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ABSTRACT

Aims. We investigate the effects of acceleration during non-linear electron-beam relaxation in magnetized plasma in the case of
electron transport in solar flares.
Methods. The evolution of electron distribution functions is computed using a three-dimensional particle-in-cell electromagnetic
code. Analytical estimations under simplified assumptions are made to provide comparisons.
Results. We show that, during the non-linear evolution of the beam-plasma system, the accelerated electron population appears. We
found that, although the electron beam loses its energy efficiently to the thermal plasma, a noticeable part of the electron population
is accelerated. For model cases with initially monoenergetic beams in uniform plasma, we found that the amount of energy in the
accelerated electrons above the injected beam-electron energy varies depending the plasma conditions and could be around 10–30%
of the initial beam energy.
Conclusions. This type of acceleration could be important for the interpretation of non-thermal electron populations in solar flares. Its
neglect could lead to the over-estimation of accelerated electron numbers. The results emphasize that collective plasma effects should
not be treated simply as an additional energy-loss mechanism, when hard X-ray emission in solar flares is interpreted, notably in the
case of RHESSI data.
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1. Introduction

Solar flare X-ray observations provide often unique insights into
the processes of electron acceleration and transport. Recent ob-
servations of solar flares, notably with RHESSI (Lin et al. 2002)
have emphasized the high efficiency of electron acceleration in
solar flares (for a recent review of electron properties, see Kontar
et al. 2011; and for the corresponding implications for particle
transport in solar flares, Karlický 1997; and Holman et al. 2011).

The high efficiency of electron acceleration results in high
electron fluxes or concentrations of deka-keV electrons in so-
lar flares, and the subsequent importance of collective effects
to particle transport in the solar atmosphere. The presence of
large number of energetic electrons in coronal loops could trig-
ger a number of instabilities and generate plasma waves, which
in turn affect the transport of energetic particles from the accel-
eration region down to the chromosphere. It has been shown that
accounting for these collective effects could affect the interpre-
tation of hard X-ray spectra and lead to additional observational
consequences that are essential to the study of solar flares. For
example, the inclusion of Langmuir wave generation in the treat-
ment of spatially localized electron beams (Hannah et al. 2009)
prevents the formation of a pronounced low-energy cut-off that
appears in purely collisional models (e.g. Brown 1971; Brown
et al. 2002). Weibel instability (Weibel 1959) can quickly in-
crease the velocities in the direction perpendicular to the beam
propagation and affect the observed X-ray anisotropy (Karlický
& Bárta 2009; Karlický & Kašparová 2009). The presence of

Langmuir waves in a flaring loop could also result in plasma
emission (e.g. Vlahos & Papadopoulos 1979; Emslie & Smith
1984; Hamilton & Petrosian 1987), providing additional con-
straints on non-thermal electron populations in solar flares.

In laboratory plasma experiments, collision-less effects in-
volving various instabilities have been demonstrated to play a
key role in electron transport. In experiments to study the beam-
plasma interaction, the appearance of electrons with energies
exceeding that of the injected beam energy was noted in early
studies (e.g. Berezin et al. 1964; Fainberg 1968; Kovalenko
1983). These above-the-injected energy electrons are normally
connected to either the presence of plasma inhomogeneities
(Vedenov et al. 1967; Ryutov 1969; Nishikawa & Ryutov 1976;
Escande 1979) or the nonlinear effects of wave-particle interac-
tions (Breizman & Ryutov 1975; Timofeev & Terekhov 2010).
Furthermore, the influence of plasma inhomogeneities or wave-
wave interactions on beam-plasma instability in the solar context
has been studied extensively in connection to the theory of so-
lar radio-type III bursts (e.g. Muschietti et al. 1985; Tyshetskiy
et al. 2007; Kontar & Reid 2009; Tsiklauri 2010; Reid & Kontar
2010; Ziebell et al. 2011). The processes governing non-thermal
electron evolution in solar flares span a computationally pro-
hibitive range of timescales from the inverse plasma period∼ω−1

pe
to observational timescales of thousands of seconds. Therefore,
modeling efforts in solar flare physics have focused either on rel-
atively long observational timescales by either ignoring short-
timescales or addressing the micro-physics on scales smaller
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than the observational scales (e.g. Bret 2009; Bingham et al.
2001; Eliasson et al. 2006; Hewett et al. 1991; Lee et al. 2008;
Messmer 2002; Rose et al. 2002; Sakai et al. 2006; Saito & Sakai
2004).

Kontar et al. (2012) showed that the k-spectrum evolution of
beam-generated Langmuir waves in collisional plasma could re-
sult in substantial energy gain by high energy electrons or the ef-
fective acceleration of electrons of the same beam above 20 keV
for solar flare conditions. Thus, if collisional relaxation is as-
sumed, the number of energetic electrons inferred from X-ray
spectra could be overestimated and may lead to an apparently
large number of accelerated electrons. However, the treatment
of Kontar et al. (2012) is a one-dimensional analysis based on
weak turbulence theory. They showed that a positive density gra-
dient, externally excited density fluctuations, and the three-wave
interaction involving ion-sound mode could lead to an effective
acceleration of beam electrons. However, the role of the guid-
ing magnetic field as well as three-dimensional (3D) aspects of
beam-plasma interaction have not yet been addressed.

This paper investigates the non-linear evolution of non-
thermal electron beams in a plasma. Using the particle-in-cell
(PIC) model developed in Karlický (2009) and Karlický &
Kašparová (2009), we investigate the effects of the acceleration
of electrons in the beam during a non-linear stage of beam-
plasma instability for various values of the guiding magnetic
field. We show that about �10−30% of electrons are acceler-
ated to the energies greater than the energies at which they were
injected. The presence of a guiding field increases the number
of electrons accelerated during a beam-plasma interaction. The
results show the appearance of accelerated electrons and high-
light that collective effects can lead to not only additional energy
losses for lower energy electrons but the acceleration of some
electrons above the initial energy of electrons. As the hard X-ray
spectra in solar flares is normally due to deka-keV electrons, this
acceleration effect should be taken into account when the num-
ber of accelerated electrons is estimated. In this paper, we com-
pared these results with analytical estimates.

2. Simulation model

It is commonly accepted that electrons in solar flares are acceler-
ated at low corona heights by primary energy-release processes.
They propagate along the magnetic field lines as electron beams
downwards to loop footpoints, where they generate hard X-ray
emission. The rapid variations (of timescales ∼45 ms) in this
hard X-ray emission observed in some events indicate that the
acceleration as well as the electron beam flux can may them-
selves rapidly varying (e.g. Kiplinger et al. 1983; Aschwanden
et al. 1995). This means that the effect of fast propagation
needs to be considered in the evolution of these electron beams.
Assuming that the electrons have a power-law distribution in
the acceleration region. Owing to the propagation, fast electrons
could then overtake slower ones at some distance from the accel-
eration site (e.g. Hannah et al. 2009), forming an unstable distri-
bution that can be approximated by the mono-energetic beam.

For our study, we used a 3D (three spatial and three veloc-
ity components) relativistic electromagnetic PIC code (Karlický
2009). The system sizes are Lx = 45Δ, Ly = 45Δ, and Lz =
600Δ, where Δ is the grid size.

We initiated a spatially homogeneous electron-proton
plasma with the proton-electron mass ratio mp/me = 16 (mod-
els A-H in Table 1). This ratio was chosen to shorten the com-
putational times and keep the proton skin-depth shorter than the
dimensions of the numerical box. Nevertheless, the ratio was still

Table 1. Model parameters and the fraction (FR) of the beam energy in
the electrons with energies greater than the initial-beam electron energy.

Model mi/me nb/ne vb/c ωce/ωpe FR (%)
A 16 1/8 0.666 0.0 10
B 16 1/8 0.666 0.1 10
C 16 1/8 0.666 0.5 22
D 16 1/8 0.666 0.7 28
E 16 1/8 0.666 1.0 29
F 16 1/8 0.666 1.3 27
G 16 1/40 0.666 0.0 12
H 16 1/40 0.666 1.0 28

sufficient to clearly separate the dynamics of electrons and pro-
tons. The electron thermal velocity was vTe = 0.06 c, where c
is the speed of light. In all models, 160 electrons and 160 pro-
tons per cube grid were used. The electron plasma frequency
was ωpe = 0.05(Δt)−1 (Δt = 1 is the time step) and the electron
Debye length was λD = vTe/ωpe = 0.6Δ. The electron and proton
skin-depths were λce = c/ωpe = 10Δ and λcp = c/ωpp = 40Δ
(where ωpp is the proton plasma frequency), respectively.

We then included a mono-energetic beam that was homoge-
neous throughout the numerical box. To keep the total current
zero in these models in their initial states, we introduced an ini-
tial return current by shifting the background plasma electrons in
the velocity space according to the relation vd = −vbnb/ne, where
vb is the velocity of the electron beam, and nb and ne are the beam
and background plasma densities; for an example of this type of
initialization, see Niemiec et al. (2008). In principle, it is possi-
ble to start from a zero initial return current. However, owing to
inductive effects included in the used 3-D electromagnetic code,
the current starts to oscillate at the electron plasma frequency
with the amplitude of the stabilizing return current. Therefore in
these simulations, we recommend starting from an already sta-
bilized return current (Nishikawa 2008). Although these current
oscillations can influence the studied acceleration, for simplifi-
cation, we did not take this effect into account. We similarly ne-
glected any effects of the return-current formation (electrostatic
ones) on the front of the propagating beams.

The beam velocity was chosen to be vb/c = 0.666 in the
z direction. The ratio of the beam to the plasma densities was
chosen to show the details of the acceleration process nb/ne =
1/8, which is a rather high value (however still realistic). The
lower values of nb/ne = 1/40, see Table 1, for comparison, were
used in models G and H.

To investigate the influence of the magnetic field in the mod-
els, we consider several values of the background magnetic field,
so that the ratio of the electron-cyclotron to electron-plasma fre-
quencies (ωce/ωpe) is 0.0, 0.1, 0.5, 0.7, 1.0, and 1.3 (see Table 1).
In all models, the periodic boundary conditions were used.

3. Results of numerical simulations

Using the above described model, we performed eight runs
(A-H) using the parameters given in Table 1. As an example
(see Fig. 1), a time evolution of the electron velocity distribu-
tion for model E is shown at four different times: the initial
state (a), ωpet = 40 (b), ωpet = 140 (c), and ωpet = 200 (d).
Crosses correspond to f (vz), and dotted and dashed lines dis-
play f (vx) and f (vy), respectively. The vertical line in the initial
state at v/c = 0.666 denotes the mono-energetic electron beam.
As can be seen here, a plateau forms in the velocity space be-
tween the velocity of the initial beam and that of the background
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Fig. 1. The electron velocity distributions for
model E at four different times: at the initial
state a), at ωpet = 40 b), at ωpet = 140 c), and
ωpet = 200 d). Crosses correspond to f (vz), dot-
ted and dashed lines display f (vx) and f (vy),
respectively. Note that f (vx) and f (vy) overlap.
The vertical line in the part a) at v/c = 0.666
denotes the monoenergetic electron beam.

plasma electrons. It is produced by the so-called quasi-linear
relaxation, in which the electron beam generates the Langmuir
waves (see Fig. 2). The Langmuir waves were initially generated
at the k-wave vector corresponding to the resonance condition
for the beam-plasma instability, i.e. at ω = kzvb (see the peak in
the Langmuir wave energy-spectrum in Fig. 2a), where ω is the
frequency of the Langmuir waves and vb is the electron beam ve-
locity (Mikhailovskii 1975). These Langmuir waves then decay
and merge mainly in accordance with the three wave interac-
tions (for details, see e.g. Bárta & Karlický 2000) and evolve in
the k-vector space (see the enhanced Langmuir wave spectrum
in Figs. 2b−d). The Langmuir waves, on the other hand, scatter
the beam electrons and heat the background plasma. During this
process, the plateau in the electron distribution function f (vz) is
formed (see detailed discussion of the quasi-linear relaxation in
the following section). However, during this process some beam
electrons, owing to an interaction with the Langmuir waves, ob-
tain an energy that is higher than the electron energy in the ini-
tial beam. This is shown in Fig. 3, where a time evolution of the
electron energy distributions for model E at four different times
is presented: at (a) ωpet = 40 (b) ωpet = 60, (c) ωpet = 140, and
(d) ωpet = 200. For comparison, we show in each panel in this
figure the initial electron-plasma distribution together with the
initial mono-energetic beam (dashed lines). Here, it can clearly
be seen that some electrons have the energies higher than those
of the initial beam.

Although in the initial state, we started from a uniform back-
ground plasma, very soon (owing to the dense beam) strong
density fluctuations appeared (see Fig. 5). During the evolution,
their characteristic lengths became longer (compare Figs. 5a

and 5b). In the early stages of evolution, the associated electric
field densities are not correlated with the density fluctuations. On
the other hand, in the later stages of evolution, e.g., atωpet = 190
it can be seen that the electric fields (Langmuir waves) start to
be trapped in density depressions (see e.g. the electric field den-
sities at z, equal to 300Δ and 430Δ respectively).

To investigate the energetics of the accelerated electrons, we
computed their energy (expressed in fraction of the initial beam
energy) above some selected energy levels. The time evolution
of these fractions for the energies higher than E/mc2 = 0.25 and
E/mc2 = 0.3, for model E are shown in Fig. 6. The initial en-
ergy of the beam electron was E/mc2 = 0.22178. In this fig-
ure, for comparison the time evolution of the maximum energy
of the electron (E/mc2) is plotted. The fractions firstly increase
in time, owing to the some time taken for acceleration of these
electrons to the selected energy levels. The fractions then slowly
decrease to some saturation level, in agreement with the satura-
tion of the quasi-linear relaxation process. The fractions gener-
ally decrease with the increase in the energy interval between the
beam energy and selected energy level. We also computed the
fractions of these accelerated electrons for the energy levels just
above the beam energy. For all computational models (A-H) at
the time ωpet = 200, these fractions are summarized as percent-
ages in the last column of Table 1. These fractions increase as
the magnetic field increase, e.g. from FR = 10% for ωce/ωpe = 0
(model A) to FR = 29% for ωce/ωpe = 1 (model E). For even
greater values of ωce/ωpe, the fractions start to decrease (see
FR = 27% for ωce/ωpe = 1.3 in model F). Similar results were
found for models G and H, where we considered a beam den-
sity lower than in models A-F (see Table 1). As shown and
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Fig. 2. The Langmuir wave energy for model E
in the k-space at four different times: ωpet =
40 a), ωpet = 60 b), ωpet = 140 c), and
ωpet = 200 d) (solid lines). For comparison in
each panel, the initial Langmuir wave energy is
added (dashed line).

analyzed in the papers of Karlický & Bárta (2009) and Karlický
& Kašparová (2009) for the models with weak magnetic fields
(models A-B), the Weibel instability is significant and strongly
influences the resulting electron distribution function. On the
other hand, the strong magnetic field (e.g. model E) reduces the
role of the Weibel instability (see also the discussion and Fig. 8).

As an illustration, we present in Fig. 4 the electron energy
distributions at ωpet = 200 for all runs, i.e. for ωce/ωpe = 0.0,
0.1, 0.5, 0.7, 1.0, and 1.3, respectively (models A-F, Table 1).
The number of electrons accelerated above the initial electron-
beam energy (expressed by the vertical dashed line) corresponds
to the fractions FR in Table 1.

4. Quasi-linear relaxation – analytical estimates

While the analytical treatment of a 3D non-linear beam-plasma
system is impossible, the efficiency of acceleration can be es-
timated in the quasi-linear limit. In this limit, the evolution of
energetic electrons is described by two coupled kinetic equa-
tions (Vedenov & Velikhov 1963; Vedenov et al. 1967; Tsytovich
1995). For a weakly magnetized plasma, when the field is strong
enough to provide one-dimensional electron dynamics, the elec-
tron beam evolution can be described using standard quasi-linear
theory

∂ f
∂t
=

4π2e2

m2

∂

∂v

(
Wk

v

∂ f
∂v

)
, (1)

∂Wk

∂t
− ∂ωpe(x)

∂x
∂Wk

∂k
=
πωpe

ne

ω2
pe

k2
Wk
∂ f
∂v
, (2)

where f (v, t) is the electron distribution function, Wk is the spec-
tral energy density of the Langmuir waves, ωpe is an electron
plasma density, and e and m are the electron charge and mass.
The equations describe the resonance (ωpe = kv) interaction of
the electron beam with the surrounding plasma via the genera-
tion of plasma waves and include plasma inhomogeneity effects
(see, e.g. Vedenov et al. 1967; Ryutov 1969; Kontar & Pécseli
2002).

When the plasma is uniform ∂ωpe(x)
∂x = 0, the stationary so-

lution for the initially unstable beam distribution f (v, t = 0) =
g0(v), v < vb of the coupled quasi-linear equations is well-known
(Vedenov & Velikhov 1963). The electron distribution function
has the form of a plateau

f (v, t→ ∞) =
nb

vb
, v < vb, (3)

and the spectral energy density of plasma waves Wk can be found
from Eqs. (1), (2) using Eq. (3)

W
(
k =
ωpe

v
, t→ ∞

)
=

m
ωpe
v3

∫ v

0

(
nb

vb
− g0(v)

)
dv, v < vb, (4)

thus the spectral energy density becomes

W
(
k =
ωpe

v
, t→ ∞

)
=

mnb

ωpevb
v4, v < vb (5)

for g0(v) = nbδ(v − vb) and takes the form

W
(
k =
ωpe

v
, t→ ∞

)
=

mnb

ωpevb
v3

(
1 − v
vb

)
, v < vb (6)
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Fig. 3. The electron energy distributions for
model E at four different times: ωpet = 40 a),
ωpet = 60 b), ωpet = 140 c), and ωpet = 200 d)
(solid lines). For comparison in each panel,
the initial electron-plasma distribution together
with the initial monoenergetic beam are added
(dashed lines).

for g0(v) = 2nbv/v
2
b, v < vb, (see Kontar 2001, for details). The

total energy density of plasma waves from Eq. (5) is UL = 2/3×
mnbv

2
b/2 and UL = 1/3 × mnbv

2
b/2 for the second case given by

Eq. (6).
However, when the plasma has a positive density gradient

∂ωpe(x)
∂x > 0, which corresponds to electrons propagating into the

region of higher density (as in the standard flare scenario), the
Langmuir waves slowly evolve towards larger phase velocities or
smaller wavenumbers k. As Langmuir wave packets propagate
within the plasma, the total energy of the wave packet ω(k, x)
must be constant (Vedenov et al. 1967), which requires that the
wavenumber change be negative for a positive plasma-density
gradient, such that

Δk � −∂ωpe(x)

∂x
Δt. (7)

Therefore, the motion of Langmuir wave over the time range Δt
results in a decrease in the wavenumber from k to k − ∂ωpe(x)

∂x Δt.
The waves shifted to higher v (smaller k) can be effectively
re-absorbed by the beam, which leads to an acceleration of
the electrons and the formation of an extended plateau above
v > vb. Using the conservation of energy, and assuming that
all Langmuir waves are re-absorbed by the beam owing to the
plasma inhomogeneity, W(k = ω/v, t → ∞) = 0, one finds that
for the energy

∫ ∞

0
f (v, t→ ∞)v2dv =

∫ ∞

0
f (v, t = 0)v2dv (8)

the electron distribution has electrons with velocity v > vb

f (v, t→ ∞) =
nb

vmax
, v < vmax, (9)

where the new maximum velocity is from Eq. (8)

v2max =
3
nb

∫ ∞

0
g0(v)v2dv. (10)

Numerical solutions of Eqs. (1) and (2) (see Kontar 2001, for
details) show that the value of the density gradient mostly affects
the rate of the extended plateau formation and that the final state
of the initially unstable distribution g0(v) = 2nbv/v

2
b, v < vb, gives

vmax =
√

3/2vb. In the case of g0(v) = nbδ(v − vb), one finds that
vmax =

√
3vb.

In the case of non-linear interactions and various density
fluctuations, the energy exchange between the electrons and
plasma waves becomes more complicated. Kontar et al. (2012)
used numerical simulations to estimate the role of these ef-
fects. Here, assuming that small-scale density fluctuations in
the plasma generated during the beam-plasma instability are
random with zero mean, the evolution of Langmuir waves in
plasma can be approximated as a symmetric diffusion in k-space
(see Eq. (14) in Kontar et al. 2012). This leads to equal num-
bers of plasma waves spreading towards smaller and larger the
phase velocities. The former waves will be Landau-absorbed
by the thermal plasma, while the latter will be absorbed by the
beam resulting in electron acceleration in the tail of distribution.
Therefore, for the Langmuir wave spectrum flattened in k-space,
(see Fig. 2), these simplistic arguments suggest that only half of
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Fig. 4. The electron energy distributions (solid lines) at ωpet = 200 as a function of the magnetic field in models A-F with ωce/ωpe = 0.0, 0.1, 0.5,
0.7, 1.0, and 1.3, respectively. For comparison in each panel we plot the initial electron plasma distribution together with the initial monoenergetic
beam (dashed lines).

Fig. 5. Normalized plasma density (solid line) and the electric field den-
sity (dashed line) in the z-direction along the line with x = y = 22Δ for
model E at two times: ωpet = 60 a) and ωpet = 190 b). The electric field
density is expressed in arbitrary units, but the electric field density at
b) is multiplied by a factor of 50.

the Langmuir wave energy given by Eqs. (5) and (6) will be reab-
sorbed back. The maximum velocity then becomes vmax =

√
2vb

and the energy of the electrons with v > vb becomes

U(v > vb, t → ∞) =
m
2

∫ vmax

vb

nb

vmax
v2dv

� 0.43
mnbv

2
b

2
, (11)

for g0(v) = nbδ(v − vb). We note that these estimates are rather
close to the numbers inferred from the 3D PIC simulations

Fig. 6. Fractions of the beam energy in electrons with energies greater
than E/mc2 = 0.25 (dashed line) and greater than E/mc2 = 0.3 (dot-
ted line), for model E. The initial energy of the beam electron is
E/mc2 = 0.22. For comparison, we plot the time evolution of the maxi-
mum energy of the electron (solid line).

presented in Table 1. It is worth noting that the collisional re-
laxation of the electron power-law spectrum, which is initially
stable was considered by Kontar et al. (2012), while in this pa-
per we treat a “classical” case of beam-plasma instability.

5. Discussion and conclusions

We have performed a number of 3D PIC simulations of the
beam-plasma instability with monoenergetic beams and have
shown that during relaxation a population of electrons with ve-
locities exceeding those of the injected electrons appears. The
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Fig. 7. The X-ray spectrum for model E at ωpet = 200 (solid line) and
the initial state (dashed line).

energy of these electrons is around 10–30% of the initial beam
energy.

Using PIC simulations, it is difficult to predict the long-term
time evolution of these processes in solar flares. However, as
shown in Fig. 7 this effect is indicated by the high-energy limit
of the X-ray spectrum, namely that the accelerated high-energy
electrons shift the X-ray spectrum to higher energies. This result
together with the radio diagnostics can be used for an estima-
tion of these acceleration processes. For example, if we take the
dm-spikes as a radio signature of the acceleration process in so-
lar flares (Guedel et al. 1991), then the advanced theory of these
bursts can be used to estimate the electron distribution function
at the acceleration site. Comparing this function with that deter-
mined from the hard X-ray spectrum at the flare footpoints, the
acceleration efficiency can then be estimated.

We have found that the increasing magnetic field strength
leads to a larger fraction of accelerated electrons. Therefore, we
decided to compare the electron distribution functions of the
cases with and without a magnetic field (in models A and E,
Fig. 8). As presented and analyzed in Karlický & Bárta (2009)
and Karlický & Kašparová (2009), the main difference in both
cases is caused by the Weibel instability. In model E, the Weibel
instability is reduced, while in model A (without the magnetic
field) the Weibel instability transfers the beam energy to a heat-
ing of mainly perpendicular components of the background
plasma. Thus, in the case without the magnetic field, not only the
bump-on-tail instability but also the Weibel instability operates
and less energy (than in model E) is transferred to the Langmuir
waves, leading to a weaker acceleration.

We considered two values of the ratio of the beam to back-
ground plasma densities nb/ne = 1/8 and 1/40, which imply
that the return-current electron speeds are vd = 0.083 c and
vd = 0.016 c (where c is the speed of light), respectively. This
corresponds to two regimes of the return-current electron speed
either greater or lower than the thermal plasma velocity, which
is in our model vTe = 0.06 c. In both cases, the percentage of
the energy in accelerated electrons is similar. The case where
nb/ne = 1/8, i.e. the case with the drift speed greater than the
initial thermal velocity, should be unstable for the Buneman
instability. However, the time of evolution considered in the
present study is shorter than the time required to develop such an

Fig. 8. Comparison of the electron distribution functions in model A
(without the magnetic field) and model E (ωce/ωpe = 1.0). Crosses cor-
respond to f (vz) and dashed lines display overlapping f (vx) and f (vy).

instability. For much longer term evolutions of similar systems
in this regime computed with a 1-D Vlasov code, the formation
of weak double layers was found and proposed as an explanation
of broken power-law X-ray spectra in solar flares by Lee et al.
(2008) (see also Karlický 2012).

We note that the size of our numerical box (45Δ × 45Δ ×
600Δ) is limited by the memory and speed limits of our com-
puter. The limited number of spatial grids limits a number of
grids in the k-vector space. This limitation can influence the
wave-wave and wave-particle interactions in this acceleration
process. This is especially important in the linear regime of these
interactions, which would correspond here to the cases with low
density beams. However, in the present study we considered very
dense beams (nb/ne = 1/8 and 1/40), which generate strong den-
sity fluctuations ensuring that these interactions are far from lin-
ear regimes (We note that in the interpretation of the hard X-ray
emission the dense electron beams are often required). We made
additional tests for model E. We used the same parameters as in
model E, but we varied the size of the numerical system. We ob-
tained similar results. For the system size (20Δ × 20Δ × 1500Δ)
at the time ωpet = 200, the fraction FR is 26% and for the size
(10Δ × 10Δ × 3000Δ) at the same time the fraction FR = 25%;
compare with the fraction FR = 29% for model E in Table 1.
Nevertheless, to make these results more precise we plan to re-
peat these computations in larger numerical boxes on a more
powerful computer.

Comparing the numerical and analytical treatment, we pro-
pose that for this type of acceleration the density fluctuations
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and non-linear wave-wave interactions are essential. While in a
strictly uniform plasma this acceleration is impossible (see the
analytical estimations), in real conditions with sufficiently dense
electron beams some beam electrons are accelerated to energies
greater than the initial ones via non-linear wave interactions and
density fluctuations.

In solar flares, high non-thermal electron fluxes are often re-
quired to explain the observed X-ray emission, which provide
the suitable conditions for fast beam-plasma instability. As we
have shown, the beam-plasma instability generates the Langmuir
wave turbulence. The acceleration of electrons occurs owing to
the k-space evolution of Langmuir waves, in which not only the
Langmuir waves with phase velocities smaller than the initial
beam velocity are generated (as in the case of beam relaxation in
uniform plasma) but also those with higher phase velocities. The
process of electron acceleration is fast, and occurs on a timescale
much shorter than the electron transport time from an accelera-
tion site to the dense chromospheric region. We therefore expect
that during these processes the tail of the distribution extends
towards higher energies. The number of high-energy electrons
above some energy level increases and thus influences the hard
X-ray spectrum. However, the total number of beam electrons
is conserved and the process only redistributes the beam energy.
These results emphasize that the transport of electrons should
not be treated using a single particle description, and that the col-
lective effects produce not only energy loss, but an effective ac-
celeration of electrons. The analysis of a hard X-ray spectrum as-
suming only collisional losses could therefore infer that a larger
number of electrons than actually is initially accelerated owing
to the additional in-flight acceleration.
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