in the “1/f ” range as a function of the percentage of removed points for fast (red) and slow (blue) solar wind
streams for δv‖ (left) and δv⊥ (right). The slow solar wind scaling appears to be more strongly multifractal.
(A color version of this figure is available in the online journal.)

expected from Figure 1), α ∼ 2 for δv‖ and α ∼ 1.5 for
δv⊥.

6. CONCLUSIONS

We have examined the scaling of the parallel and perpendic-
ular velocity and magnetic field fluctuations measured in the
solar wind at ∼1 AU by ACE, which we have decomposed with

respect to a locally averaged background magnetic field. Power
spectra, GSFs, and PDF collapse have been used to qualify and
quantify the nature of the observed scaling in the low-frequency
“1/f ” range. Slow and fast solar wind streams have been com-
pared at both solar maximum in 2000 and solar minimum in
2007. The slow solar wind is found to be more multifractal and
complex than the fast solar wind. In contrast, self-affine scaling
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is observed for the velocity fluctuations in the fast solar wind
at solar minimum. This suggests that indeed the “1/f ” range
is not simply an in situ turbulent cascade, but rather carries the
signature of scaling processes other than in situ turbulence.

1. The magnetic field fluctuations display a flattening of
the GSFs for τ ! 178 minutes and a spectral index
∼1, consistent with ∼ 1/f behavior found previously
(Matthaeus & Goldstein 1986; Matthaeus et al. 2007).

2. The velocity fluctuations show strong anisotropy, with
scaling behavior distinct from that of the B field and
characterized by steepening of the GSFs in the “1/f ” range
(Figure 8) consistent with ∼1/f α, α #= 1.

For the fast quiet solar wind:

1. δv‖ and δv⊥ have different scaling exponents: δv‖ exhibits
fractal scaling with ζ (2) ∼ 0.95 ± 0.02 whereas δv⊥ is
weakly multifractal with ζ (2) ∼ 0.49 ± 0.03 (Figure 12).
The PDFs for these quantities also rescale relatively well.
The PDF of δv‖ is close to Gaussian, whereas δb‖ is nearly
symmetric and has stretched exponential tails, consistent
with a multiplicative process.

2. The rescaled PDFs for δv⊥ and δb⊥ can be fitted with
the same distribution function, which is close to gamma
or inverse Gumbel (see Figure 6). However, their scal-
ing exponents revealed by GSFs differ substantially (see
Figure 10).

3. These observations are consistent with a common coronal
source for the fluctuations but a different spatiotemporal
evolution out to 1 AU. The functional form of the PDF then
constrains the mechanism that generates the fluctuations at
the corona, gamma having points of contact with turbulence
in confined plasmas (see, for example, Graves et al. 2005;
Labit et al. 2007, and references therein) and Gumbel, as
an extremal process.

We also note that the breakpoint between the IR and “1/f ”
ranges differs between fast and slow solar wind streams and
between periods of maximum and minimum solar activity.

1. The IR extends to longer timescales in slow solar wind
streams and at periods of maximum solar activity.

2. The values of the IR scaling exponents remain unaffected
by changes in the solar cycle (Figures 9 and 10), consistent
with locally generated turbulence.

Our results clearly show very different behavior between
the magnetic and velocity fluctuations in the “1/f ” range.
The fractal nature of δv‖ points to distinct physical processes
in the corona, and to their mapping out into the solar wind.
Further work would involve relating the fractal scaling observed
at ∼1 AU with fractal stirring of magnetic footpoints in the
corona. The different scaling observed in δv⊥ points to different
dynamics perpendicular to the background field (field line
interactions?) with a possible common coronal origin for the
δv⊥ and δb⊥ fluctuations in fast quiet solar wind.

R.N. acknowledges the STFC and UKAEA Culham for
financial support and R. P. Lepping and the ACE team for data
provision.
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