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Quasilinear theory has long been used to treat the problem of a weak electron beam interacting

with plasma and generating Langmuir waves. Its extension to weak-turbulence theory treats reso-

nant interactions of these Langmuir waves with other plasma wave modes, in particular, ion-sound

waves. These are strongly damped in plasma of equal ion and electron temperatures, as sometimes

seen in, for example, the solar corona and wind. Weak turbulence theory is derived in the weak

damping limit, with a term describing ion-sound wave damping then added. In this paper, we use

the EPOCH particle-in-cell code to numerically test weak turbulence theory for a range of

electron-ion temperature ratios. We find that in the cold ion limit, the results agree well, but for

increasing ion temperature the three-wave resonance becomes broadened in proportion to the ion-

sound wave damping rate. Additionally, we establish lower limits on the number of simulation par-

ticles needed to accurately reproduce the electron and wave distributions in their saturated states

and to reproduce their intermediate states and time evolution. These results should be taken into

consideration in, for example, simulations of plasma wave generation in the solar corona of Type

III solar radio bursts from the corona to the solar wind and in weak turbulence investigations of

ion-acoustic lines in the ionosphere. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4904065]

I. INTRODUCTION

Fast electron beams in plasma are ubiquitous in many

areas of laboratory and natural plasma physics, particularly

the solar corona. In many cases, the beams are weak in com-

parison with the background plasma, with densities of 1 part

in 104 or below, in which case quasilinear theory1,2 can be

applied to describe their evolution analytically. However,

this describes only the production or absorption of Langmuir

waves by an electron beam. The extension of quasilinear

theory to what we call weak-turbulence (WT) theory3–6 adds

the effects of wave-wave interactions to the quasilinear

framework in the limit that the wave modes involved are

weakly damped. A damping term for the ion-sound waves is

then added.

Quasilinear and weak turbulence theories have been

very productively applied to simulations of weak beam sin

solar and ionospheric physics. For example, the classic

theory of type III solar radio bursts7–9 involves the produc-

tion of Langmuir waves by a streaming fast electron popula-

tion, and their subsequent decay and coalescence leading to

escaping radio emission.10,11 However, in the solar corona

and wind where such bursts are produced, the plasma ion

and electron temperatures can be comparable or even

equal,12,13 and ion-sound waves will be strongly damped.

Plasma wave generation may also modify streaming non-

thermal electron populations in flaring coronal loops.14,15 In

the ionosphere, plasma wave interactions may lead to

naturally enhanced ion-acoustic lines seen in radar

observations.16,17

Attempts to apply kinetic simulation methods to this

problem are limited by the long timescales involved in the

evolution of a weak beam (of the order 104 inverse plasma

frequencies for a beam of 10�4 times the density of the back-

ground), alongside the necessity to resolve the inverse

plasma frequency and the Langmuir wave dynamics. This is

computationally demanding for both particle-in-cell (PIC)

and Vlasov methods. For PIC methods, a large number of

particles-per-cell (ppc) are needed. For example, Dum18 con-

sidered relatively strong beams ðnb=ne � 10�3Þ in a series of

strict particle and fluid-particle hybrid simulations with of

the order 105 total particles over all species, while Kasaba

et al.19 reproduced plateau formation for a relatively strong

(2%) beam with a limited number of ppc (640 over 3 spe-

cies), and also briefly considered weak beams.

Nishikawa and Cairns20 found a decay process that did

not correspond to the usual ion-sound wave scattering pro-

cess, which may be due to either their dense fast beam or the

limited number of particles (36 per cell). More recently,

Baumg€artel21 considered a 0.5% beam with around 500 elec-

trons per cell and found only limited evidence for weakly

non-linear wave-wave coupling. Ganse et al.22 considered

similar beam densities without ion dynamics and therefore

could not reproduce the strong Langmuir wave scattering

predicted by weak turbulence. Vlasov simulations of weak

beam-plasma interactions are less common. For example,

Daldorff et al.17 considered ionospheric electron beamsa)Electronic mail: h.ratcliffe@warwick.ac.uk
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modifying ion-acoustic lines but were forced to use unphysi-

cal parameters such as a 1% beam density for computational

reasons, altering the processes of Langmuir wave generation,

and scattering. Henri et al.23 considered finite Langmuir

wave-packets and concluded that for sufficiently fast wave

growth, ion-sound wave damping could be overcome even in

plasma of equal ion and electron temperatures, and resonant

wave-wave interactions would proceed as usual.

In this paper, we consider the beam-plasma interaction

for a weak ðnb=ne ¼ 10�4Þ beam using a PIC code and

derive for the first time, the Langmuir wave spectral energy

densities produced. We compare these directly with the pre-

dictions of weak turbulence using a previously developed

code.24 We investigate the beam-plasma interaction for a

range of ion temperatures, both in the cold ion regime, where

weak turbulence theory applies, and the hot ion case, where

it may be expected to breakdown.

The paper is organized as follows. In Sec. II, we intro-

duce quasilinear and weak turbulence theory and their gov-

erning equations. In Sec. III, we describe the PIC code setup

and establish convergence of the results. In Sec. IV, we com-

pare the PIC code and WT results for cold ions and show

good agreement, then treat the problem for ion-electron tem-

perature ratios from 0.01 and 2, and derive a simple model

of resonance broadening which can explain the observed dis-

crepancies in the hotter cases. Section V summarizes our

findings.

II. QUASILINEAR AND WEAK TURBULENCE THEORY

The problem we consider is that of an approximately

Maxwellian beam of fast electrons travelling in a collision-

less plasma with a weak background magnetic field. In most

cases mentioned in the introduction, a 1-D model is used as

the electrons are assumed to be effectively constrained to the

field lines.25,26 The behaviour of Langmuir waves is a key in

determining the level and spectrum of beam induced radio

emission. In particular, initial generation of a beam parallel

Langmuir wave population is expected to produce a second-

ary daughter wave population approximately anti-parallel, and

the position and width of this is a key for generation of

emission at twice the plasma frequency by wave coalescence.

We describe the electrons using their distribution func-

tion fv(t) [cm�4 s], whereð1
�1

fvðtÞ dv ¼ ne þ nb; (1)

with ne being the density of the background plasma, and nb

that of non-thermal electrons, and the Langmuir waves by

their spectral energy density as a function of wavenumber k,

W(k, t) [erg cm�2], where

ðkDe

�kDe

WkðtÞ dk ¼ EL (2)

is the total energy density of the waves in erg cm�3 and

kDe ¼ 2p=kDe ¼ 2pxpe=vTe with vTe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=me

p
being the

electron thermal velocity and xpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnee2=me

p
being the

plasma frequency, and me and e are the mass and charge of

an electron, respectively. CGS (centimeter, gram, second)

units are used to agree with, e.g., Tsytovich.6

The equation for the evolution of the electron distribu-

tion1,2 is (with explicit time dependence left out for clarity)

@fv
@t
¼ 4p2e2

m2
e

@

@v

Wk

v

@fv
@v

� �
; (3)

while the Langmuir wave evolution1,2,27 is given by

@Wk

@t
¼

x3
peme

4pne
vln

v

vTe

� �
fv þ

px3
pe

nek2
Wk

@fv

@v
: (4)

The first RHS term here is spontaneous Langmuir wave gen-

eration, the equivalent term for electrons being negligible

and thus omitted. The second RHS term is known as non-

linear Landau damping. The interaction described is reso-

nant, requiring the Langmuir wave phase velocity to match

the electron velocity, or xpe ¼ kv using the common approx-

imation that the Langmuir wave frequency is approximately

the plasma frequency.2

The quasilinear (QL) equations describe the interaction

of beam of electrons with plasma and the subsequent genera-

tion of Langmuir waves. However, it is known that these

Langmuir waves are subject to further instabilities, most

importantly the Langmuir decay instability (LDI), whereby

a Langmuir wave (L) decays to a second Langmuir wave

plus an ion-sound wave (s), L !L0þs. Additionally,

Langmuir waves may be scattered by plasma ions, but for

the parameters used here this occurs far slower than the

LDI28 and is therefore omitted. The following equations

were originally derived in the limit of weak damping of

all wave modes involved, therefore, in particular, in the limit

Ti � Te. The strong ion-sound wave damping present in

plasma of similar or equal ion and electron temperatures is

described by adding a damping term to the equation describ-

ing the ion-sound wave evolution and is assumed not to

affect the three-wave resonance directly.29

The general expression describing the LDI process is

standard5,6 and is assuming 1-D wave distributions

@Wk

@t
¼asxk

ð
dk0xs

k0

� Wk�k0

xk�k0

Ws
k0

xs
k0
�Wk

xk

Wk�k0

xk�k0
þWs

k0

xs
k0

� �� ��
� d xk � xk�k0 � xs

k0
� �

� Wk�k0

xk�k0

Ws
k0

xs
k0
�Wk

xk

Wk�k0

xk�k0
�Ws

k0

xs
k0

� �� �
� d xk � xk�k0 þ xs

k0
� �

�; (5)

where Ws
k0 ;x

s
k0 are the spectral energy density and frequency

of ion-sound waves, given by

xs
k0 ¼

k0vsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k0kDe

p ’ k0vs; (6)

with vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTeð1þ 3Ti=TeÞ=Mi

p
being the sound speed,

and the constant is
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as ¼
px2

pe 1þ 3Ti=Teð Þ
4nekBTe

: (7)

Similarly, the sound waves obey

@Ws
k

@t
¼� cs

kWs
k � as xs

k

� �2
ð

dk0

� Wk�k0

xk�k0

Ws
k

xs
k

�Wk0

xk0

Wk�k0

xk�k0
þWs

k

xs
k

� �� �
� d xk0 � xk�k0 � xs

k

� �
: (8)

The first term here is Landau damping of the waves, with

coefficient

cS kð Þ ¼
ffiffiffi
p
8

r
xs

k

vs

vTe
þ vs

vTi

� �3

exp � v2
s

2v2
Ti

 !" #" #
: (9)

Equations (3)–(9) constitute what we call the WT

theory. Simultaneous solution of energy (frequency) and mo-

mentum (wavenumber) conservation with the appropriate

dispersion relations shows that for the process L! L0 þ s;
k � k0 ’ �k, and k0 ’ 2k, i.e., the initial Langmuir wave is

approximately backscattered. More precisely, we have k �
k0 ¼ �k þ Dk with the small decrement

Dk ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=Mi

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3Ti=TeÞ

p
=ð3kDeÞ: (10)

III. PIC CODE SETUP AND CONVERGENCE TESTS

We use EPOCH1D,30 a Birdsall, and Langdon type PIC

code31 using Villasenor and Buneman current deposition.32

This solves Maxwell’s equations combined with the equa-

tions of motion for charged particles in an electromagnetic

field to provide a direct simulation of collisionless plasmas.

We assume hydrogen plasma with a plasma frequency

of 200 MHz and set the electron ion mass ratio as 1:1836.2.

The background plasma is Maxwellian with an electron tem-

perature of 2 MK, and an ion temperature varying from 0.01

times to double this. We note that non-Maxwellian back-

grounds may occur in some situations of interest, such as the

kappa distributions seen in some regions of the solar wind,33

and may affect the plasma dispersion, but these are not con-

sidered here. The simulation box length is 1024kDe and we

use periodic boundary conditions. In order to resolve the

Langmuir wave dynamics, we output the electric field infor-

mation every 0:3x�1
pe . The number of simulation ppc varies

from 400 to 24 000 for each species, for 3 species (back-

ground electrons, beam electrons, and ions), with the major-

ity of simulations using 12 000 each. We inject a Maxwellian

beam with drift velocity 10vTe and temperature 2 MK at time

t¼ 0 uniformly along the box.

The simulations have total run time of between one and

three times sql, where

sql ¼
ne

nbxpe
(11)

is the “quasilinear time” dictating the timescale for beam-

plasma interaction. The beam density is nb=ne ¼ 10�4. The

quasilinear theory described above applies only in the weak

beam limit, where the beam electrons do not modify the

Langmuir wave dispersion. An approximate analytical limit

for nb was found by Muschietti and Dum,34 which for the

beam temperature used here is nb=ne ¼ 4� 10�5. Thus, we

first confirm that the beam electrons are not affecting the

plasma wave dispersion.

In Figure 1, we show an example of the Langmuir wave

dispersion curve obtained from our simulations, overlaid

with the Bohm-Gross relation

x ¼ ðx2
pe þ 3v2

Tek2Þ1=2; (12)

and that for the “beam mode” x ¼ kvb found by Willes and

Cairns35 for strong beams. A break in the dispersion relation

is visible where these intersect in panel (b) which shows a

beam 10 times denser than our main simulations, with signif-

icant power visible along the dashed curve rather than the

solid one below k=kDe¼ 0.1. This arises due to the influence

of beam electrons on the plasma dispersion. For the beam

density used in the main simulations shown in panels (a) and

(c), no prominent beam mode is visible, and we conclude

that the Langmuir wave dispersion is well described by the

Bohm-Gross relation.

From the electric field, we calculate a Langmuir

wave spectral energy density as follows. We take a series

of 2-D windowed Fourier transforms centred on the

desired time with a fixed characteristic width of 0.1sql.

Each resulting Fourier transform is mod-squared to give

energy density and then integrated over a 62% frequency

band around the Langmuir wave dispersion curve, pro-

ducing a spectral energy density as function of wave-

number k. With appropriate constants restored, these are

directly comparable to the wave spectral energy densities

in Eq. (4). For the remainder of this paper, we present all

quantities in SI units.

Next, we establish the convergence of the PIC code

results by a series of test runs with increasing number of par-

ticles per cell per species, np. Figure 2 shows the electron

distribution functions for np from 400 to 24 000 ppc. In all

cases, the expected quasilinear plateau formation is seen,

with timescale given roughly by the quasilinear time (Eq.

(11)).

The effects of the decreasing noise levels are immedi-

ately obvious: for small particle number, the plateau forma-

tion proceeds significantly faster. However, the final results

are quite similar in all but the smallest particle number case.

The small high energy tail in the distribution function pro-

duced in the low ppc result and not in the higher number

simulations should be noted, as is appears to be erroneous. In

some cases, prominent tails are predicted by the WT

theory,36 and this result implies that high particle numbers

are needed to properly reproduce this in PIC simulations.

The stepped structure in this tail arises from scattering of

Langmuir waves to smaller wavenumber, as described by

Dum,18 and is stronger in the low particle number case due

to higher noise levels.

Figure 3 shows the derived spectral energy density

of Langmuir waves for a simulation with cold ions

122104-3 Ratcliffe et al. Phys. Plasmas 21, 122104 (2014)
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(Ti¼ 0.1Te) and np between 400 and 24 000 ppc. As

expected, the observed noise levels are proportional toffiffiffiffiffi
np
p

. The increased noise associated with smaller numbers

of particles causes earlier growth of both the primary

(positive wavenumber) and backscattered (negative wave-

number) Langmuir waves, but the final level of primary

waves is unaffected in all but the lowest ppc case. The

longer time data for 6 and 12 000 ppc show that at satura-

tion the secondary peak height and width are also very

similar.

This suggests that around 4000 ppc is adequate to repro-

duce the long time dynamics of waves, but at least 12 000

ppc is required to see the time evolution. For particle num-

bers below about 1000 ppc, the Langmuir wave backscatter

is strongly affected in rate and spectrum. However, 400 ppc

appears sufficient to reproduce general features of quasilin-

ear plateau formation and primary Langmuir wave

generation.

Finally, Figure 4 shows the Fourier transform of the

electric field at low frequencies, overlaid with the ion-sound

wave dispersion relation from Eq. (6). The mode is clearly

visible, with the expected dispersion. Presence of this mode

confirms that Langmuir wave backscattering due to wave-

wave processes can occur and be resolved in these simula-

tions. However, their enhancement at wavenumbers around

0.2 to 0.3kDe due to wave-wave scattering is not distinguish-

able here due to noise.

IV. COMPARISON BETWEEN PIC AND QUASILINEAR
SIMULATIONS

A. General behaviour

Figure 5 shows the electron distributions and Langmuir

wave spectral energy densities in the cold ion case from the

high-particle-number PIC and the WT simulations. The classic

quasilinear relaxation and plateau formation are seen and are

similar in both cases. The PIC results for the electron distribu-

tion are seen to pre-empt the WT results, with the plateau wid-

ening much faster. However, the final states are very similar.

The Langmuir wave results also show this, producing slightly

faster growth and a wider peak at all times, although the peak

height and shape are very similar, and the location is identical.

The dashed curves in panels (b) and (d) show the WT results

at a later time when the plateau formation is close to saturation,

which are close to the PIC result at sql given by the red lines.

This faster evolution is inferred to be produced by the PIC

code noise level, which is many orders of magnitude above the

thermal level of Langmuir waves. The waves therefore grow

from a higher base, reaching a given level sooner, but saturate

at the same level dictated by the beam density.

B. Results for varying ion temperature

Next, we compare the results for fixed electron tempera-

ture and three ion-electron temperature ratios: colder ions

FIG. 1. An example Fourier transform of the electric field for a PIC code run with 12 000 ppc. Panel (a) shows the entire curve for a beam density of

nb=ne ¼ 10�4. Beam parallel waves appear at positive wavenumber, antiparallel at negative. The smaller panels show the detail of the beam parallel waves for

(b) nb=ne ¼ 10�3 and (c) 10�4. The solid black curve shows the Bohm-Gross dispersion relation for Langmuir waves (Eq. (12)), the dashed that for the “beam-

mode” x ¼ kvb. The color represents power on a log scale from dark to light.
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where WT theory works well, as shown in Figure 5, equal

electron and ion temperatures, and a case with the ion tem-

perature double the electron temperature. The former was

performed using 10 000 ppc to allow longer runtime, the lat-

ter two with 12 000 ppc.

The former two had box length 1024kDe as above, giv-

ing k-resolution of 0.006kDe. The primary peak occurs at

around 0.11kDe, and Table I shows the expected decrement

in Langmuir wavenumber (Eq. (10)). For the hot ion case,

significant wave generation is expected at wavenumbers

around 0.05kDe so to ensure these can be well resolved, a

2048kDe box length was used in this case. Table I also shows

the ion-sound wave damping rate predicted by Eq. (9) in

inverse wave periods for the three cases. This is seen to be

weak in the very cold case but approaches critical damping

for the hotter ions.

Figure 6 shows the primary Langmuir wave peak for the

three cases, together with the WT result. As established in

Sec. IV A, the PIC results pre-empt the WT code and so we

plot the latter at a later time. The peak is seen to be very sim-

ilar for the three cases. Small differences are visible, such as

the slightly increased peak height relative to the quasilinear

results and the increased width in the hot ion case. Due to

FIG. 2. Electron distribution functions f(v), normalized to a peak value of 1,

for np¼ 400, 4000, 12 000, and 24 000 from dark to light blue, respectively,

at times of (a) 0.125sql, (b) 0.5sql, and (c) sql.

FIG. 3. Derived spectral energy densities of Langmuir waves against wave-

number for cold plasma ions (Ti¼ 0.1Te) for np¼ 400, 4000, 12 000, and

24 000 from dark to light blue, respectively, at times of (a) 0.125sql, (b)

0.5sql, (c) sql, and (d) 2sql (6 and 12 000 ppc). Curves are smoothed over

0.025 k/kDe.
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the stochastic nature of PIC simulations, it is not possible to

definitively state whether these are due to simulation noise,

uncertainties in the distribution reconstruction, or actual dif-

ferences in the underlying physics.

Figure 7 shows the evolution of the Langmuir waves

over time from the PIC code in the three cases. For the cold

ion case, a secondary peak is strongly visible at the later

times and has a maximum where predicted by the WT

theory, which is approximately equal and opposite the for-

wards peak, with small decrement Dk given by Eq. (10) and

in Table I. The peak width also matches the WT prediction.

A second scattered peak is also visible at small positive

wavenumbers.

Figure 8 shows the time evolution of the daughter peak

height for the three cases. Here, the weak turbulence results

have been shifted in time such that they rise above the PIC

code noise level at 0.5sql and have a noise baseline added.

The time shifts are 2.8, 1.1, and 0.8 sql, respectively, and

account for the higher effective thermal level due to noise in

the PIC code.

In the cold ion case, the growth rates are very similar, as

is the final level. A period of approximately exponential

growth is seen between 0.5 and 1.5sql, after which the insta-

bility saturates. We therefore conclude that for cold ions,

i.e., within the limits of WT theory, there is extraordinarily

good agreement between the PIC and WT results, not only

for the peak Langmuir wavenumber but also for the wave

level and spectrum and, once noise has been accounted for,

the wave growth rate. In other words, the quality of the PIC

simulations is sufficient to reproduce the semi-analytical

results, and moreover, the assumptions of the WT theory

appear valid in this regime.

The equal temperature case is shown for two independ-

ent runs of the PIC code and illustrates the effects of the ini-

tial noise on the peak evolution. Small differences are seen,

but by 2sql the levels are similar. However, the growth is

notably slower than the weak-turbulence prediction, and in

Figure 7 we see that the daughter peak is shorter and broader

than the cold ion case, which is not predicted by the WT

result. Moreover, the highest point of the peak is not where

predicted but is instead at larger wavenumber. Thus, it

appears that once the ion-sound wave damping becomes sig-

nificant, the WT theory no longer accurately describes the

wave behaviour. This discrepancy is discussed further in

Sec. IV C.

C. Interpretation as resonance broadening

For the hot ions case, the discrepancy between PIC and

weak-turbulence results in Figure 8 becomes even more

marked, as does the discrepancy in peak width and position

in Figure 7. Due to computational limitations and the longer

box in this case, data are only available until 1.4sql, but by

this stage the peak is well saturated. The level is far below

the quasilinear prediction, and the width is much greater.

FIG. 4. Fourier Transform of the electric field for cold ions with 12 000 ppc,

showing a clearly visible ion-sound mode. The solid line is the predicted dis-

persion relation given by Eq. (6). The colors show power on a log scale from

dark to light.

FIG. 5. Left column: (a) PIC code and (b) WT code electron distribution functions, normalised to a peak value of 1. Right column: (c) PIC and (d) WT

Langmuir wave spectral energy densities for positive wavenumbers. The colored lines (black to red) show 6 equally spaced times from 0.05 to 1.2sql, respec-

tively. The dashed line in the QL plots shows the result at t¼ 3sql. The ion temperature is 0.1Te.

TABLE I. The Langmuir wavenumber decrement (Eq. (10)) and the pre-

dicted ion-sound wave damping rate in inverse wave periods (Eq. (9)) for

three electron-ion temperature ratios.

Run Ti/Te Dk/kDe cs/xs

Very cold 0.01 0.024 0.029

Equal 1 0.046 0.24

Hot 2 0.061 0.32
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This increase of peak width with ion-temperature sug-

gests a link between the ion-sound wave damping rate and

the peak width. To quantify the effect, we calculate the

widths of the daughter wave peaks. The derived energy den-

sities show noisy variations on scale similar to the simulation

k space resolution and so were averaged over ten time bins

and smoothed over 3dk to reduce the effects of these varia-

tions. The 1/e peak widths were then calculated for each ion

temperature for five time periods around the maximum

height of the peak and the average taken. The results are

plotted in Figure 9. Approximate error bars are calculated by

taking the larger of 6dk=2 and the minimum and maximum

values at the five times.

The effects of resonance broadening were discussed by

Bian et al.37 in the context of the beam plasma interaction,

specifically its modification by scattering of electrons and/or

plasma waves. In that case, for heavily damped Langmuir

waves, the delta function resonance in Eq. (4) becomes

broadened with approximate width Dx the inverse lifetime

of the wave. Here, we extend this idea to the three-wave res-

onance between Langmuir and ion-sound waves, in which

case the delta functions in Eqs. (5) and (8) will be broadened

with approximate width Dx ’ cs.

Because the ion-sound waves are low frequency, this

will only weakly affect the Langmuir wave frequency.

However, the resultant ion-sound wavenumber is now con-

strained to only 6Dks=ks ’ Dxs=xs (using xs ’ ksvs). The

participating Langmuir wavenumber, k, may therefore vary

by this same amount, while still maintaining energy and mo-

mentum conservation for the interaction. We therefore

expect a peak width of Dkqlð1þ Acs=xsÞ for Dkql the peak

width from the (unbroadened) weak turbulence simulations.

The pre-factor A is unknown, but expected to be of order

unity as Dxs ’ cs and therefore Dk=k ’ Dks=ks ’ cs=xs.

Figure 9 shows the widths derived from the simulations

and this prediction for A between 2 and 4. The expected

trend is clearly seen, with A ’ 3. The simplicity of this

model precludes an explanation for this value, but this is

within the range expected. Moreover, the peak shapes shown

in Figure 7 are notably asymmetric and primarily extended

towards larger wavenumber. This may be due to the limited

wavenumber resolution affecting small wave numbers, or

some unknown factor we do not predict. Figure 9 provides

strong evidence that the analysis of the effect as resonance

broadening is correct and should certainly be studied in more

detail in future. Moreover, it can be directly implemented in

WT codes like the one used here, which may also yield inter-

esting results.

V. DISCUSSION AND CONCLUSIONS

Quasilinear and weak turbulence theories have long

been used to describe the evolution of a weak beam propa-

gating in plasma. Such a scenario is of importance in several

solar physics contexts, in particular, for solar radio bursts.

However, the weak turbulence theory is derived in the limit

FIG. 7. Spectral energy densities of Langmuir waves from PIC simulations

for Ti/Te of (a) 0.01, (b) 1, and (c) 2. Blue lines from dark to light, respec-

tively, show times of 0, 0.25, 0.5, 1, and 1.5sql (first 4 only for the hot ions

case). The red vertical lines show the predicted peak positions from WT

theory: solid for the initial peak, dashed for the first backscatter, and dotted-

dashed for the second backscatter (cold ions only).

FIG. 6. Spectral energy densities of beam parallel primary Langmuir waves

from PIC code for cold ions (Ti¼ 0.01Te, blue), equal (Ti¼Te, green), and

hot ions (Ti¼ 2Te, red), and the WT result (dashed line) which is independ-

ent of ion temperature. The PIC results are shown for sql, while the WT

result is at 3sql.
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of cold ions and this is not always the case in such situations.

We have therefore performed detailed numerical tests of WT

theory using a series of very high particle number PIC simu-

lations with EPOCH, for a weak Maxwellian beam in colli-

sionless hydrogen plasma for a range of electron-ion

temperature ratios.

Convergence testing for the PIC code results was carried

out for cold ions with particle numbers from 400 to 24 000

particles per cell per species, including beam and back-

ground electrons and ions. The well known quasilinear pla-

teau formation was observed for all numbers but was seen to

proceed much faster in the lower particle number cases, and

for the smallest number to contain an erroneous high energy

tail. We conclude that a few hundred ppc can reproduce pla-

teau formation, but around 1000 ppc per species is needed to

accurately reproduce the saturated state. Moreover, at least

10 000 ppc per species was needed to be able to correct for

the super-thermal noise level and reproduce the time

evolution.

Fourier transforms of the electric field over a long time

show clearly a well-defined Langmuir wave dispersion rela-

tion, identical to the usual Bohm-Gross prediction, and unaf-

fected by a beam of the selected density ðnb=ne ¼ 10�4Þ. A

low frequency mode corresponding well to the plasma ion-

sound mode was also seen, offering direct evidence for the

expected resonant three-wave scattering processes.

Langmuir wave spectral energy densities were derived

from the electric field and compared to the WT results. For

4000 ppc and up, the primary Langmuir wave peak shape

and position agreed well for all ion temperature cases.

Moreover, detailed comparisons for 12 000 ppc in the cold

ion case showed that the effects of ion-sound wave scattering

were well reproduced, with a secondary peak appearing

almost precisely where expected, and (once the initial noise

was corrected for) showing the expected growth rate.

For equal or double temperature ions, the PIC results

again match the quasilinear prediction for the initial

Langmuir wave peak and the beam relaxation. However, the

secondary peak formed by three-wave scattering processes

differs strongly from the theoretical expectation. In both

cases, it is broader and lower than expected and has maxi-

mum at a larger wavenumber.

Ten simulations over a range of ion temperatures were

then performed and show that the width of the scattered peak

depends strongly on the electron-ion temperature ratio.

Using the known ion-sound wave damping rate, we find that

resonance broadening of the three-wave processes described

in Sec. II can account for this. In this model, the predicted

quasilinear peak width is increased by a factor of (1þAcs/

xs), where cs/xs is the ion-sound wave damping rate in

inverse wave periods, which depends on the electron-ion

temperature ratio as shown in Eq. (9), and A is an unknown

constant. A good fit between this model and the data was

seen by eye for a value A ’ 3.

To conclude, we have tested the weak turbulence theory

against PIC simulations and found that in the cold ion limit

there is very good agreement in electron and wave behav-

iour. However, when attempting to apply WT theory in

plasma with ions approximately equal in temperature to the

electrons, or hotter, there is significant deviation. We find a

simple model which may account for this deviation, which

can be implemented in WT codes such as used in this paper,

and may yield very interesting results. Moreover, this correc-

tion strongly influences the Langmuir wave spectra in

plasma of similar electron and ion temperature. This may be

a vital consideration in, for example, the theory of Type III

radio bursts, or the naturally enhanced ion-acoustic lines

observed in the ionosphere, where the temperature ratio is

close to 1 and the details of the wave spectrum are a vital

factor.
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