
A Blueprint of State-of-the-art Techniques for Detecting Quasi-periodic Pulsations
in Solar and Stellar Flares

Anne-Marie Broomhall1,2 , James R. A. Davenport3,4 , Laura A. Hayes5,6 , Andrew R. Inglis6 , Dmitrii Y. Kolotkov1 ,
James A. McLaughlin7 , Tishtrya Mehta1, Valery M. Nakariakov1,8 , Yuta Notsu9,10,11,13 , David J. Pascoe12 ,

Chloe E. Pugh1 , and Tom Van Doorsselaere12
1 Department of Physics, University of Warwick, Coventry, CV4 7AL, UK; a-m.broomhall@warwick.ac.uk

2 Centre for Exoplanets and Habitability, University of Warwick, Coventry CV4 7AL, UK
3 Department of Physics & Astronomy, Western Washington University, 516 High St., Bellingham, WA 98225, USA

4 Department of Astronomy, University of Washington, Seattle, WA 98195, USA
5 School of Physics, Trinity College Dublin, Dublin 2, Ireland

6 Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
7 Northumbria University, Newcastle upon Tyne, NE1 8ST, UK

8 St. Petersburg Branch, Special Astrophysical Observatory, Russian Academy of Sciences, 196140, St. Petersburg, Russia
9 Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, 3665 Discovery Drive, Boulder, CO 80303, USA

10 National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303, USA
11 Department of Astronomy, Kyoto University, Sakyo, Kyoto 606-8502, Japan

12 Centre for Mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven, Belgium
Received 2019 May 24; revised 2019 August 22; accepted 2019 August 30; published 2019 October 18

Abstract

Quasi-periodic pulsations (QPPs) appear to be a common feature observed in the light curves of both solar and
stellar flares. However, their quasi-periodic nature, along with the fact that they can be small in amplitude and
short-lived, makes QPPs difficult to unequivocally detect. In this paper, we test the strengths and limitations of
state-of-the-art methods for detecting QPPs using a series of hare-and-hounds exercises. The hare simulated a set of
flares, both with and without QPPs of a variety of forms, while the hounds attempted to detect QPPs in blind tests.
We use the results of these exercises to create a blueprint for anyone who wishes to detect QPPs in real solar and
stellar data. We present eight clear recommendations to be kept in mind for future QPP detections, with the
plethora of solar and stellar flare data from new and future satellites. These recommendations address the key
pitfalls in QPP detection, including detrending, trimming data, accounting for colored noise, detecting stationary-
period QPPs, detecting QPPs with nonstationary periods, and ensuring that detections are robust and false
detections are minimized. We find that QPPs can be detected reliably and robustly by a variety of methods, which
are clearly identified and described, if the appropriate care and due diligence are taken.
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1. Introduction

Solar flares are multiwavelength, powerful, impulsive energy
releases on the Sun. Flares are subject to intensive studies in the
context of space weather, as a driver of extreme events in the
heliosphere, and also of fundamental plasma astrophysics,
allowing for high-resolution observations of basic plasma
physics processes such as magnetic reconnection, charged
particle acceleration, turbulence, and the generation of electro-
magnetic radiation. The appearance of a flare at different
wavelengths, which is associated with different emission
mechanisms occurring in different phases of the phenomenon,
is rather different. Light curves of flares, measured in different
observational bands, could be considered as a superposition of
a rather smooth, often asymmetric trend and variations with a
characteristic timescale shorter than the characteristic times of
the trend. Such a short-time variability is a common feature
detected in all phases of a flare, at all wavelengths, from radio
to gamma-rays (e.g., Dolla et al. 2012; Huang et al. 2014;
Inglis et al. 2016; Kumar et al. 2017; Pugh et al. 2017b). The
short-time variations occur in different parameters of the
emission: its intensity, polarization, spectrum, spatial char-
acteristics, etc. Often, such variations are seen in the form of

apparently quasi-periodic patterns, which are called quasi-
periodic pulsations (QPPs).
The first observational detection of QPPs in solar flares,

as a well-pronounced 16 s periodic modulation of the hard
X-ray emission generated by a flare, was reported 50 years ago
(Parks & Winckler 1969). Since this discovery, QPPs have
been subject to a number of observational case studies and
theoretical models (see, e.g., Aschwanden 1987; Nakariakov &
Melnikov 2009; Nakariakov et al. 2019, 2010; Van Door-
sselaere et al. 2016; McLaughlin et al. 2018, for comprehensive
reviews). QPPs have been detected in flares of all intensity
classes, from microflares (e.g., Nakariakov et al. 2018) to the
most powerful flares (e.g., Mészárosová et al. 2006; Kolotkov
et al. 2018). The observed depth of the modulation of the trend
signal ranges from a few percent to almost 100%. There have
been several attempts to assess statistically the prevalence of
QPP patterns in solar flares, drawing a conclusion that QPPs
are a common feature of the light curves associated with both
nonthermal and thermal emission (Kupriyanova et al. 2010;
Simões et al. 2015; Inglis et al. 2016; Pugh et al. 2017b). In
some cases, the coexistence of several QPP patterns with
different periods and other properties in the same flare has been
established (e.g., Inglis & Nakariakov 2009; Srivastava et al.
2013; Kolotkov et al. 2015; Hayes et al. 2019).
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Similar apparently quasi-periodic patterns have been
detected in stellar flares too (e.g., Mathioudakis et al. 2003;
Zaitsev et al. 2004; Mitra-Kraev et al. 2005; Balona et al. 2015;
Pugh et al. 2016), including super- and megaflares (e.g.,
Anfinogentov et al. 2013; Maehara et al. 2015; Jackman et al.
2019). Moreover, properties of QPPs in solar and stellar flares
have been found to show interesting similarities (Pugh et al.
2015; Cho et al. 2016), which may indicate similarities in the
background physical processes.

Typical periods of QPPs range from a fraction of a second to
several tens of minutes. This range coincides with the range of
the predicted and observed periods of magnetohydrodynamic
(MHD) oscillations in the plasma nonuniformities in the
vicinity of the flaring active region (e.g., Nakariakov et al.
2016, for a recent review). Because of that, QPPs are often
considered as a manifestation of various MHD oscillatory
modes. There are a number of specific mechanisms that could
be responsible for the modulation of flaring emission by MHD
oscillations, either preexisting or even inducing the flare, or
being excited by the flare itself. Mechanisms for the excitation
of QPPs can be roughly divided into three main groups: direct
modulation of the emitting plasma or kinematics of nonthermal
particles, periodically induced magnetic reconnection, and self-
oscillations (e.g., Van Doorsselaere et al. 2016; McLaughlin
et al. 2018, for recent reviews). In addition, numerical
simulations demonstrate spontaneous repetitive regimes of
magnetic reconnection (e.g., Kliem et al. 2000; McLaughlin
et al. 2009, 2012; Murray et al. 2009; Thurgood et al. 2017;
Santamaria & Van Doorsselaere 2018), i.e., the magnetic
dripping mechanism (Nakariakov et al. 2010). On the other
hand, there are numerical simulations that show that the
process of magnetic reconnection is essentially nonsteady or
even turbulent, but without a built-in characteristic time or
spatial scale (e.g., Bárta et al. 2011). In particular, parameters
of shedded plasmoids were shown to obey a power-law
relationship with a negative slope (e.g., Loureiro et al. 2012),
which could result in a red-noise-like spectrum in the frequency
domain. When the shedded plasmoids impact the underlying
post-flare arcade, they trigger transverse oscillations (Jelínek
et al. 2017).

Mechanisms of QPPs in flares remain a subject of intensive
theoretical studies (McLaughlin et al. 2018). If QPPs are a
prevalent feature of the solar and stellar flare phenomenon,
theoretical models of flares, summarized in, e.g., Shibata &
Magara (2011), must include QPPs as one of its key ingredients,
as is attempted by, for example, Takasao & Shibata (2016).
QPPs offer a promising tool for the seismological probing of the
plasma in the flare site and its vicinity. In addition, a comparative
study of QPPs in solar and stellar flares opens up interesting
perspectives for the exploitation of the solar–stellar analogy.

In different case studies, as well as in statistical studies, QPPs
have been detected with different methods. These include direct
best fitting by a guessed oscillatory function, Fourier transform
methods, Wigner–Ville method, wavelet transforms with
different mother functions, and the empirical mode decomposi-
tion (EMD) technique. Through use of these methods, different
false-alarm estimation techniques are implemented, different
models for the noise are assumed, and different detection criteria
are often used. Moreover, some authors have routinely made use
of signal smoothing (filtering or detrending), or work with the
time derivatives of the analyzed signal or its autocorrelation
function. In some studies, the detection technique is applied

directly to the raw signal. This variety of analytical techniques
and methods used by authors is caused by several intrinsic
features of QPPs in flares. The quasi-periodic signal often occurs
on top of a time-varying trend. The QPP signal is often very
different from the underlying monochromatic signal and almost
always has a pronounced amplitude and period modulation, i.e.,
QPP signals could be referred to as nonstationary oscillations.
QPP signals are often essentially anharmonic, i.e., its shape is
visibly different from a sinusoid. The QPP quality factor (QF),
which is the duration of the QPPs measured in terms of the
number of oscillation cycles, is often low, as it is limited by the
duration of the flare itself and also by signal damping or a wave-
train-like signature.
Thus, in the research community there is an urgent need

for a unification of the QPP detection criteria, understanding
advantages and shortcomings of different QPP detection
techniques (along with associated artifacts), and working out
recommended recipes and practical guides for QPP detection,
based on best-practice examples. In this paper, we perform a
series of hare-and-hounds exercises where the “hare” produced
a set of simulated flares, which are described in Section 2, for
the “hounds” to analyze. The hounds were aiming to produce
reliable and robust detections of QPPs, and the methods they
used are described in Section 4. The results of the hare-and-
hounds exercises are given in Section 5, which includes
discussion of the false-alarm rates of each methodology, along
with the precision of the detected QPP periods. In Section 6 we
draw together our conclusions from these results, making a
series of recommendations for anyone attempting to detect
QPPs in flare time series. Finally, in Section 7 we look to new
and future observational data, yet to be explored in a QPP
framework.

2. Simulations of QPP Flares

In this paper we will discuss three hare-and-hounds exercises
that aimed to test methods for detection of QPPs. The first hare-
and-hounds exercise, HH1, contained 101 flares simulated by
the “hare” (Broomhall—AMB), and these were analyzed for
QPPs by the “hounds” (Davenport—JRAD; Hayes—LAH;
Inglis—ARI; McLaughlin—JAM; Kolotkov & Mehta—DK
and TM; Pascoe—DJP; Pugh—CEP; Van Doorsselaere—
TVD). The HH1 sample was the only completely blind test
performed, where the hounds did not know how any of the
simulated flares had been produced. Following the initial
analysis of the results of HH1, it was deemed necessary to
perform further hare-and-hounds exercises to investigate issues
not covered by the HH1 sample. Accordingly, two further sets
of simulated flares were produced: HH2 contained 100 flares
and HH3 contained 18. Flares for all exercises were simulated
using the methodology described in this section and, in fact,
were produced prior to the hounds’ analysis of HH1. Before the
hounds received HH2 and HH3, they were informed of how the
simulated flares had been produced but were not aware of
which of the components described below were present in each
individual flare, i.e., the tests were still semi-blind.
Each simulated flare was assigned a randomly selected ID

number to make sure the different types of simulated QPP
flares could not be identified prior to analysis. All simulated
time series contained 300 data points and a synthetic flare. Each
flare was initially simulated to be 20 time units in length and
was heavily oversampled (with a time step of 0.001 fiducial
time units) to prevent resolution issues upon rescaling. Once
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simulated, the length of the flare was rescaled to equal a length
randomly chosen from a uniform distribution, Lflare, and further
details are given in Table 1. The respective lengths of the rise
and decay phases relative to Lflare are described below. The
flare was then interpolated onto a regular grid where data points
were separated by one time unit. The simulated flare was
inserted into a null array of length 300 such that the timing of
the peak, tpeak, was determined by a value randomly selected
from a uniform distribution (See Table 1).

The synthetic flare shapes took two forms: The first shape
was based on the results of Davenport et al. (2014), who
produced a flare template using 885 flares observed on the
active M4 star GJ 1243, which was observed by the Kepler
satellite (Borucki et al. 2010). The flare template includes a
polynomial rise phase and a two-stage exponential decay. A
limitation of this template is that it produces a very sharp peak.
This is likely to arise in the flares observed by Davenport et al.
(2014) because of the limited time cadence of the Kepler data.
In better-resolved data, a smoother turnover at the peak is often
observed (e.g., Jackman et al. 2019). To better replicate this, a
flare shape consisting of two half-Gaussian curves was created,
whereby the first half-Gaussian was used to simulate the rising
phase and had smaller width than the second half-Gaussian,
used to simulate the decay phase. The widths of the rising and
decay Gaussian curves were determined by the standard
deviations, σrise and σdecay, respectively, which were selected
from uniform distributions as detailed in Table 1. For both flare
shapes the amplitude of the flare, Aflare, was allowed to vary
randomly, as determined by a normal distribution centered on
10, with a hard boundary at zero. A random offset was also
added to the data, which was selected from a uniform
distribution (see Table 1). Examples of each simulated flare
shape can be found in the top panels of Figure 1.

2.1. Synthetic QPPs

While some of the flares were left in their basic forms, as
described above, various QPP-like signals were added to
others, and we now give details of these modifications.

2.1.1. Single Exponential Decaying Sinusoidal QPPs

The simplest form of QPP signal was based on an
exponentially decaying periodic function. Such a signal has
been used to model QPPs observed in both solar and stellar

flares (e.g., Anfinogentov et al. 2013; Pugh et al. 2015, 2016;
Cho et al. 2016). Here the QPP signal as a function of time, I(t)
(as measured in, e.g., flux or intensity), is given by

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠( ) ( )p

f= - +I t A
t

t

t

P
exp cos

2
, 1

e
qpp

where Aqpp is the amplitude of the QPP signal, te is the decay
time of the QPP, P is the QPP period, and f is the phase. Aqpp

was varied systematically with respect to the amplitude of the
simulated flare, P was varied systematically with respect to the
length of the flare, Lflare, and te was varied systematically with
respect to P. Details can be found in Table 2. For each simulated
flare, f was chosen randomly from a uniform distribution in the
range [0, 2π]. Examples of the QPP signals added to two
simulated flares can be seen in the middle panels of Figure 1.

2.1.2. Two Exponentially Decaying Sinusoidal QPPs

A second QPP signal was added to a number of the
simulated flares. This took the same form as the first QPP and
so can also be described by Equation (1). The amplitude of the
second QPP, Aqpp2, was scaled systematically with respect to
the amplitude of the first QPP, Aqpp, such that Aqpp2<Aqpp

(see Table 2). Similarly, the period and decay time of the
second QPP were scaled systematically relative to the period of
the first QPP. Recall that the decay time of the original QPP, te,
was scaled relative to the period of the original QPP, P, so the
decay time of the second QPP, te2, was also varied system-
atically relative to te. The phase was again selected from a
uniform distribution in the range [0, 2π].

2.1.3. Nonstationary Sinusoidal QPPs

In real flares the physical conditions in the flaring region
evolve and change substantially during the event, and so
nonstationary QPP signals are observed regularly (e.g.,
Nakariakov et al. 2019). To take this into account, some of
the input synthetic QPP signals were nonstationary and
specifically had nonstationary periods. Here we concentrate
on varying the period with time, but a future study could, for
example, examine the impact of a varying phase or amplitude
on the ability of the hounds’ methods to detect QPPs. The
nonstationary signal was based on Equation (1); however, the
frequency of the sinusoid was varied as a function of time such
that

⎛
⎝⎜

⎞
⎠⎟ ( )=f f

f

f
, 2

t t

0
1

0

1

where f0 is the frequency at time t=0 and f1 is the frequency at
time t=t1. Here f0=1/P and, as in Section 2.1.1, P was
varied systematically with respect to Lflare. For all simulated
flares with nonstationary QPPs, t1=100 and f1=1/(100P),
meaning that the period increased with time, as was the case for
the real QPPs observed by, for example, Kolotkov et al. (2018)
and Hayes et al. (2019). All other parameters were varied in the
manner described in Section 2.1.1.

2.1.4. Multiple Flares

In addition to the sinusoidal QPPs, simulations were
produced where the QPPs consisted of multiple flares. In these

Table 1
Details of Simulated Flare Parameters and Noise

Parameters Exponential Gaussian

Lflare U(100, 200) U(100, 200)
tpeak U(30, 300−Lflare) U(0.4Lflare, 300−Lflare)
Aflare 10+N(0, 4) 10+N(0, 4)
σrise n/a U(0.1, 3)
σdecay n/a U(5, 20)
Offset U(0, 100) U(0, 100)

White S/N [ ]Î Îi i: 1, 5 [ ]Î Îi i: 1, 5
r U(0.81, 0.99) U(0.81, 0.99)

Red S/N 17+N(0, 1) 17+N(0, 1)

Note. U Indicates Values Were Taken from a Uniform Distribution, N Indicates
Values Were Taken from a Normal Distribution, and n/a Indicates “Not
Applicable”.
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simulations either one or two additional flares were added to
the initial flare profile. The shapes of these flares were the same
as the original flare.

When one additional flare was incorporated, the timing of
the secondary flare was selected randomly from a uniform
distribution such that the peak of the secondary flare occurred

Figure 1. Top left: example of a simulated flare based on the flare template of Davenport et al. (2014), with Lflare=145.1, tpeak=129.3, and Aflare=11.5. Top right:
example of a simulated flare constructed from two half-Gaussians with Lflare=133.3, tpeak=157.8, Aflare=10.3, σrise=2.3, and σdecay=6.3. Middle left: example
of a flare (blue solid line) with a simple QPP signal (red dashed line), described by Equation (1), with P=14.5, te=58.1, Aqpp=2.3, and f=0.5 rad. Middle right:
example of a flare (blue solid line) with a simple QPP signal (red dashed line), described by Equation (1), with P=6.7, te=13.3, Aqpp=3.1, and f=0.3 rad.
Bottom left: simulated flare including noise where the S/N of the flare was 5.0. Bottom right: simulated flare including noise where the S/N of the flare was 5.0.
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during the decay phase of the original flare. The amplitudes of
the secondary flares were scaled relative to the amplitude of the
initial flare, where the ratio of the flare amplitudes was selected
using a uniform random number generator in the range [0.3,
0.5] and the amplitude of the second flare was always smaller
than the original (see Table 3). For the remainder of this article,
simulated flares containing two flares will be referred to as
“double flares.”

When two additional flares were incorporated, the amplitude
of the tertiary flare was selected to be 60% of the amplitude of
the secondary flare. For these flares, the timing of the secondary
flare was restricted to the first half of the flare decay phase.
Two regimes were used to determine the timing of the tertiary
flare: In the first regime, the timing was selected using a
uniform random number generator and was allowed to occur
anywhere in the second half of the decay phase (see Table 3).
The second regime was designed to produce a periodic signal

so that the separation in time between the secondary and
tertiary peaks was fixed at the time separation of the primary
and secondary peaks. For the rest of this article, the first regime
will be referred to as “nonperiodic multiple flares,” while the
second regime will be referred to as “periodic multiple flares.”

2.2. Noise

Two types of noise were added onto each simulated flare.
First, white noise was added, which was taken from a Gaussian
distribution, where the standard deviation of the Gaussian
distribution was systematically varied relative to the amplitude
of the flare. In flares that included a synthetic QPP signal, the
amplitude of that signal was also systematically varied with
respect to the amplitude of the flare. This ensured that the
amplitude of the white noise was, therefore, also systematically
varied with respect to the QPP amplitude.

Table 2
Details of QPP Signals of Simulated Flares

Type Number in HH1 Number in HH2 Parameters Variation
Exponential Gaussian Exponential Gaussian

Single QPP 25 25 16 16 Lflare/P [10, 20, 30]
Aqpp/Aflare [0.1, 0.2, 0.3]
te/Lflare ⎡

⎣⎢
⎤
⎦⎥

1

30
,

1

20
,

1

15
,

1

10
,

2

15
,

1

5
,

2

5
f U[0, 2π]

Two QPPs 2 2 0 0 P2/P U(0.45, 0.55)
Aqpp2/Aqpp U(0.5, 0.8)

te2/te U(0.45, 0.55)
f2 U[0, 2π]

Nonstationary QPPs 2 2 0 0 ν1 0.001ν0
t1 100

Linear background 1 2 0 0 C1 AflareU(−1, 1)

Quadratic background 2 1 0 0 C1 AflareU(−1, 1)
C2 U(0, 300)

Note.We note that in the flares containing two QPPs, nonstationary QPPs, and linear and quadratic background trends, the parameters P, Aqpp, te, and f were defined
in the same manner as for the “single QPP” flares, i.e., randomly or systematically varied as described in this table.

Table 3
Details of Simulated Single, Double, and Multiple Flares

Type Number Exponential Gaussian

HH1 HH2

E G E G Parameters Variation Parameters Variation

Single 1 0 19 22

Double 1 0 5 7 tpeak2 tpeak+U(0,0.375Lflare) tpeak2 tpeak+U(0,0.375Lflare)
Aflare2 U(0.1Aflare,0.3Aflare) Aflare2 U(0.1Aflare,0.3Aflare)
Lflare2 U(0.4Lflare,0.6Lflare) σrise2, σdecay2 0.1σrise, 0.1σdecay

Nonperiodic multiple 3 3 4 3 tpeak3 tpeak+U(0.375Lflare, 0.75Lflare) tpeak3 tpeak+U(0.375Lflare, 0.75Lflare)
Aflare3 0.6Aflare2 Aflare3 0.6Aflare2

Lflare3 Lflare3 σrise3, σdecay2 0.1σrise, 0.1σdecay

Periodic multiple 4 4 1 7 tpeak3 tpeak+2(tpeak2−tpeak) tpeak3 tpeak+2(tpeak2−tpeak)
Aflare3 0.6Aflare2 Aflare3 0.6Aflare2

Lflare3 Lflare3 σrise3, σdecay2 0.1σrise, 0.1σdecay

Note.“E” denotes flare shapes with exponential decays based on the flare shape of Davenport et al. (2014). “G” denotes flares shapes based on two half-Gaussians.
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In addition to the white noise, red noise was also added onto
the simulated flares. Red noise is a common feature of flare
time series, and if its presence is not properly accounted for by
detection methods, it can lead to false detections (e.g., Auchère
et al. 2016). The added red noise, Ni, can be described by the
following equation:

( ) ( )= + --N rN r w1 , 3i i i1
2

where i denotes the index of the data point in the time series, r
determines the correlation coefficient between successive data
points, and wi denotes a white-noise component. Here r was
selected using a uniform random number generator in the range
[0.81, 0.99]. wi was taken from a Gaussian distribution,
centered on zero and with a standard deviation that was scaled
systematically relative to the amplitude of the flare.

In this study, the noise was added to the simulated flare in an
additive manner. In reality this is likely to be somewhat
simplistic, and some multiplicative component is expected.
Further studies are required to determine the impact of the
multiplicative component on the detection of QPPs.

2.3. Background Trends

In real flare data, a background trend is often observed in
addition to the underlying flare shape itself (which can also be
considered as a background trend when searching for QPPs).
This is particularly true in stellar white-light observations,
where the light curve can be modulated by, for example, the
presence of starspots (Pugh et al. 2015, 2016) but can also be
observed if the flare containing the QPPs occurs during the
decay phase of a previous flare. To determine the impact of this
on the ability of the detection methods to identify robustly
QPPs, background trends were incorporated into some of the
simulated flares. These backgrounds were either linear or
quadratic, and the coefficients of the background trend were all
varied with respect to the amplitude of the original flare. For
the linear background trend, a variation of

( ) ( )=L t C t 41

was added to the simulated flare time series, where C1 was a
constant chosen randomly from a uniform distribution to be
some positive or negative fraction of the flare amplitude
(AflareU(−1, 1)). As a constant offset was added to all simulated
time series as standard, there was no need to include an
additional constant offset in Equation (4). Similarly, the
quadratic background trends were given by

( ) ( )= +Q t C t C t , 51 2
2

where C1 was defined as above in the linear background trend
and C2 was chosen randomly from a uniform distribution in the
range 0<C2<300.

2.4. Real Flares

In addition to the simulated flares, the hare-and-hounds
exercises also contained a number of disguised real solar and
stellar flares. The real flares were chosen predominantly from
previously published results where QPP detections had been
claimed. In addition, one flare where no QPPs had previously
been detected was included in the sample. They were also
chosen based on the number of data points within the flare,
such that they would fit the model of the simulated flares, with

each containing 300 data points. For each real flare, the time
stamps were removed and an offset, chosen randomly from a
uniform distribution, was added (in the same manner as with
the simulated flares; see Section 2). Each flare was then saved
in the same kind of file as the simulated flares and given a
random ID number; thus, these flares were indistinguishable
from the simulated ones. To test the impact of signal to noise
(S/N) on the ability to detect the QPPs, additional red and
white noise was added to each real flare, and these data were
saved in a separate file and given a different randomly selected
ID number.

3. Hare-and-hounds Exercises

The first hare-and-hounds exercise (HH1) concentrated on
the quality of the detections. HH1 consisted of 101 simulated
flares, and numbers of each type of simulated flare can be
found in Tables 2 and 3. This sample contained simulated flares
of all types and of various different S/N levels. The hounds
were given no information about what was in the sample prior
to analysis, and so the test was completely blind.
As there were only eight flares that did not contain QPPs in

the HH1 sample (one single flare, one double flare, and six
nonperiodic multiple flares), HH1 is not suited to testing the
false-alarm rate of the hounds’ methods. We therefore set up a
second hare-and-hounds exercise, HH2, which contained 100
simulated flares, 60 of which contained no QPP signal, of
which 41 were single flares. The remaining 40 simulated flares
contained a single sinusoidal QPP, i.e., a single QPP signal
described by Equation (1). The numbers of each simulated flare
type included in HH2 can be found in Tables 2 and 3. We note
that HH2 was set up after the simulations had been described to
the hounds and the results of HH1 discussed. However, the
majority of hounds did not modify their methodologies
between HH1 and HH2. The exceptions to this are JAM,
who took measures to improve his methodology based on the
results of HH1, and TVD, who automated the detection code
between the HH1 and HH2 exercises. A discussion of the
impact of these modifications is given in Sections 5.3 (for
JAM) and 5.5 (for TVD).
To investigate further the impact of detrending on the

detection of QPPs, a third hare-and-hounds exercise was
performed, HH3. Only TVD participated in this exercise, and
the aim of HH3 was to test specifically the smoothing method
used by TVD to detrend the flares. HH3 contained 18 flares,
with 11 based on an exponential shape and 7 based on the
Gaussian shape. Each flare contained a single, exponentially
decaying QPP, with 4<P<20, 1�te/P�4, and S/N of
either 2 or 5.
The simulated flares included in HH1, HH2, and HH3 can be

found at https://github.com/ambroomhall.

4. Methods of Detection

Eight methods were used to analyze the simulated flares, and
we now detail those methods. In each method we will show an
example analysis of Flare 566801, which was based on the
Davenport et al. (2014) template. The flare, which is shown in
Figure 2, had an S/N of 5.0 and contained two QPPs of periods
13.4 and 8.4. This flare was chosen because all hounds were
successfully able to recover the primary period (of 13.4),
although we note that this was only true for JAM after
modifying his methodology for HH2.
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4.1. Gaussian Process Regression—JRAD

Gaussian processes (GPs) have become a popular method for
generating flexible models of astronomical light curves. Unlike
analytic models that describe the entire time series by a fixed
number of parameters (e.g., polynomials or sines), GPs are
nonparametric and instead use “hyperparameters” to define a
kernel (or autocorrelation) function that describes the relation-
ship between data points. Splines and damped random walk
models are two special cases of GP modeling that have been
used extensively in astronomy. For full details on using GPs to
model astronomical time series see Foreman-Mackey et al.
(2017) and references therein.

We utilize the Celerite GP package developed for
Python (Foreman-Mackey et al. 2017) owing to its flexibility in
generating kernel functions and speed for modeling potentially
large numbers of data points. In our QPP hare-and-hounds
experiment, we are interested in describing a quasi-periodic
modulation that decays in amplitude (e.g., Equation (1)).
Celerite comes with an ideal kernel for modeling such data:
a stochastically driven damped harmonic oscillator, defined by
Foreman-Mackey et al. (2017) as

( )
( )

( )
p

=
- +

S f
S f

f f f f Q

2
, 6

0 0
4

2
0

2 2
0

2 2 2

where Q is the QF or damping rate of the oscillator, f0 is the
characteristic oscillation frequency of the QPPs, and S0 governs
the peak amplitude of oscillation.

Since we were only interested here in identifying the QPP
component, we first detrended any nonflare stellar variability and
subtracted off a smooth flare profile from each event. This was
accomplished by first subtracting a linear fit from each candidate
event. The Davenport et al. (2014) flare polynomial model was
then fit to each event using least-squares regression, and this
smooth flare was then subtracted from the data. An example of the
Davenport et al. (2014) flare polynomial model that was fitted to
Flare 566801 can be seen in Figure 3. Ideally this should leave
only the QPPs (if present) in the data to be modeled by our GP.
While this approach was fast and easy to interpret, we note that a
better approach to detrending the flare event would be to fit the

underlying flare and the GP simultaneously, e.g., using a Markov
Chain Monte Carlo (MCMC) sampler.
For simplicity, we fit our GP to the residual data that was left

after the peak of the polynomial flare (i.e., in the decay phase),
and only within 5 times the FWHM of the flare (i.e., 5×t1/2).
This was done to avoid overfitting any remaining stellar
variability or complex flare shapes that were not removed from
our simple detrending procedure. We then followed the worked
tutorial included with Celerite to fit a damped harmonic
oscillator (SHOTerm) GP kernel to our residual data, using the
L-BFGS-B sampler. This provided us estimates of the flare
QPP timescale (period), decay time, and amplitude, as well as
generating a model of each flare residual light curve. The QPP
period was determined plausible for each simulated event if it
was longer than three data points (well enough resolved to
measure) and shorter than 200 time units (well constrained by
the 300 time units simulated for each event).

4.2. Wavelet Analysis—LAH

Wavelet analysis is a popular tool used in many studies to
analyze variations and periodic signals in solar and stellar
flaring time series. A detailed description of wavelet analysis is
given in Torrence & Compo (1998), but the main points are
mentioned here. The idea of wavelet analysis is to choose a
wavelet function, Ψ(η), that depends on a time parameter, η,
and convolve this chosen function with a time series of interest.
The wavelet function must have a mean of zero and be
localized in both time and frequency space. The Morlet wavelet
function is most often used when studying oscillatory signals,
as it is defined as a plane wave modulated with a Gaussian,

( ) ( )h pY = w h h- -e e . 7i1 4 20
2

Here ω0 is the nondimensional associated frequency. The
wavelet transform of an equally spaced time series, xn, can then
be defined as the convolution of xn with the scaled and
translated wavelet function Ψ, given by

⎡
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Here Ψ* represents the complex conjugate of the wavelet function
and s is the wavelet scale. By varying the scale s and translating it

Figure 2. Flare 566801, which was based on the flare template of Davenport
et al. (2014) with Lflare=134.1, tpeak=73.3, and Aflare=10.3. The flare
contained two QPPs with P=13.4, te=53.6, Aqpp=3.1, P2=8.4, te2=33.4,
and Aqpp2=2.1. The S/N of the flare was 5.0. The black solid line depicts the
data given to the hounds, while the red dashed line shows the model.

Figure 3. GP analysis performed for Flare 566801. Blue is the original
simulated light curve. Orange is the Davenport et al. (2014) flare model that
was subtracted from the data. Red is the GP fit to the QPP.
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along the localized time index n, an array of the complex wavelet
transform can be determined. The wavelet power spectrum is
defined as ∣ ( )∣W sn

2 and informs us about the amount of power that
is present at a certain scale s (or period) and can be used to
determine dominant periods that are present in the time series xn.
A 1D global wavelet spectrum can also be calculated, defined as

( ) ∣ ( )∣ ( )å=
=

-

W s
N

W s
1

. 9
n

N

n
2

0

1
2

In this exercise, the significance of enhanced power in the
wavelet spectra was tested using a red-noise background
spectrum. Following Gilman et al. (1963) and Torrence &
Compo (1998), this was estimated by a lag-1 autoregressive
AR(1) process given by

( )a= +-x x z , 10n n n1

where α is the lag-1 autocorrelation, x0=0, and zn represents
white noise.

For the hare-and-hounds test samples, the flare signals were not
detrended before employing the use of wavelet analysis. In this
way, the red-noise component can be taken into account when
searching for a significant period and avoids the introduction of a

bias or error in choosing a detrending window size. In some cases
the input flare series was smoothed by two data points to reduce
noise. To be robust in the analysis of all the flares in this exercise, a
detected period was defined as having a peak in the global power
spectrum that lies above the 95% confidence level. An example of
this wavelet analysis performed on the simulated Flare 566801 is
shown in Figure 4, where a significant peak in the global spectrum
is identified at ∼13 time units in agreement with the input period.
A short-lived signal is also seen at around 6 time units that is just
above the significance level. This period is slightly lower than, but
not inconsistent with, secondary signal included in Flare 566801,
which had an input periodicity of 8.4 time units.

4.3. Automated Flare Inference of Oscillations (AFINO)—ARI

The AFINO was designed to search for global QPP signatures
in flare time series. The main feature of the method is that it
examines the Fourier power spectrum of the flare signal and
performs a model fitting and comparison approach to find the
best representation of the data. AFINO is described in detail in
Inglis et al. (2015, 2016); here we summarize the key steps in the
method. The first step in AFINO is to apodize the input time
series data by normalizing by the mean and applying a Hanning

Figure 4. Wavelet analysis on the simulated Flare 566801. The flare time series is shown in the top panel, and the associated wavelet power spectrum and global
wavelet spectrum are shown in the bottom panels. The normalized wavelet spectrum indicates regions of enhanced power at certain periods with regions above the
95% confidence level marked by the thin solid lines. The shaded and hatched area is the cone of influence. The global wavelet spectrum is shown in the bottom right
panel. The black line indicates the global wavelet power from the associated wavelet power spectrum, and the red dashed line indicates the 95% confidence level
above the red-noise background model. For the hare-and-hound exercise, a detected period was defined as having global wavelet power above this confidence level. In
this example, a horizontal line is drawn at the peak of the global spectrum at ∼13s.
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window to the original time series. The results are not very
sensitive to the exact choice of window function, but windowing
is necessary in order to address the effects of the finite-duration
time series on the Fourier power spectrum. The normalization,
meanwhile, is for convenience only.

The next stage, and the key element of the AFINO procedure,
is to perform a model comparison on the Fourier power spectrum
of the time series. AFINO is flexible regarding both the choice of
models describing the relation between frequency and power, and
the range of data being included in the fitting procedure. In this
work, as in Inglis et al. (2016), AFINO is implemented testing
three functional forms for the Fourier power spectra: including a
single power law, a broken power law, and a power law plus
Gaussian enhancement. The last model is designed to represent a

power spectrum containing a quasi-periodic signature, or QPP,
while the other models represent alternative hypotheses. These
power-law models are based on the observation that power-law
Fourier power spectra are a common property of many
astrophysical and solar phenomena such as active galactic nuclei,
gamma-ray bursts, stellar flares, and magnetars (Cenko et al.
2010; Gruber et al. 2011; Huppenkothen et al. 2013; Inglis et al.
2015), and that such power laws can lead naturally to the
appearance of bursty features in time series. This power law must
therefore be accounted for in Fourier spectral models to avoid a
drastic overestimation of the significance of localized peaks in the
power spectrum (Vaughan 2005; Gruber et al. 2011). Figure 5
shows examples of the three models fitted to the power spectrum
produced for Flare 566801.

Figure 5. AFINO applied to the synthetic Flare 566801. The input flare time series is shown in the top left panel. The remaining panels show the best fits of three
models to the Fourier power spectrum of the flare: a single power law plus a constant (top right), a power law with a bump representing a QPP-like signature (bottom
left), and a broken power law plus constant (bottom right). The BIC shows that the QPP-like model is strongly preferred over both the single power-law and broken
power-law models. The best-fit frequency is 0.074 Hz, corresponding to a period of 13.5 s, and is shown by the vertical dashed line in the bottom left panel. The
ΔBIC values are indicated in the top left panel, where M0 is the single power-law model, M1 is the QPP model, and M2 is the broken power-law model.
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In order to fit each model to the Fourier power spectrum, we
determine the maximum likelihood L for each model with
respect to the data. For Fourier power spectra, the uncertainty
in the data points is exponentially distributed (e.g.,
Vaughan 2005, 2010). Hence, the likelihood function may be
written as

⎛
⎝⎜

⎞
⎠⎟ ( )= -

=

L
s

i

s

1
exp , 11

j

N

j

j
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where  = (i1,K,iN/2) represents the observed Fourier power
at frequency fj for a time series of length N and S=(si,K,sN/2)
represents the model of the Fourier power spectrum. In AFINO,
the maximum likelihood (or equivalently the minimum
negative log-likelihood) is determined using fitting tools
provided by SciPy (Jones et al. 2001). Once the fitting of each
model is completed, AFINO performs a model comparison test
using the Bayesian information criterion (BIC) to determine
which model is most appropriate given the data. The BIC is
closely related to the maximum likelihood L, and the BIC
comparison test functions similarly to a likelihood ratio test
(see Arregui 2018, for a recent review). The BIC (for large N)
is given by

( ) ( ) ( )= - +L k nBIC 2 ln ln , 12

where L is the maximum likelihood described above, k is the
number of free parameters, and n=N/2 is the number of data
points in the power spectrum. The key concept of BIC is that
there is a built-in penalty for adding complexity to the model.
Using the BIC value to compare models therefore tests whether
the added complexity offered by the QPP-like model is
sufficiently justified. This approach is intentionally conserva-
tive, with one of the primary goals of AFINO being to have a
low false-positive (FP)—or Type I error—rate. The ( )k nln
term is particularly significant for short data series where n is
not very large, such as in stellar flare light curves.

To compare models, we calculate dBIC=BICj-BICQPP, for all
non-QPP models j. The BIC for each model will be negative and,
as the fitting code tries to minimize the BIC, the best-fitting model
will be the one with the largest negative BIC value. Therefore,
when the BIC value for the QPP-like model is lower than that of
the other models—i.e., when dBIC is positive for all alternative
models j—there is evidence for a QPP detection. For the purposes
of this work, we divide the strength of evidence into different
categories. When dBIC<0 compared to all other models, there is
no evidence of a QPP detection. If 0<dBIC<5 compared to all
other models, we identify weak evidence for a QPP signature. For
5<dBIC<10, we identify moderate QPP evidence. Finally,
events where dBIC>10 compared to all other models indicate
strong evidence for a QPP-like signature. For context and to more
easily compare with other methodologies, the dBIC value can be
expressed in more concrete probabilistic terms, or approximately
translated to a t-statistic value (Kass & Raftery 1995; Raf-
tery 1995). For example, a dBIC in the 6–10 range indicates
approximately >95% preference (or 2σ) for one model over
another, while a dBIC >10 corresponds to a >99% preference for
the minimized model.

For Flare 566802, when comparing a single power-law model
to the QPP model, dBIC=31.3, indicating strong evidence for
a QPP signature. Similarly, when comparing a broken power-
law model to the QPP model, dBIC=23.4, again indicating

strong evidence for a QPP signature. When comparing a broken
power-law model to the single power-law model, dBIC=7.9,
implying that the broken power law is a better representation
than the single power law, but still not as good as the QPP
model. Since the QPP-like model is strongly preferred over both
alternatives, this event is recorded as a “strong” QPP flare. The
QPP model correctly identifies the period of the QPP to within
0.1 units.

4.3.1. Relaxed AFINO—LAH in HH1

The AFINO methodology described above in Section 4.3
was also employed independently by LAH. However, a
somewhat “relaxed” version was implemented. Instead of
testing three functional forms of the Fourier power spectrum,
only two were considered, namely, a single power law and a
power law with a Gaussian bump. These models were both fit
to the data, a model comparison between them was performed,
and a dBIC was calculated. A flare from the HH1 sample with a
dBIC>10 was taken to have a significant QPP signature.

4.4. Smoothing and Periodogram, [HH1 Untrimmed] versus
[HH2 Trimmed + Confidence Level]—JAM

Under this methodology, we investigated the robustness of a
simple and straightforward approach to oscillation detection.
For each of the simulated flares of HH1, an overall trend for the
data was generated by smoothing the flare light curve over a
window of 50 data points. The smoothed flare light curve was
then subtracted from the original signal to generate a residual,
and then a Lomb–Scargle periodogram was generated from the
residual. The Lomb–Scargle periodogram (Lomb 1976; Scar-
gle 1982) is an algorithm for detecting periodicities in data by
performing a Fourier-like transform to create a period–power
spectrum. Although not relevant for the simulated data
considered here, it is particularly useful if the data are unevenly
sampled, as is often the case in astronomy. Further details can
be found in VanderPlas (2018). The frequency with the most
power from the Fourier power spectrum was identified, and this
single frequency was recorded for all HH1 flares. Under this
methodology, it was straightforward to construct detrended
data and obtain a dominant period from the periodogram. In
some cases, no dominant peak was apparent in the period-
ogram, in which case no periodicity was recorded. In HH1
(only), the decision over whether to record a periodicity was
made following a by-eye inspection of the periodogram and so
was a subjective choice of the user. Figure 6 shows an example
of the periodogram produced for Flare 566801. A number of
large peaks are visible at low frequencies, and so none were
identified as detections following the by-eye inspection. The
approach was not labor intensive. However, this simplistic
approach suffered from an overall trend skewed by data from
both before and after the flare peak and did not implement an
objective method of assessing the significance of the detec-
tions. The approach was similar to the method in Section 4.8,
but the smoothing parameter, Nsmooth, was kept fixed at 50.
The approach was improved for HH2, in which the time

series, F(t), was trimmed to begin at the location of the local
maximum (dF/dt=0). In this way, the trimmed time series
only considered the decay phase of the simulated HH2 flares.
The trimmed time series was smoothed over a window of 12
data points to generate an overall trend. This trend was
subtracted from the trimmed time series to generate a residual,
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and a Lomb–Scargle periodogram was constructed from the
residual. The frequency with the most power from the Fourier
power spectrum was identified, and the significance of this
peak was assessed by comparing with a 95% confidence level
based on white noise. In this way, a single frequency was
recorded only for HH2 flares where the detection was assessed
to be significant. The right panel of Figure 6 shows an example
of a periodogram, for Flare 566801, produced using this
method. A single peak is visible above the 95% confidence
limit, at a period of 13.1, which is close to the input period
of 13.4.

4.5. Empirical Mode Decomposition (EMD)—TM and DK

It has been established that QPPs are not exclusively
stationary signals, as the periods of QPPs can be seen to drift
with time (e.g., Nakariakov et al. 2019). Many traditional
methods, such as the fast Fourier transform, are poorly
equipped to handle nonstationary signals (see, e.g., Table 1
in Huang & Wu 2008), as they attempt to fit the signal with
spurious harmonics. The technique of EMD, however, makes
use of the power of instantaneous frequencies in a meaningful
way and, as the method is entirely empirical and relies only on
its own local characteristic timescales, is well adapted to
nonstationary data sets.

EMD (developed in Huang et al. 1998), decomposes a signal
into a number of intrinsic mode functions (IMFs). These IMFs
are functions defined such that they satisfy two conditions: first,
that the number of extrema and zero crossings must differ by
no more than one, and second, that the value of the mean
envelope across the IMFs entire duration is zero. IMFs can
therefore exhibit frequency and amplitude modulation and can
be nonstationary, and they may be recombined to recover the
input in a similar way to Fourier harmonics. The IMF(s) with
the largest instantaneous periods may be deducted from the
signal as a form of detrending. In particular, the trends found
for Flare 566801 can be seen in the upper light curve in the left
panel of Figure 7 and were subsequently subtracted from the
signal. The detrended light curves can then be reanalyzed using

EMD to give a new set of IMFs that are tested for statistical
significance based on confidence levels of 95% and 99%. The
process of decomposing a signal into IMFs is known as
“sifting,” wherein an iterative procedure is applied. At each
step, an upper and lower envelope is constructed via cubic
spline interpolation of the local maxima and minima. A mean
envelope can be obtained by averaging out these two
envelopes, which is then subtracted from the input data to
produce a new “proto-IMF”—completing the process of one
sift. The new “proto-IMF” is then taken to be the new input
signal, and this method is repeated until a stopping criterion is
met. In this case, the stopping criterion is defined by the “shift
factor,” which is given as the standard deviation between two
consecutive sifts. Once the standard deviation drops below this
value, the computation ceases and the “proto-IMF” is taken as
an IMF. Then, this IMF is deducted from the raw signal, and
the process restarts so that new IMFs can be sifted out. The
“shift factor” influences the number of IMFs extracted and their
associated periods. In general, if the value of the shift factor is
too high, the IMFs remain obscured by noise, and conversely if
the value is too low, the IMFs decompose into harmonics (a
more detailed discussion can be found in Wang et al. 2010).
A superposition of colored and white noise was assumed to

be present in the original signal, where the relationship between
Fourier spectral power S and frequency f can be described by
S∝f−α, where α is a power-law index usually described by a
“color.” White noise is naturally denoted by α=0, as spectral
energy is independent of frequency, and can be seen to
dominate at high frequencies, while colored noise, given by
α>0, has a greater significance over lower frequencies. By
fitting a broken power law to the periodogram of the detrended
signal, the value of α corresponding to colored noise can be
found, as outlined in Section 4.7, and this value is used when
calculating the confidence levels.
Here the modal energy of an IMF is defined as a sum of

squares of the instantaneous amplitudes of the mode, and its
period is given as the value generating the most significant
peak given by the IMF’s corresponding global wavelet

Figure 6. Frequency–power spectra produced by JAM for Flare 566801. Left panel: original method used in HH1, where the full time series was used to generate a
smoothed light curve that was then subtracted from the original time series before the power spectrum was computed. Right panel: modified approach used for HH2,
where the data were trimmed to start at the location of the local maximum before generating the smoothed light curve. In this improved method, a false-alarm
probability was used to determine the significance of any peaks, and the red horizontal line shows the 95% confidence level. We note that Flare 566801 was in HH1,
not HH2, but is used here to demonstrate the HH2 method employed by JAM for consistency.
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spectrum. The total energy E and period P of IMFs extracted
with EMD from colored noise are related via E∝Pα−1. These
two properties may be represented graphically in an EMD
spectrum (e.g., Kolotkov et al. 2018), shown in the bottom
right panel of Figure 7 for Flare 566801. Each IMF is
represented by a single point corresponding to its dominant
period and total energy. The probability density functions for
the energies of IMFs, obtained from pure colored noise, follow
chi-squared distributions (see Kolotkov et al. 2016), which use
the value of α estimated in the periodogram-based analysis to
give confidence levels. It must be noted that the chi-squared
energy distribution is not a valid model for the first IMF
(corresponding to the extracted function with the shortest
period), and so this IMF cannot be measured against the
confidence level and hence must be excluded from analysis. It
is expected that the IMF(s) corresponding to the trend of the
light curve will be significantly energetic and correspond to a
large period, seen in the EMD spectrum in Figure 7 as a green
diamond, substantially above the 95% and 99% confidence
levels, given in green and red, respectively.

In HH1, the time series were manually trimmed into three
distinct phases; the pre-flare, flaring, and post-flare regions, and
each region was individually investigated for a QPP signature.
The time at which the gradient of the light curve rapidly
increased was defined as the start time of the flaring region,
which continued until the amplitude of the signal returned to its
pre-flare level, at which point the post-flare region began. For
Flare 566801, the flaring section showed evidence of QPP-like
behavior, and the resulting periodogram (top right panel of
Figure 7) of the detrended light curve produced two statistically
significant peaks above the 99% confidence level at ∼6.4 and
14.4, agreeing with the input periods of 8.4 and 13.4. The
detrended light curve was additionally decomposed further into
seven IMFs, of which two modes were detected to be
statistically significant. The significant IMFs give periods of
∼6.2 and 12.9, with confidences of 95% and 99% respectively,

which agrees well with both the periodogram-based results and
input values. Their superposition is shown in red overlay in the
left panel of Figure 7 and gives a reasonable visual fit to the
input signal.
The technique of detrending the light curve using EMD,

producing a periodogram from the detrended signal, and
performing EMD one further time was carried out for 26 data
sets given in HH1 (a total of 78 trimmed light curves were
processed with this methodology, corresponding to three
subsets in each of 26 events). The 26 flares analyzed with
EMD were chosen following a by-eye examination of all the
data sets in the sample and were selected as the flares most
likely to produce a positive detection. EMD was only
performed on a limited number of the flares in HH1 owing to
the time-intensive nature of the technique, which requires a
manual input of an appropriate choice of “shift factor” for an
appropriate set of periodicities for each signal.
Initially in HH1, due to user inexperience, insufficient care

was taken over the choice of this value, leading to poorly
selected trends and IMFs suffering from the effects of mode
mixing, decreasing the accuracy of recovered periodicities.
This is partially reflected in the relatively poorer agreement
between input and output periods in Section 5.2.2. An example
of this is shown in Figure 8, where a too large shift factor has
been chosen to appropriately determine the trend of the flare
region. Note how the characteristic rise and exponential
decrease are not seen in the trend and how the trends of the
three regions do not join smoothly. A better-fitted shift factor
gives a trend that bisects the input signal approximately
through the midpoints of its apparent oscillations (seen in
Figure 7), allowing for a better representation of the QPPs once
detrended. This rough choice of shift factor gave an output of a
single IMF, with a period of 17.7, which has just a poor
agreement with the input value. Moreover, a clear evidence of
another common issue in the EMD analysis, a so-called mode
mixing problem, can be observed at ∼110 in this example,

Figure 7. EMD analysis of Flare 566801 with an appropriate choice of shift factor. Left panel: the upper light curve gives the entire duration of the input signal, with
EMD extracted trends overlaid in blue and green, separated into pre-flare, flaring, and post-flare regions. Below is the detrended light curve overlaid in red by the
combination of two statistically significant IMFs. Top right panel: periodogram of the detrended signal with confidence levels of 95% (green) and 99% (red). Two
significant peaks are observed at ∼6.4 and 14.4. Bottom right panel: EMD spectrum of the original input signal with two significant modes, with periods 6.2 (at a
confidence level of 95%) and 12.9 (99%), shown as red diamonds. The trend is given as a green diamond. Blue circles correspond to noisy components with α≈0.89.
The 95% and 99% confidence levels are given by the green and red lines, respectively, with the expected mean value shown by the dotted line.
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where the timescale of the oscillation dramatically changes.
Such intrinsic mode leakages appeared due to a poor choice of
shift factor, which could adversely affect the estimation of the
QPP timescales and hence should be avoided.

When using EMD to detrend a flare signal, a lower shift
factor should be selected, as this increases the sensitivity of
the technique. In particular, special care must be taken in the
choice of the shift factor in cases where the timescale of the
flare (e.g., the flare peak width measured at the half-maximum
level) is comparable to that of apparent QPPs, such as in Flare
566801, providing the method with enough sensitivity to
decompose the intrinsic oscillations from the flare trend. The
value must also be selected carefully such that the extracted
trend may retain a classical flare-like shape. Such a profile may
introduce artifacts from rapid changes in gradient, which may
be fitted with spurious harmonics, and so an appropriate choice
of shift factor acts to minimize this effect through manual
inspection.

4.6. Forward Modeling of QPP Signals—DJP

This method is adapted from the Bayesian inference and
MCMC sampling techniques recently applied to perform
coronal seismology using standing kink oscillations of coronal
loops. Coronal loops are frequently observed to oscillate in
response to perturbations from solar flares or CMEs. Such
oscillations have been studied intensively both observationally
and theoretically, and so detailed models have been developed.
The strong damping of kink oscillations is attributed to
resonant absorption, which may have either an exponential or
a Gaussian damping profile depending on the loop density
contrast ratio (Pascoe et al. 2013, 2019). In studies of standing
kink oscillations, it is therefore natural to consider several
different models, such as the shape of the damping profile.
Pascoe et al. (2017a) also considered the presence of additional
longitudinal harmonics and the change in their period ratios
due to effects of density stratification or loop expansion, a

time-dependent period of oscillation, and a possible low-
amplitude decayless component.
The method is based on forward-modeling the expected

observational signature for given model parameters, while
MCMC sampling allows large parameter spaces to be
investigated efficiently. The benefit of this approach over more
general signal analysis methods is that it potentially allows
greater details to be extracted in the data. For example, Pascoe
et al. (2017a) demonstrated that the presence of weak higher
harmonic oscillations in kink oscillations would be recovered
by a model that takes their strong damping into account,
whereas they would have negligible signatures in periodogram
and wavelet analysis. The interpretation of the different
components of the model (e.g., background trend and different
oscillatory components) is done when defining the forward-
modeling function compared with, for example, EMD, which
produces several IMFs that must be interpreted afterward. The
method also does not require the signal to be detrended (if the
trend is also described by the model), which avoids the choice
of trend affecting the results.
On the other hand, the usefulness of the method is based on

the particular model being the correct one (or one of them if
several models are considered). In the case of QPPs there are
several possible mechanisms that have been proposed. Ideally
each competing model could be applied to the data for an event
and then compared, for example, using Bayes factors.
However, models relating the observational light curve to the
physical parameters currently do not exist for some of the
proposed mechanisms. For example, the mechanism of
generating QPPs by the dispersive evolution of fast wave
trains has a characteristic wavelet signature, but the detailed
form of it is only revealed by computationally expensive
numerical simulations.
Pascoe et al. (2016a, 2016b, 2017a) use smooth background

trends based on spline interpolation. The background varying
on a timescale longer than the period of oscillation is necessary
for the definition of a quasi-equilibrium on top of which an
oscillation occurs. However, a smooth background does not
allow impulsive events with rapid, large-amplitude changes,
such as flares, to be well described. Pascoe et al. (2017b)
considered the case of kink oscillations, which have a large
shift in the equilibrium position associated with the impulsive
event that triggered the oscillation. This was done by including
an additional term describing a single rapid shift in the
equilibrium position of the coronal loop. In that work the shifts
only took place in one direction, and so a hyperbolic tangent
function was suitable to describe it. In this paper, the large
changes in light curves due to flares instead have both a rising
and a decaying phase, and so an exponentially modified
Gaussian (EMG) function is more suitable, which has the form
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where ( ) ( )= -x xerfc 1 erf is the complementary error
function, A is a constant determining the amplitude, μ and σ

are the mean and standard deviation of the Gaussian
component, respectively, and λ is the rate of the exponential
component. The EMG function has a positive skew due to the
exponential component, which allows it to describe a wide

Figure 8. Analysis of Flare 566801 with an inappropriate choice of shift factor.
The upper light curve (black) is the raw signal, with trends extracted from
EMD overlaid (blue and green). Below is the detrended light curve (black),
with the statistically significant IMF overlaid in red.
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range of flares, having a decay phase greater than or equal to
the rise phase. An example of the EMG function fitted to Flare
566801 can be seen in Figure 9.

Figure 9 shows the results for models based on a QPP signal
with a continuous amplitude modulation, with defined start and
decay times, and an exponentially damped sinusoidal oscilla-
tion. (A Gaussian damping profile was also tested, but the
Bayesian evidence supported the use of an exponential
damping profile.) The green lines represent the model fit based
on the maximum a posteriori probability (MAP) values for the
model parameters. The blue lines correspond to the background
trend component of the model, and the gray lines are the
detrended signals. The MCMC sampling technique used in
Pascoe et al. (2017a, 2017b, 2018) estimates the level of noise
(here assumed to be white) in the data by comparing with the
forward-modeled signal. This level is indicated in the figures
by the gray dashed horizontal lines. A simple criterion for QPP
detection is to therefore require several oscillation extrema to
exceed this level. In addition to Flare 566801, shown in
Figure 9, this technique was used to analyze the nonstationary
QPP flares and so will be discussed further in Section 5.4.

4.7. Periodogram-based Significance Testing—CEP

This significance testing method (CEP) is based on that
described in detail in Pugh et al. (2017a), with the main
difference being that it does not account for data uncertainties
since none exist for the synthetic data. To begin with, the
simulated light curves were manually trimmed so that only the
flare time profile was included. A linear interpolation between
the start and end values was subtracted as a very basic form of
detrending. The detrending performed for Flare 566801 can be
seen by comparing the top right and bottom left panels of
Figure 10. Since the calculation of the periodogram assumes
that the data are cyclic, subtracting this straight line removes
the apparent discontinuity between the start and end values.
This step will not alter the probability distribution of the noise
in the periodogram, while it will act to suppress any steep

trends in the time series data, which have been shown to reduce
the S/N of a real periodic signal in the periodogram (Pugh et al.
2017a). Lomb–Scargle periodograms were then calculated for
each of these flare time series with a linear trend subtracted.
The presence of trends and colored noise in time series data

results in a power-law dependence between the powers and the
frequencies in the periodogram. Therefore, to account for this, a
broken power-law model with the following form was fitted to
the periodogram:
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where ˆ ( ) f is the model power as a function of frequency, f;
fbreak is the frequency at which the power-law break occurs; α
and β are power-law indices; and c is a constant. The break in
the power law accounts for the fact that there may be a
combination of white and red noise in the data, and in some
cases the amplitude of the red noise may fall below that of the
white noise at high frequencies. An example of the power-law
model fitted to Flare 566801 can be seen in Figure 10. The
noise follows a chi-squared, 2 degrees of freedom (dof)
distribution in the periodogram, and the noise is distributed
around the broken power law (Vaughan 2005). For a pure chi-
squared, 2 dof distributed noise spectrum, the probability of
having at least one value above a threshold, x, is given by

{ } ( )ò> = ¢ =
¥

- ¢ -X x e dx ePr , 15
x

x x

where x′ is a dummy variable representing power in the
periodogram. For a given false-alarm probability, òN, the above
probability can be written as

{ } ( )> » X x NPr , 16N

Figure 9. Method of forward-modeling QPP signals based on the Bayesian inference and MCMC sampling used in Pascoe et al. (2017a). The left panel shows a
combination of a spline-interpolated background, Gaussian noise, a flare described by Equation (13), and a QPP signal with a continuous amplitude modulation rather
than defined start and decay times. The right panel shows a model fit that contains a single flare, an exponentially decaying sinusoidal QPP (with the potential for a
nonstationary period), a spline-based background, and Gaussian noise. In each panel the black line shows the simulated data for Flare 566801, the red line shows the
flare component of the fit, based on Equation (13), the blue line shows a combination of the flare fit and the background, and the green shows the overall fit. We note
that all the components were fitted simultaneously and are only separated here for clarity. Gray lines correspond to the detrended signal (shifted for visibility). The
gray dashed horizontal lines denote the estimated level of (white) noise in the signal.
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where N is the number of values in the spectrum (Chaplin et al.
2002). Hence, a detection threshold can be defined by

⎛
⎝⎜

⎞
⎠⎟ ( )=


x

N
ln . 17

N

To account for the fact that the above expression is only valid
when the power spectrum is correctly normalized (with a mean
equal to 1) and that the noise is distributed around the broken
power law, the confidence level for the periodogram is found from

[ ˆ ] [ ˆ ]+ á ñ  xlog logj j j , where j is the observed spectral
power at frequency fj. This confidence level gives an assessment
of the likelihood that the periodogram could contain one or more
peaks with a value above a particular threshold power purely by
chance, if the original time series data were just noise with no
periodic component. The confidence level used as the detection
threshold for this study was the 95% level, which corresponds to a

false-alarm probability of 5% (or, in other words, a 5% chance
that the periodogram could contain one or more peaks above that
threshold as a result of the noise). In addition, only peaks
corresponding to a period greater than four times the time cadence
and less than half the duration of the trimmed time series were
counted, as it is not clear that periodic signals with periods outside
of this range can be detected reliably. Although the 95%
confidence level was used as the detection threshold for this
analysis, many of the detected periodic signals had powers well
above the 95% level in the periodogram.
This method is sensitive to the choice of time interval used for

the analysis (this will be discussed further in Section 5.3); hence,
the start and end times of the section of light curve used for
the analysis were manually refined where there appeared to be
a periodic signal in the data but the corresponding peak in
the periodogram was not quite at the 95% level. This process
is described in more detail in Pugh et al. (2017b). Figure 10

Figure 10. Illustration of the steps involved for the analysis method described in Section 4.7 (CEP). Top left: original simulated light curve for Flare 566801. Top
right: section of light curve that showed the best evidence of a QPP signal in the periodogram after manual trimming. Bottom left: trimmed section of light curve after
a linear interpolation between the first and last data points had been subtracted, to remove some of the background trend. Bottom right: periodogram corresponding to
the data shown in the bottom left panel. The solid red line shows the fitted broken power-law model, while the dotted and dashed red lines show the 95% and 99%
confidence levels, respectively.
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shows the trimmed time series for Flare 566801 and the power
spectrum. This method identified a statistically significant peak at
14.0±0.5 time units, which is in good agreement with the input
period.

4.8. Smoothing and Periodogram—TVD

TVD largely followed the method described in Van Door-
sselaere et al. (2011). In the first instance, the flare light curve
f (t) was smoothed using a window of length Nsmooth (with the
python function uniform_filter, which is part of SciPy).
An initial value for the smoothing parameter was chosen

manually and later adjusted during the procedure. The
smoothed light curve Ismooth(t) was considered to be the flare
light-curve variation without the QPPs and noise. The original
signal and the smoothed signal are shown in the top panel of
Figure 11. The maximum of the smoothed light curve is
reached at tflare=argmaxt(Ismooth(t)). We have fitted the
smoothed light curve with an exponentially decaying function

( )t+ -a b texp in the interval [tflare, 300]. From this fit with
the exponentially decaying function, we have selected the QPP
detection interval to [tflare, tflare+2τ]. In that interval, we have
computed the residual in the detection interval by subtracting

Figure 11. Overview of the analysis method of TVD. The top panel shows the raw light curve f (t) as a function of time with the blue solid line, and overplotted is the
smoothed light curve fsmooth(t) as a red dashed line with Nsmooth in the key. The middle panel shows the relative flux ( ) ( )

( )
-I t I t

I t
smooth

smooth
. The bottom panel shows the Lomb–

Scargle periodogram of the signal in the middle panel, and the peak frequency and period are indicated in the key of the middle panel. The horizontal red dashed line in
the bottom panel is the false-alarm level (95% level). The area shaded in green in the bottom panel is used to reconstruct the QPP signal, which is then shown with the
red dashed line in the middle panel, overplotted on the relative signal. The length of this reconstructed curve shows the time interval [tflare, tflare+2τ].
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and normalizing to the background and call this the QPP signal
IQPP(t)=I(t)−Ismooth(t), which is shown in the middle panel
of Figure 11. From this QPP light curve, we have constructed a
Lomb–Scargle periodogram (see bottom panel of Figure 11). In
the periodogram, we have selected the frequency with the most
power and have retained it as significant if its false-alarm
probability was less than 5%. In Figure 11 it can be seen that a
peak is visible above the 95% false-alarm level at 13 s, in good
agreement with the input periodicity. The false-alarm prob-
ability was computed with the assumption that the QPP signal
was compounded with white noise. After this procedure, the
smoothing parameter Nsmooth was manually and iteratively
adjusted. In the second iteration, the smoothing parameter was
taken to be roughly corresponding to the detected period in the
first iteration, and so on. This led to a rapid convergence, in
which attention was paid to capture the impulse phase of the
flare sufficiently well, in order not to introduce spurious
oscillatory signal.

Between HH1 and HH2 TVD automated his method. This
involved systematically testing different smoothing windows,
Nsmooth, to remove the background trend: Smoothing windows of
widths from 5 to 63 were tested where the smoothing width was
increased by two in each iteration. For each detrended time series,
a periodogram was found and the false-alarm probability and
frequency of the largest peak recorded. The optimal smoothing
window was deemed to be the one that produced a peak in the
power spectrum with the lowest false-alarm probability. While
automation makes the process less time-consuming for the user,
there were some pitfalls, and these are discussed in Section 5.5.
For some of the flares TVD flagged that the results looked
untrustworthy. This was often where long smoothing windows
were selected for detrending the flare, meaning that the underlying
flare shape was not removed correctly, leading to spurious peaks
in the resultant power spectrum that dominated over the real QPP
signal. In other instances the obtained periodicity did not match
the periodicity visible in the residual time series. Identifying these

cases relied on TVD’s data analysis experience. When discussing
the results of HH2 (Section 5.1), we consider both the raw results
and those obtained when the results flagged as untrustworthy were
removed.

5. Results of the Hare-and-hounds Exercises

5.1. HH2: False-alarm Rates

The aim of the second hare-and-hounds exercise (HH2) was
to allow the false-alarm rate of the various methods to be
determined. Although analysis of the flares in HH2 was
performed after the analysis of the HH1 flares, we present the
results of HH2 first to establish how often various detection
methods make false detections, before considering how precise
those detections are, using HH1. HH2, therefore, contained a
roughly even split between flares containing no QPP signal
(60), flares containing a single, sinusoidal QPP (32), and
periodic multiple flares (8; see Tables 2 and 3).
Table 4 gives the number of false detections returned by

each method, which are defined as the number of detections
claimed for simulated flares that did not contain a QPP. For
HH2, LAH and ARI both used the AFINO method in exactly
the same manner, and so the results are identical (this was not
the case for HH1). The AFINO, wavelet (LAH), and period-
ogram method employed by CEP were all reliable, making low
numbers of false detections. The periodogram method
employed by TVD also produced a low number of false
detections; however, this comes with a caveat: TVD detrended
the data by removing a smoothed version of the time series
before determining the periodogram, where the width of the
smoothing window was determined on a flare-by-flare basis. In
HH2, TVD automated the selection of the optimal width for the
smoothing window. The raw results from this automated
method are denoted TVD1 in Table 4. However, for some of
the flares this width was surprisingly long, leading TVD to
question the results. These manually filtered results are denoted

Table 4
Statistics of Detections in HH2

Hounds Claimed Claimed
Total

Number Precise % of Precise TSS HSS Precision
Detections Detections of False Detections Claimed
(No QPP) (QPP) Detections Detections
N % N % N % N %

AFINO (LAH & ARI) 0 0 8 25 1 13 7 18 88 0.18 0.20 1.00
Wavelet (LAH) 1 2 13 33 2 14 12 30 94 0.28 0.32 0.92
Periodogram (CEP) 2 3 12 30 2 14 12 30 100 0.27 0.30 0.86
Periodogram (TVD1) 18 30 28 70 33 73 13 33 46 0.03 0.03 0.42
Periodogram (TVD2) 3 5 13 33 5 31 11 28 85 0.23 0.25 0.79
Periodogram (JAM) 29 48 25 63 41 76 13 33 52 −0.16 −0.16 0.31
GP (JRAD) 23 38 29 73 43 83 9 23 31 −0.16 −0.16 0.28

Note.N denotes the number of flares detected for each category. The second column shows the number of detections claimed in flares where no QPP was present. The
percentage is calculated using the total number of simulated flares not containing a QPP, i.e., 60. The third column shows the number of detections claimed for flares
where a QPP was included, which includes flares that contained either a single sinusoidal QPP or a periodic multiple flare. The percentage is calculated using the total
number of QPP flares in HH2, i.e., 40. Precise detections are defined as those claimed detections within 3 units of the input periodicity, with any claimed detection
more than 3 units from the input periodicity being classified as “imprecise.” The fourth column shows the total number of false detections, i.e., the sum of the claimed
detections where no QPP was present and the imprecise detections. The percentage is determined using the total number of claimed detections (i.e., the sum of the
second and third columns). The fifth column shows the total number of precise detections. For the precise detections the percentage is calculated using the total
number of simulated QPP flares, i.e., 40. The final column gives the percentage of claimed detections that are precise, calculated using the second and fifth columns.
TVD1 indicates the raw results from TVD’s automated method. TVD2 indicates results when manual filters were employed. The final three columns show the true
skill statistic (TSS), the Heidke skill score (HSS), and precision, as defined in Section 5.1.1.
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TVD2 in Table 4, which indicates that the false-alarm rate was
far higher before manual intervention was incorporated. The
primary difference between the periodogram methods
employed by JAM and TVD was in the detrending: both
detrended by removing a smoothed component, but JAM used
the same smoothing window for each flare, while TVD used a
flare-specific smoothing window. The method employed by
JAM produces a large number of false detections, which,
combined with the previous discussion concerning the auto-
mation of TVD’s code, suggests that detrending needs to be
done with great care. The GP method employed here also
produces a large number of false detections, suggesting that a
better method for estimating the statistical significance of the
results is required.

Table 4 shows that the four methods (AFINO, Wavelet,
CEP, TVD2) that claimed low numbers of detections in flares
where no QPPs were included all made relatively low numbers
of detections (<35%); however, for all four methods those
detections are precise, with at least 85% of detections lying
within 3 units of the input period. Table 4 also gives the total
number of false detections (i.e., those in flares where no QPPs
were present and imprecise detections). This sum constitutes a
small percentage of the total number of claimed detections
made by the AFINO, Wavelet, and CEP methods. In statistical
hypothesis testing erroneous outcomes of statistical tests are
often referred to as type I or type II errors. A type I error is said
to occur if the null hypothesis, in this case that the data contain
only noise, is wrongly rejected. In this article that would
constitute claiming a detection of a QPP when no QPP was
included in the simulated flare. Type II errors occur when the
null hypothesis is wrongly accepted. Here that would mean
failing to claim a detection when a QPP was present. Type I
errors are generally regarded as far more serious than type II
errors. In other words, it is far better to sacrifice a high
detection rate (i.e., make type II errors) in favor of making false
detections (type I errors), and so by adopting cautious
approaches we can be confident in any detections these
methodologies make. Conversely, the three methods that
produced a higher number of false detections (TVD1, JAM,
JRAD) also produced less precise detections: Although the
methods claimed detections in over 60% of flares containing
QPPs, �52% of those detections were within 3 units of the
input period. In other words, approximately half of the
detections claimed by these methods were imprecise and so
can be considered as false alarms or type I errors. This is
highlighted in Figure 12, which compares the periods obtained
by the various methods with the input periods.

The range of input periods for the single sinusoidal QPP
simulated flares in HH2 was 3.3<P<17.8. We can see from
Figure 12 that detections were made across the entire range of
input periods. The apparent gap in detections between
approximately 11<P<15 occurs because there were few
simulations included in that range.

The left panel of Figure 13 shows how the claimed
detections were distributed in terms of QPP S/N. For the
majority of methods, there is a weak dependence on QPP S/N;
however, precise detections are made even for low-S/N QPPs.
In particular, the AFINO method appears to work equally well
at low and high S/N. On the other hand, the success of the
wavelet technique employed by LAH appears to show a
stronger dependence on S/N, with a systematic increase in the
number of precise detections obtained with increasing S/N.

The QF of a signal is defined as the ratio of the lifetime to
period. The right panel of Figure 13 shows that the various
techniques were far more successful at detecting QPPs with
higher QFs than lower QFs. We note here that there were no
QPPs with a QF of 3 in HH2. It is also interesting to note the
large number of imprecise detections (as indicated by the pale
hashed bars) with low QFs made, in particular, by JAM and
JRAD. However, low-QF QPPs also account for the individual
imprecise detections made by AFINO, LAH’s wavelet
technique, and TVD’s periodogram technique. However, we
note, from the left panel of Figure 13, that these QPPs are also
low S/N.
Figure 14 shows how the false detections depend on S/N.

Since these flares do not contain QPPs, the S/N refers to the
flare itself. However, for those flares that do contain QPPs both
the amplitude of the QPP and the noise are scaled relative to the
amplitude of the flare itself, so the measurements are
equivalent. As the numbers of false detections for AFINO,
wavelet (LAH), and the periodogram methods of CEP and
TVD2 are low, it is hard to make any conclusions from this.
For TVD1 and JAM’s methods there is no clear dependence on
S/N, whereas the GP method of JRAD appears to produce
more false detections at low S/N.

5.1.1. Skill Scores

As a final measure of the ability of the hounds to detect
QPPs, we have also determined two skill scores and the
“precision.” Skill scores (see, e.g., Woodcock 1976) provide a
quantitative measure by which we can compare the perfor-
mance of the hounds’ methods. These statistics are commonly
used in solar physics for assessing the effectiveness of flare
forecasting methods (e.g., Barnes & Leka 2008; Bloomfield
et al. 2012; Bobra & Couvidat 2015; Barnes et al. 2016;
Domijan et al. 2019, and references therein). In order to
calculate the scores, the results first need to be sorted into four
classes: true positive (TP), true negative (TN), FP, and false
negative (FN). Here TP would include all precise detections of
QPPs, TN would incorporate those flares correctly identified as
not containing QPPs, FP would be comprised of those flares
that did not contain QPP but where detections were claimed,
and FN would contain those flares that contained QPPs but
where no detection was claimed. We would also contain
imprecise detections in the FN category, as although QPP
detections were claimed, these did not correspond to the period
of the input QPP. However, we note that in some cases the real
QPP may have been detected but that the period of that QPP
was not precisely estimated because of, for example, the
limited resolution of the data or the impact of the red noise on
the signal. However, this classification system means that in
HH2 TP+FN=40, the total number of flares in the sample
containing QPP. Similarly, + =TN FP 60, i.e., the total
number of flares that did not contain QPP. We combine these
categories to give two skill scores, namely, the True Skill
Statistic (TSS; Hanssen & Kuipers 1965) and the Heidke Skill
Score (HSS; Heidke 1926). The TSS is given by

( )=
+

-
+

TSS
TP

TP FN

FP

FP TN
. 18

The TSS is sometimes favored over the HSS because it is not
sensitive to variations in ( ) ( )+ +TP FN TN FP . However,
since in HH2 each hound considered the same sample, that is
not an issue here. The HSS compares the observed number of
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detections to those obtained by random. HSS is given by
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TP FN FN TN TP FP FP TN

.

Values of both skill scores, which produce similar results, are
given in Table 4 for each hound participating in HH2. The
negative scores given to JAM and JRAD can be interpreted as
showing that these methods perform worse than if the flares

Figure 12. Results of HH2 analysis, where the output period from the various detection techniques is compared to the input period. In the top left panel a legend is
included to describe the symbols, which refer to the strength of the AFINO detections (see Section 4.3). In all other panels the black circles denote flares where a single
sinusoidal QPP was included, and the green triangles indicate detections in simulations containing multiple periodic flares.
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containing QPP were selected randomly. However, AFINO,
LAH-wavelet, and CEP all produce positive scores, while the
improvement in the methodology between TVD1 and TVD2 is
clearly highlighted. We note that while these values may be
considered low, the skill scores do not differentiate between
type I and type II errors, and, as already mentioned, the above
methods prefer to take a cautious approach in an effort to
minimize type I errors (FPs), even if that means making more
type II errors (FNs). We therefore also quote the precision,
which is given by

( )
( )=

+
Precision

TP

TP FP
. 20

As can be seen in Table 4, AFINO and LAH-wavelet show
very high precision, with CEP and TVD2 not far behind. The
other methods show low precision.

5.2. HH1: The Quality of Detections

In HH1 72 (out of 101) of the input simulated flares
contained some form of simulated QPP and over 21 (out of
101) were real flares, leaving only 7 flares with no form of QPP
signal, making it difficult to assess the false-alarm rate in HH1.
We therefore concentrate on the quality of those detections
made. Table 7 in the Appendix gives a breakdown of the types
of QPPs that were detected by each method. Figure 15 and
Table 5 demonstrate that, for five detection methods (AFINO
applied by LAH and ARI, wavelet approach employed by
LAH, and the periodogram methods of CEP and TVD), when a
detection is claimed, it tends to be robust, with over 80% of
claimed periodicities being within 3 units of the input
periodicity. However, the other two methods (the combined
detrending and periodogram method used by JAM and the
Gaussian processing with a least-squares minimization utilized
by JRAD) are far less reliable.
Table 5 also shows that the percentage of flares in which

detections were claimed is fairly low for four of the five reliable
methods (both AFINO methods, LAH’s wavelet method, and
CEP’s periodogram method). This is an example of good
practice: it is better to miss detections (type II errors or FNs)
than to wrongly claim detections (type I errors or FPs). These
methods all adopt this strategy: making a number of type II
errors rather than risking type I errors.
For the AFINO method all of the moderate and strong

detections are precise, while all but one of the weak detections
is precise. The same was true for HH2 (see Figure 12 and
Table 4). In theory the moderate and strong detections
correspond to those above a 95% confidence level (see
Section 4.3). However, the high precision achieved at the
expense of very few type I errors, even for the weak detections,
suggests that this may, in fact, be an underestimate of the
confidence level. It is possible that alternative measures of the
quality of a model, such as the Akaike information criterion,
which has a less stringent penalty for increasing the number of
free parameters, may produce fewer type II errors, without
increasing the risk of type I errors. However, determining this
would require further testing beyond the scope of this paper.

Figure 13. Left: histogram showing the distribution of S/N for the claimed detections of simple sinusoidal QPPs in HH2. Right: histogram showing the distribution of
the QF for the claimed detections of simple sinusoidal QPPs in HH2. In both panels the number of claimed detections has been normalized by the total number of
simulated QPPs with that S/N (or QF) included in HH2. The pale bars with hatching include all claims, whereas the darker bars with no hatching only include those
claims within 3 units of the input QPP (i.e., the precise detections).

Figure 14. Histogram showing the distribution of S/N for the false detections.
The number of claimed detections has been normalized by the total number of
simulated flares with no QPPs and that S/N included in HH2.
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Figure 15. Results of HH1 analysis, where the output period from the various detection techniques are compared to the input period. In the top two panels legends are
included to describe the symbols. For the top left panel “W” indicates that the wavelet technique was used, “A” indicates that the AFINO method was used, “sine”
indicates simulated flares where some form of sinusoidal QPP was included, and “multi” indicates that a periodic multiple flare was detected. In the top right panel the
symbols indicate the strength of the confidence in the detection (see Section 4.3 for details). In all other panels the black circles denote flares where a sinusoidal QPP
was included, and the green triangles indicate detections in simulations containing multiple periodic flares.
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In HH1 TVD’s method was not automated, and so this
method was only able to analyze 58 of the flares. However, this
method did produce a high percentage of precise detections,
with over 90% of detected periodicities lying within 3 units of
the input periodicity. We also note that the methodology
claimed a far higher proportion of detections than the other four
reliable methods, discussed in the above paragraph (see
Table 5). This, combined with the reliability of any detections
made, is important, as TVD’s method relies on detrending, and
thus these results show that if detrending is performed in the
nonautomated manner described in Section 4.8, robust and
reliable results can still be obtained.

Figure 16 shows histograms of the S/N and QF for the
detections made for the different methods in HH1. Here we only

considered simulated flares in which some form of sinusoidal
QPP was included but note that this covers all forms (including
two sinusoidal QPPs, nonstationary QPPs, and those with
varying backgrounds). As with HH1, there is little dependence
on S/N, with precise detections being made at both low and high
S/N. In contrast to HH1, the dependence on QF is less obvious.

5.2.1. Comparison of AFINO Methods

Both LAH and ARI used AFINO to detect QPPs in HH1, with
LAH using a “relaxed” version. Figure 17 shows that 12 detections
were made by both methods and the periods claimed are in good
agreement. In addition, 14 detections were claimed by LAH but
not by ARI, including two false detections and two imprecise
detections (see Figure 15 and Table 5), while nine detections were
claimed by ARI but not by LAH (all flares containing simulated
QPPs and all precise claims). Overall these results indicate that, as
one would expect, the full AFINO method is more robust and
reliable and hence should be used where possible.

Table 5
Statistics Concerning the Quality of Detections Made in HH1

Hounds

Claimed
Detections

Precise
Detections % of Precise

Number % Number %
Claimed
Detections

AFINO (ARI) 18 25 17 24 94
AFINO (LAH) 18 25 15 21 83
Wavelet (LAH) 12 17 11 15 92
Periodogram (CEP) 24 33 24 33 100
Periodogram

(TVD)a
23 61 21 55 91

Periodogram (JAM) 20 28 0 0 0
GP (JRAD) 56 78 9 13 16

Notes.The claimed detections include all detections reported for flares that
contained some form of QPP signal, and the percentage is calculated using the
total number of QPP flares in HH1, i.e., 72. Precise detections are defined as
those claimed detections within 3 units of the input period. Here the percentage is
again calculated using a total number of simulated QPP flares in HH1 (i.e., 72).
The final column gives the percentage of claimed detections that are precise.
a TVD only analyzed 58 of the flares, and so the percentage of claimed and
precise detections is calculated using the total number of QPP flares in this
sample, which is 33.

Figure 16. Left: histogram showing the distribution of S/N for the claimed detections of simple sinusoidal QPPs in HH1. Right: histogram showing the distribution of
the QF for the claimed detections of sinusoidal QPPs in HH1. In both panels the number of claimed detections has been normalized by the total number of simulated
QPPs with that S/N included in HH1. The pale bars with hatching include all claims, whereas the darker bars with no hatching only include those claims within 3 units
of the input QPPs (i.e., the precise detections).

Figure 17. Comparison of periods claimed by the AFINO methods used by
LAH and ARI.
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5.2.2. EMD Results

We consider the EMD results separately, as this method was
only applied to 26 flares because of the time intensive nature of
the methodology (see Section 4.5 for details). The flares
analyzed were selected from HH1 to be the most promising
candidates following a by-eye examination.

DK and TM also took a different approach to many of the
other hounds by splitting the simulated time series into three
sections: pre-flare, flare, and post-flare. Unknown to the
hounds, when simulating the flares the hare only included
QPPs that occurred immediately after the peak. This is
somewhat restrictive: while in real flares QPPs are predomi-
nantly detected during the impulsive phase of the flare, QPPs
have previously been detected during the pre- (Tan et al. 2016)
and post-flare phases. Since the number of variables involved
in simulating the flares and QPPs was already relatively large,
the timing of the start of the QPPs was not varied with respect
to the flare itself, but this could be the focus of a future study.
In terms of this study, however, it means that any detections in
the pre-flare phases can be considered false. “EMD” claimed
QPP detections in the pre-flare phase of nine flares, and “EMD-
Fourier” claimed detections in 10 flares (see Table 6). These
false detections are most likely observed as a result of the red
noise that was added to the simulated data.

It is possible that, for high-QF simulated QPPs, the signal
extends into the post-flare phase, meaning that any detections
in this phase may be real. However, we note that only 4 out of
11 post-flare “EMD” detections and 3 out 11 post-flare

“Fourier” detections would be considered as precise. This
implies that both EMD-based techniques are making false
detections in the post-flare phase as well.
Indeed, in all flare phases EMD found IMFs to be significant

above a 95% confidence level that transpired to be artifacts of
colored noise. However, we note that a high proportion of the
false pre- and post-flare periodicities were relatively long in
comparison to the length of the data. Therefore, incorporating a
caveat to ensure that, for example, at least one full cycle of a
period is included in the data would substantially reduce the
number of type I errors.
In addition, many flares were analyzed with an inappropriate

choice of shift factor, leading to poor trends and extracted IMFs
where the expected periodicities were obscured. As discussed in
Section 4.5, the output is extremely sensitive to the choice of shift
factor. However, given sufficient experience with the technique
and a good grasp of the physical characteristics expected from
your fittings, choosing a suitable shift factor becomes considerably
more straightforward. It is the responsibility of the user to gain
enough experience to be confident in their results, potentially
through practice with simulated data, such as those utilized here.
At the time of HH1, sufficient care was not taken over the choices
of shift factor, which likely contributed to the poorer fit between
the input and output periods.
Another area where user experience is vital is in the selection

of modes that are incorporated in the background trend. We
remind the reader that detrending was carried out through
manual selection of the longest-period mode(s) and it is left to
the user to incorporate as many modes as deemed reasonable as
part of the trend. While this was usually restricted to the highest
one or two modes, this still remains a subjective process and
raises the question of the reliability of detrending.
As described in Section 4.5, DK and TM used two methods

for determining the significance of the detections. Table 6
shows that the two methods claimed different numbers of
detections. While there was some overlap in the set of flares in
which detections were claimed, in some cases detections were
claimed by the Fourier method alone, and in other cases
detections were claimed by the EMD method alone. The left
panel of Figure 18 compares those flares where detections were
claimed in the same phase by both methods. For the majority of
cases the two methods produce consistent periods, but not in all

Table 6
Statistics of Detections by EMD Technique

EMD EMD-Fourier

Flares Periodicities Flares Periodicities

Pre-flare 8 9 10 10
Flare 15 17 24 30
Precise flare 13 18
Post-flare 11 11 9 12

Note.The “precise flare” detections are those detections made during the
“flare” phase that are within 3 units of the input QPP period.

Figure 18. Left: comparison of the periodicities detected by the two methods incorporating EMDs. Right: comparison of claimed EMD detections made in the “flare”
section with the input QPP periods.
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cases, including one from the “flare” section. Interestingly, both
methods produce consistent false detections in the “pre-” and
“post”-flare phases, indicating that, when using EMD to
detrend the data, insisting that detections are made by both
methods is not a definitive way of ruling out type I errors.

The right panel of Figure 18 compares the periods of claimed
detections made in the flare section with the QPP periods input
into the simulations. We note that although in some cases
multiple detections were claimed, the method was not able to
correctly pick out both periodicities in the two simulated flares
examined that contained two sinusoidal QPPs. When the EMD
threshold method was used to identify significant periodicities
in the flare itself, 87% of claimed detections were precise,
which is slightly lower than, but still comparable to, the other
robust detection methods (see Table 7 in the Appendix). This
suggests that if a periodicity is present in the data, the EMD
technique is a good method of finding it. However, when the
Fourier spectrum was used to identify significant periodicities,
only 75% of the claimed detections were precise, suggesting
that this method is not as robust in the search for stationary
oscillatory patterns in the signal.

5.2.3. Real Flares

In total, 21 of the simulated flares in HH1 were based on real
data. As described in Section 2.4, in some cases the original
data were included, but in others additional white noise was
added. Although the majority of the claimed detections were in
the original time series, there were some claimed detections in
time series where additional noise was added. Detections were
claimed for both solar and stellar flares, and there is no clear
evidence to suggest that the QPPs were more likely to be
detected in solar flares than stellar flares or vice versa (see
Table 7 in the Appendix).

Figure 19 compares the claimed periodicities obtained by the
hounds (including CEP) with those found by CEP in Pugh et al.
(2016) for the stellar flares and in Pugh et al. (2017b) for the
solar flares. One of the stellar flares included in HH1 was not
found to have any periodicities by Pugh et al. (2016) and so has
been assigned a periodicity of zero in Figure 19. Since these
flares are based on real data, there is no way to independently
know whether a QPP signal is in fact present, or whether the
results presented in this paper or the previously published
literature are correct. However, it is notable that the majority of
detections presented here lie far from the 1:1 line, indicating a
mismatch with the prior literature for these events. In HH1,
CEP claimed two detections of real flares, both of which were
based on solar data, and both claimed that periodicities were
consistent with the original detections. Interestingly, both of
these cases had additional noise added to the flare. However,
there were three HH1 flares containing solar data that did not
have additional noise added to them, and CEP claimed no
detections in these flares. This is likely to be because of
differences in the choice of how to trim the flare, highlighting
the important role trimming makes in the detection of QPPs by
this method (see Section 5.3 for further discussion on this).
CEP claimed no detections for the stellar flares in HH1;
however, we note that in Pugh et al. (2016) CEP employed a
different methodology to detect the flares that involved
detrending and wavelet techniques. The full AFINO method,
employed by ARI in HH1, and LAH’s wavelet technique
produce results that are all consistent with those found in the
above-mentioned literature. While some of the other techniques

do produce some claims that are consistent with the literature
results, they also claim some disparate periodicities. However,
we note here again that this does not mean that the detections
are incorrect. The majority of disparate detections in Figure 19
lie well above the 1:1 line, indicating that the hounds are
detecting longer periods than CEP. This could be a result of the
methodology employed by CEP, which, by trimming, may
focus on short-lived, small-period QPPs.

5.3. Impact of Trimming

Since the exact shape of a periodogram is known to depend
on the choice of interval for the time series data used to
calculate the periodogram, in this section we show how this
choice of time interval can affect the number of detections of
periodic signals.
For the periodogram-based significance testing method

employed by CEP, described in Section 4.7, three different time
intervals were tested for each synthetic flare. These were a manual
trim to the section of light curve within the flare that gave the most
significant peak in the periodogram (referred to as “manual”), a
trim to include the whole flare (referred to as “flare”), and no
trimming, where the entire provided light curve was used for the
analysis (referred to as “whole”). Figure 20 shows how trimming
the data impacts the periodogram for Flare 629040.
For the first case (“manual”) the same time intervals as those

used with this method to obtain the results in HH1 (Section 5.2)
were chosen. As mentioned above, this approach resulted in 25
flares being identified as containing a periodic signal above the
95% confidence level (23 sinusoidal QPP flares, two real flares,
and no false detections). When the light curve was trimmed to
include the whole flare but nothing more (“flare”), only five
detections were made above the 95% level (all sinusoidal QPP
flares). Finally, when no trimming was performed and the
whole light curve was used (“whole”), six detections were
made above the 95% confidence level, but one of these was a
false detection (the other five were sinusoidal QPP flares).
Figure 21 shows a comparison between the simulated (input)
and detected (output) QPP periods for the different trimming
methods. Only one detection lies more than 3 units from the
input period.

Figure 19. Comparison of the periods of claimed detections in real flare data
with those found in the literature, nominally by Pugh et al. (2016) for the stellar
flares and Pugh et al. (2017b) for the solar flares.
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Figure 20. Demonstration of how the choice of time interval impacts the periodogram for Flare 629040. As a consequence, the significance level of the peak
corresponding to the QPP signal, as determined by the method described in Section 4.7 (CEP), is changed. The light curves are shown on the left and the
corresponding periodograms on the right. In each panel on the right the solid red line shows the fitted broken power-law model, while the dotted and dashed red lines
show the 94% and 99% confidence levels, respectively. Top: using the whole simulated light curve provided (“whole”). Middle: trimming the light curve so that only
the flare is included (“flare”). Bottom: trimming the light curve manually to the section of the flare that gives the highest significance level of the peak in the
periodogram corresponding to the QPP signal (“manual”). Only in the manually trimmed light curve is the QPP signal assessed to be significant above the 99% level.
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This test was repeated for HH2. For the manually optimized
time intervals used to obtain the results for this method in
Section 5.1, 14 flares were found to contain a periodic signal
above the 95% level, but two of these were false detections.
When the light curves were trimmed to contain the whole
flares, the number of detections reduced to 2, although both
were precise detections of single sinusoidal QPPs. Finally,
when the whole light curves were used, no detections were
made. Hence, this shows that the choice of time interval is an
important factor when applying this method, since the time
interval can be chosen to avoid any steep changes in the light
curve that might otherwise reduce the S/N of a periodic signal
in the periodogram (Pugh et al. 2017a).

These results imply that (a) when detections are claimed they
tend to be robust regardless of trimming, (b) trimming to focus
on the time span containing the QPPs substantially improves
the likelihood of detecting QPPs, and (c) there is no benefit to
trimming around the “flare” compared to taking the “whole”
data set. However, we note that none of the time series

simulated here are substantially longer than the flare itself,
which may not necessarily be the case in real data.
We recall here that neither the AFINO method nor LAH’s

wavelet method trimmed the data when looking for QPPs. To
test the impact of trimming on these techniques, the
methodologies were rerun on trimmed data using the manual-
trim timings of CEP. This was done for HH1 only and the
results can be seen in Figure 22.
For the full AFINO method, originally employed by ARI, 18

detections of sinusoidal QPPs and no periodic multiplets were
claimed, with 17 of these detections considered to be precise.
When the data were trimmed, LAH found that the full AFINO
method produced 17 sinusoidal QPPs and one periodic multiplet
detection, but only 12 of these were precise. No false detections
were made in either case. However, we note that although there
was some overlap, the set of simulated flares in which detections
were made when the data were trimmed was not identical to the
set of flares in which detections were made when the whole time
series was used.

Figure 21. Left: scatter plot showing detections of QPPs made in HH1 by using the method of CEP when the data were trimmed by different amounts. Right: same as
the left panel, but for HH2.

Figure 22. Left: scatter plot showing detections of QPPs made in HH1 by using the AFINO method when the data were trimmed by different amounts. “Whole” refers
to the whole time series, and “trim” refers to time series trimmed using the “manual” trimming of CEP. The different symbol shapes indicate the strength of the
detection as discussed in Section 4.3. Right: scatter plot showing detections of QPPs made in HH1 by using the LAH’s wavelet method when the data were trimmed
by different amounts.
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When LAH’s wavelet method was applied to the full time
series of the simulated flares included in HH1, 12 detections of
sinusoidal QPPs were claimed, of which 11 were considered to
be precise (no periodic multiplet detections were claimed). As
can be seen in Figure 22, this increased to 26 claimed
sinusoidal QPP detections and one periodic multiplet detection
when the data were trimmed, with only 16 precise detections.

This loss of precision may indicate that the AFINO and
wavelet methods work best when considering the whole time
series. It may also be an indication that the trimming applied
for one method may not necessarily be the optimal trimming
for another method. Another explanation for the loss of
precision could be the reduction in resolution in the Fourier
domain due to the reduced number of data points. For example,
the lack of improvement in AFINO when examining the
trimmed data can be explained in terms of the low number of
data points in the trimmed time series: AFINO explicitly
penalizes short data series (Equation (12)), so this is apparently
enough to counteract any “enhancement” of the signal from
trimming, at least in these cases.

Figure 6 shows periodograms produced by the two methods
used by JAM for HH1 and HH2, respectively. The primary
difference between these methods was that for HH2 the time
series were trimmed to start at the location of the local
maximum, i.e., the peak of the flare. Comparison of the two
panels shows that the additional trimming performed in the
HH2 methodology removes the low-frequency noise from the
spectrum, leaving just the peak from the QPPs. With hindsight
it is possible to see that this peak is also present in the
periodogram produced by the HH1 methodology; however,
without prior knowledge it would not be possible for a user to
distinguish between the QPP peak and the noise peaks. In both
methods the background trend was removed before computing
the periodogram by subtracting a smoothed version of the light
curve. The difference between the two periodograms is likely
to occur because sharp features, such as the impulsive rise
phase of a flare, will not be sufficiently removed by subtracting

a smoothed version of the light curve. Starting the time series
after the sharp rise phase means that smoothing does a far better
job of characterizing the background trend, thus reducing the
low-frequency noise in the periodogram. A cautionary note
here would be that in real flares there is no guarantee that the
QPPs will start after the impulsive flares, and so limiting your
search to the decay phase could lead to missed detections.
However, as already discussed, type II errors are far less
serious than type I errors, and so it is better to employ this
strategy than risk FPs.

5.4. Nonstationary QPPs

Four nonstationary QPPs were included in HH1, but the
majority of methods were unable to make robust detections of
these QPPs (LAH—W, LAH—A, ARI, and CEP all failed to
detect any of these QPPs; TVD, JAM, and JRAD claimed
detections, but they were imprecise, as shown in Figure 23).
This is not completely surprising since periodogram-based
methods, such as those employed by AFINO, CEP, TVD, and
JAM, are better suited to detecting signals with stationary
periods. EMD, on the other hand, makes no a priori
assumptions on the stationarity (or shape) of the periodicity.
This is reflected by the fact that TM—EMD was able to
precisely detect the periodicities of the included nonstationary
QPPs (we note that TM only analyzed three of the four
nonstationary QPPs blind, but once it became clear that EMD
was capable of detecting nonstationary QPPs, TM analyzed the
fourth nonstationary QPP but employed the same strategy as
used in the blind tests). The EMD-Fourier method for assessing
the significance of the detrended signal did not detect any of the
nonstationary QPPs.
Figure 24 shows the results of the EMD methodology on one

of the simulated flares, Flare 58618, which had a nonstationary
QPP included. Figure 24 also shows the Morlet wavelet
spectrum of the EMD mode, which was found to be significant
in the flaring section of the original signal. It clearly illustrates
the increase of the oscillation period with time from about 75 to
110, which was approximated by the functional form

( ) ( )( ) ( )= - -P t P P P t t t t
0 1 0 0 1 0 , with the following parameters:

P0≈4.9, P1≈12.7, t0=75, and t1=110. The EMD-
obtained mode gave a significant mean periodicity of 10.4 s,
which lies within a reasonable window of the fitting. Hence,
this technique, although time intensive, has clear benefits when
used in tandem with other traditional methods to extract
nonstationary signals. Figure 25 shows the EMD analysis of
the four nonstationary QPP flares included in HH1, including
Flare 58618. It can be seen that the IMF obtained from the
EMD analysis closely matches the input signal for all flares and
thus demonstrates the ability of EMD to extract nonstationary
QPP signals from the data.
The nonstationary flares were also analyzed by the forward-

modeling method of DJP. Figure 26 shows the results of
forward-modeling the four nonstationary QPP flares based on
an exponentially decaying sinusoid (with the potential for a
nonstationary period). Figure 27 shows the corresponding
results for a method based on a signal with continuous
amplitude modulation rather than defined start and decay times.
This method is motivated by the characteristic shape of QPPs
formed by dispersive evolution of fast wave trains, i.e., having
both period and amplitude modulation. (This is more general
than the actual form of the QPPs used in this study, which only

Figure 23. Scatter plot showing detections of nonstationary QPPs made in
HH1. The input period is 1/ν0 using Equation (2). The ordinate range indicated
by the boxes shows the variation in period from 1/ν(t=0)=1/ν0 to 1/ν
(t=te) i.e., the period when the amplitude of the signal has decreased by a
factor of e. The abscissa range is arbitrarily chosen to be centered on 1/ν0 and
of width 0.1. Difference colors/hatchings are used to differentiate between the
different simulated flares.
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have exponentially decreasing amplitudes.) As can be seen, in
both Figures 26 and 27 the model appears to fit the data well.
Figure 23 shows that the average periods extracted from the
method (based on Figure 26) agree well with the input periods
once the variation in period over the lifetime of the QPPs is
accounted for. However, we remind the reader that reliable
extraction of the QPPs relies on correct specification of the
model used to fit the data. Furthermore, the false-alarm rate for
this method was not tested. However, we note that the forward-
modeling method was able to extract the periodicity of the two
simple sinusoidal QPPs that were analyzed (Flare 106440 had
an input period of 12.4 and DJP found a periodicity of -

+12.4 ;0.9
0.6

Flare 220365 had an input period of 14.5 and DJP found a
periodicity of 14.3±0.2). All of these results indicate that
MCMC is a good way of obtaining QPPs’ parameters and
could perhaps be implemented once detections have been made
with one of the robust methodologies (e.g., AFINO—ARI,
wavelet—LAH, periodogram—CEP, TVD—manual).

5.5. HH3 and the Impact of Smoothing

Some of the techniques employed by the hounds (TVD and
JAM) rely on detrending the data before using periodograms to
assess the significance of a signal. In both cases detrending was
performed by removing a smoothed component from the data.
However, as we saw with HH1, this must be done carefully,
such as in the nonautomated manner used by TVD and as
described in Section 4.8, to obtain robust results: when TVD
manually chose an appropriate smoothing window individually
for each flare, the results were found to be robust, but choosing
a single smoothing width for all flares, as done by JAM,
produced a large number of false and imprecise detections (see
Table 5). To investigate this further, TVD analyzed a third set
of flares, HH3, which contained 18 flares, using a range of
different smoothing widths on each flare.
In this test TVD cycled through using different smoothing

windows, Nsmooth, to remove the background trend, from 5 to
63 in steps of two. For each detrended time series, a

Figure 24. Top left: trimmed profile of Flare 58618 in black with the extracted EMD mode overlaid in red and trend in blue. Top right: periodogram of the detrended
signal with confidence levels of 95% (green) and 99% (red). Bottom right: Morlet wavelet spectrum of the statistically significant IMF (shown in black). The white
line shows the approximation of the obtained period–time dependence by the chirp function (see Section 2.1.3). Bottom left: EMD spectrum of the original input
signal with the significant mode shown as a green diamond. The trend is given as a red diamond. Blue circles correspond to noisy components with α∼0.89. The
95% and 99% confidence levels are given by the green and red lines, respectively, with the expected mean value shown by the dotted line.
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periodogram was found and the false-alarm probability (or p
value) and frequency of the largest peak recorded. Examples of
the recorded frequency and p value as a function of Nsmooth for
four flares are shown in Figure 28. Here the p value is the
probability of observing a peak in the power spectrum at least
as high as that of the largest observed peak if the data contained
white noise only. In the method employed by TVD, as
described in Section 4.8, detections were claimed if the false-
alarm probability was below 5%, i.e., if the minimum p value
in Figure 28 was below 0.05. The top two panels show
examples where precise detections were made. In both cases a
clear minimum in the p value was observed. For Flare 806958
the observed frequency is relatively flat once the smoothing
window is above approximately 11. This appears to account for
the relatively broad range of potential smoothing windows with
low p values. This could be related to the fact that the input
period of this QPP was relatively long (16.0). There is more
variation in the frequency with the lowest p value in the
analysis of Flare 851541, which had an input period of 6.5.
Here a much narrower range of smoothing windows produced
low p values. We notice also the drop in the frequency with the
lowest p value at high smoothing widths. This is a common
feature of this analysis and can be seen in the bottom two

panels of Figure 28. It is possible that this drop-off would also
have been observed in Flare 806958 if the analysis had been
extended to higher smoothing widths relative to the input
period. The bottom two panels of Figure 28 show examples of
flares where detections were claimed but these detections were
imprecise. The Nsmooth coinciding with the minima in the p
values correspond to frequencies beyond the drop-off. For
Flare 44430 there is a secondary minimum in the false-alarm
probability that would have produced a frequency of
approximately 0.1, which is close to the input frequency of
0.09 (or a period of 11.0).
Figure 29 shows how precise the detections made by TVD in

HH3 were. The data have been separated out into “Good,” where
TVD was satisfied with the extracted period, and “Bad,” where
TVD was unconvinced by the output. The “Good” or “Bad”
assessment was based on TVD’s previous experience in analyzing
QPP light curves. A result was taken as “Bad” when the trend did
not fit well the “visible” trend (matching the expectations from
experience), or if the obtained period did not match the “visible”
period (once again as measured using experience). For example,
“Bad” detections were often highlighted when Nsmooth was
sufficiently long that the background trend was not removed
properly, leading to spurious periodicities in the power spectrum

Figure 25. EMD analysis of four flares from HH1 containing nonstationary QPPs. In each panel the upper curve (solid black) is the raw input signal. Below the light
curve is the input model with all noise removed, containing a trend and nonstationary QPP signal, which was given to TM by the hare only following the analysis for
comparative purposes (black). Overlaid onto the input model is the statistically significant IMF of the (manually selected) flare phase, shown in red. For the cases of
Flares 58618, 641968, and 754456, it was unknown to TM that the signals were of nonstationary origin and were analyzed under the same lack of assumptions of the
other flares looked at in HH1. Flare 801580 was analyzed separately with the knowledge that it contained a nonstationary signal.
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that dominated over the true QPP periodicity. These were
identified by visual inspection of the figures produced for each
flare, examples of which are shown in Figure 28, and the residual
time series obtained once the smoothed time series had been
subtracted. The left panel of Figure 29 supports the earlier finding
of HH2, that the automated process for determining the
appropriate smoothing window is less robust than the manual
one. Precise detections (where the difference in the input and
output periodicities was less than three) were made in only 6 out
of 12 claimed detections, with only two of the remaining six
imprecise detections being highlighted by TVD as unreliable. This
can be compared to 91% precise detections obtained in HH1 (see
Table 5). The right panel of Figure 29 shows that precise
detections tend to be made when the smoothing window is close
to the periodicity that you are trying to detect. This was found by
TVD when manually selecting the best smoothing window while
analyzing the flares in HH1 (see Section 4.8).

6. Best-practice Blueprint for the Detection of QPPs

The short-lived and often nonstationary nature of QPPs
means that they are difficult to detect robustly. Therefore, when
attempting to find evidence for QPPs, it is extremely important

to minimize the number of type I errors, where the null
hypothesis is wrongly rejected. In this paper that would mean
making false QPP detections. This paper demonstrates that
there is more than one way to robustly search for QPP
signatures (e.g., Table 4), with the AFINO (ARI and LAH),
wavelet (LAH), and periodogram method of CEP producing
particularly low numbers of false detections (by which we
mean both false claims and imprecise detections). Furthermore,
these methods have already been used in a number of studies to
detect QPPs (e.g., Hayes et al. 2016; Inglis et al. 2016; Pugh
et al. 2017b), and this article demonstrates that we can be
confident in the detections previously made. All these methods
make relatively large numbers of type II errors, i.e., a large
number of QPPs were missed (see Table 5). However, type II
errors are preferential to type I errors: it is better to use an
approach with a low false-alarm rate and a high precision rate,
so you can be more confident about what you find in real data
where the answer is not known, even if this is at the expense of
missing detections. To further improve confidence in detec-
tions, it would be preferential to employ more than one
detection method. As an aside we note that the the AFINO
method and CEP’s periodogram method both make detections
in only 25%–35% of flares containing QPPs. This detection

Figure 26. Method of forward-modeling QPP signals based on the Bayesian inference and MCMC sampling used in Pascoe et al. (2017a). Black lines show the
simulated flare data; green lines represent the model fit based on the MAP values of model parameters. Blue and gray lines correspond to the background trend and
detrended signal (shifted for visibility), respectively. The gray dashed horizontal lines denote the estimated level of (white) noise in the signal.
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rate is similar to that found by both authors in recent surveys
(Inglis et al. 2016; Pugh et al. 2017b), implying that the number
of real flares containing QPPs may be substantially higher than
implied by these surveys.

Recommendation 1: minimize type I errors, using simula-
tions to test robustness of detection methods. AFINO (ARI and
LAH), wavelet (LAH), and periodogram (CEP) methods were
the most robust methods identified here.

The three methods mentioned above, which produced the
lowest false-alarm rates, all incorporated statistics pertinent to red
noise in their detection methods. It is worth keeping in mind that
the simulated flares always included red noise, although the tests
were performed blind so the hounds did not know this for definite
when performing their searches. Real data will contain colored
noise, but it is possible that the structure of the noise could differ
from that included here, e.g., the relative contributions of red and
white noise could differ, or the correlation between successive
data points may differ from the range prescribed here.

Recommendation 2: take red noise into account in detection
methods.

This paper also shows that care needs to be taken when
detrending. Both TVD and JAM detrended by smoothing. JAM
used a constant value for the width of the smoothing window.
This method produced lots of false detections in both HH1 and
HH2, despite attempts to improve the detection procedure

between the two exercises (see Tables 4 and 5). TVD varied the
width of the optimal smoothing window on a flare-by-flare
basis, which substantially reduced the number of false
detections. In HH2, the process by which the optimal width
was determined was automated (see Section 5.5). However,
this automation detrending also led to a relatively large number
of false detections (see Table 4), and it was only through
human intervention that the number of false detections was
reduced. On the other hand, in HH1, TVD manually selected
the optimal smoothing window and produced a low number of
false detections, comparable with the AFINO, wavelet (LAH),
and periodogram method of CEP. The nonautomated detrend-
ing method outlined in Section 4.8 is a good blueprint to follow
when detrending. However, we note that alternative methods of
detrending, such as through EMD or spline interpolation, may
also produce robust results. We therefore advise users to test
their detrending methods using simulated flares, as is done
here, to test reliability before use on real data. We also point the
reader in the direction of Dominique et al. (2018), who propose
a set of criteria to help identify real periodicities and discard
artifacts when detrending. These criteria include, for example,
excluding periodicities inside the cone of influence and only
considering detections with periods less than the smoothing
window used to detrend the data. This paper demonstrates that
when performed with due care and attention and by an

Figure 27. Same as Figure 26, but for a model based on continuous amplitude modulation rather than a damping profile.
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experienced user, detrending by removing a smooth component
can produce reliable and robust results.

Recommendation 3: if you are going to detrend, do it
carefully and manually, treating each time series individually
and being wary of automated methods. Use simulations to test
methods and become familiar with potential pitfalls.

The impact of trimming the data around the QPPs on the
likelihood and robustness of detection was considered in
Section 5.3. Whether or not trimming is advantageous appears
to depend on the detection method employed: trimming

increased the likelihood of CEP making a detection, with no
detrimental effect on the robustness of these detections.
However, trimming reduced the robustness of detections made
with AFINO and LAH’s wavelet. We therefore recommend
stringent testing of the impact of trimming on a particular
method before use on real data.
Recommendation 4: only trim the data around the QPPs if

you are sure it benefits detection. Use simulations where
necessary to test this. Of the methods employed here, CEP’s
periodogram benefited but AFINO and wavelet did not.

Figure 28. Frequency of the highest peak in the detrended periodogram plotted as a function of the width of the smoothing window used to detrend the data (plotted in blue
and corresponding to the left-hand ordinate). Also plotted is the false-alarm probability (or p value) as a function of the width of the smoothing window (in red and
corresponding to the right-hand ordinate). The horizontal dashed line gives the input frequency of the QPPs. Top left: Flare 806958 had an input period period of 16.0 and a
detected period of 18.0 (or a frequency of 0.056) and so is an example of a precise detection. Top right: Flare 851541 had an input period of 6.5 and a detected period of 6.4
(or a frequency of 0.156) and so is an example of a precise detection. Bottom left: Flare 247422 had an input period of 8.8 and a detected period of 31.0 (or a frequency of
0.032) and so is an example of an imprecise detection. This detection was not flagged as untrustworthy by TVD. Bottom right: Flare 44430 had an input period of 11.0 and a
detected period of 32.7 (or a frequency of 0.031) and so is an example of an imprecise detection. This detection was flagged as untrustworthy by TVD.

32

The Astrophysical Journal Supplement Series, 244:44 (37pp), 2019 October Broomhall et al.



Although only a small sample was considered in this study, it is
reasonable to conclude that the periodogram-based methods are
not ideally suited to detecting nonstationary QPPs. However,
EMD and MCMC fitting were able to produce precise detections
of these QPPs. Therefore, if aiming to specifically detect
nonstationary QPPs, it would be worth employing these
methodologies. It is interesting to note that the wavelet method
did not detect the nonstationary QPPs when the whole raw time
series was considered (LAH’s method). This is potentially
because LAH used the statistical significance of peaks in the
global power spectrum to determine whether a detection was
significant. Period drifts are likely to broaden peaks in the global
spectrum at the expense of absolute power, meaning that the
broad peaks are not statistically significant. Statistical tests for
peaks covering multiple period bins, such as those described in
Pugh et al. (2017a), may resolve this issue. However, if detrending
is performed, for example, using the EMD technique, the
nonstationary QPPs are revealed with the wavelet, including the
drift in period (see Figure 24). Therefore, a combination of EMD
and wavelet techniques could also improve the robustness of the
EMD detections. It is important to stress that if EMD is employed,
it is necessary that the user has a good grasp on how to make
appropriate choices for the value of the shift factor. It is possible
that GPs (JRAD) could prove to be a useful analysis mechanism
for nonstationary QPPs. However, substantial work is still
required to ensure robustness.

Recommendation 5: for nonstationary signals use EMD,
wavelet on a detrended EMD signal, and MCMC fitting.

We should note here that EMD produced a relatively large
number of false detections, raising questions over the
robustness of the method. Further examination reveals that
the majority of these false detections arise from the red noise
and are composed of signals of the order of, or less than, one
period in length. Although in the hare-and-hounds exercises
performed here it is easy to distinguish between red noise and
signal, in real data the distinction may not be so clear-cut. Any
“red noise” observed in real data may contain interesting
information about the system being observed. For example, the
underlying shape of the flare can contribute to the red-noise
signal in a periodogram spectrum. This raises the question of

how we define QPPs in the first place and demonstrates the
importance of a classification system for such quasi-periodic
events as suggested by Nakariakov et al. (2019).
Recommendation 6: decide a priori on your definition of

QPPs, including the number of periods required for detection of
QPPs. For example, in these simulations, including an a priori
selection criterion that any detections contain at least three full
periods would have substantially improved the robustness of
the EMD detections.
Some of the methods were far more time-consuming than

others, and so when deciding which method to employ, the
number of time series being considered should be kept in mind.
AFINO, LAH’s wavelet, and CEP’s periodogram are all relatively
quick methods that require little user input and so are suitable for
large-scale statistical studies. The requirement for user input when
using smoothing to detrend the data means that TVD’s method
was relatively time-consuming, but this method could be employed
for specific case studies. EMD was also user intensive and
therefore better suited to case studies. The MCMC method
employed by DJP is currently user intensive and better suited to
case studies. However, there is the potential for improvements in
this regard. Bayesian analysis requires prior information with
reasonable boundaries to be defined. However, limits on the
parameters in the Bayesian model could potentially be constructed
either by combining with other methods or based on the results of
previous large statistical surveys. Similarly, there are multiple
models that could be tested with Bayesian analysis. A priori
decisions on this, based on theoretical models and QPP
classification, or potentially machine learning mechanisms, could
allow more automation. It is also worth noting that MCMC
statistical studies are not unprecedented in solar physics (e.g.,
Goddard et al. 2017).
Recommendation 7: Consider the number of time series to be

examined: If performing a large statistical study (containing,
e.g., more than 50 time series), AFINO (ARI and LAH),
wavelet (LAH), and periodogram (CEP) are good tools. These
methods can also be used to ensure robustness in studies
containing fewer time series, but you could consider also using
alternative methods, such as periodogram (TVD—manual),

Figure 29. Left: Comparison of output and input periods obtained by TVD in HH3. The data points have been split into “Good,” where TVD was satisfied with the
results, and “Bad,” where TVD was unconvinced by the output. Right: width of the smoothing window that produced the lowest false-alarm probability, and the
periodicities plotted in the right panel. The uncertainties represent the range of values for which the false-alarm probability was below 5% and within 10% of the
periodicity with the lowest false-alarm probability.

33

The Astrophysical Journal Supplement Series, 244:44 (37pp), 2019 October Broomhall et al.



EMD, and MCMC fitting, which may reveal different features
of the QPPs, e.g., nonstationarity.

Multiple harmonics were included in some of the HH1
simulated flares, although not enough for a statistical study. While
some of the hounds did highlight the fact that they thought there
might be multiple QPPs included in certain simulations, a detailed
study was not conducted, as the hounds predominantly concen-
trated on the most prominent detection. Constructive interference
means that multiple harmonics are difficult to identify and a more
in-depth study is required to determine how effective each of the
methods are at identifying multiple signals. A logical way to
proceed would be to use the robust methods to identify flares
containing statistically significant QPPs and then perform a more
detailed case study to determine how many QPPs are present.

Recommendation 8: to determine whether multiple harmonics
are present, more detailed case studies are required. Ensure that a
time series warrants further investigation using one of the robust
methods to identify the dominant statistically significant QPPs.
Then look for further harmonics with a more detailed analysis.

7. Future Prospects

In this study, the investigations of stellar QPPs have been
based primarily on observations from Kepler data. The TESS
satellite (Ricker et al. 2014) and PLATO (Rauer et al. 2014) are
now expected to bring us more stellar flare data. The TESS
satellite, which was successfully launched in 2018 April, has a
2-minute time cadence mode, which is similar to Kepler’s
1-minute time cadence mode.

Günther et al. (2019) recently reported 763 flaring stars,
including 632 M dwarfs, from the first 2 months of TESS
2-minute cadence data. The amplitudes (relative fluxes) of their
detected flares are from (2–3)×10−2 to 101, and durations are
from 10−1 to 101 hr. The bolometric energies of the detected flares
are typically 1034–1036 erg on FGK dwarfs and 1032–1034 erg on
late M dwarfs. As shown in Figure 5 of Günther et al. (2019), the
number of late M dwarfs is particularly increased compared with
the sample from the Kepler data, and their TESS magnitudes are
10–15 mag. These values suggest that we can also conduct QPP
analyses with TESS data, and in particular, potential QPP data
from late M dwarf flares are increased compared with the previous
studies. The data of Günther et al. (2019) only use the first 2
months of TESS data, and so the number of flare stars increased
by more than a factor of 10 after the analyses of the whole TESS
data set (2 yr and almost the whole sky).

To best examine the synergies between solar and stellar
flares, we would want to compare data that are as similar as
possible. For example, data should ideally be observed in the
same waveband. Similar to Kepler, TESS makes white-light
observations. QPPs have also been detected in a flare observed
by the Next Generation Transit Survey (Jackman et al. 2019),
which observes in white light, like Kepler and TESS, but with a
much faster cadence of 10 s, which allows much shorter period
QPPs to be detected. However, white-light flares are rarely
studied in solar physics because they are difficult to observe.
This issue can be tackled in two manners: First, we can attempt
to make observations of solar flares that are as similar to the
white-light observations as possible. These are likely to be
resolved observations but may provide a hint toward the
commonality of QPPs in solar and stellar flares. Second, we
can attempt to make multiwavelength observations of stellar
QPP flares. For example, there are flares that were observed by
both XMM-Newton and Kepler (Guarcello et al. 2019). The

number of detected stellar QPP flares is still relatively low and
overlaps between Kepler, K2, and TESS, and other wavelength
observations remain understudied. Such simultaneous observa-
tions may enable us to determine whether the drivers of white-
light QPPs are the same as the drivers of, for example,
X-ray QPPs.
There is now evidence that QPPs are a common feature of solar

flares (Kupriyanova et al. 2010; Simões et al. 2015; Inglis et al.
2016; Pugh et al. 2017b). However, these QPPs come in many
different forms and so could require several different mechanisms
to explain them all. Studies of solar QPP would, therefore, benefit
from a classification system, as suggested in Nakariakov et al.
(2019). For the physics of each classification to be distinguished,
we need to accrue enough QPPs of each classification to be able to
perform statistical studies on their properties. The robust methods
described in this paper should, therefore, be utilized to identify as
many QPPs as possible. Finally, this study has shown that we can
now reliably detect solar and stellar QPPs with a number of
different methods. However, the majority (although not all) of the
methods provide only limited to no information on the properties
of those QPPs other than their period. Now that we can be
confident in our detections, we can attempt to develop techniques,
such as MCMC and forward modeling, that are capable of
robustly extracting additional physical properties. Given suffi-
ciently detailed theoretical models, studies along these lines could
then potentially be used to distinguish between the different QPP
excitation mechanisms. This, combined with the classification of
QPPs mentioned above, which may well rely on these techniques,
will enable us to take studies of QPPs to the next level.
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Appendix
Appendix Information

Table 7 contains a detailed breakdown of which types of QPPs
the various methods detected. The majority of QPPs detected were
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Table 7
Breakdown of Number of Flare Time Series in which a “Detection” was Claimed for HH1

1 QPP 2 QPPs Lin. Bgd Quad. Bgd Nonstat. 1 Flare 2 Flares
Non-P.
Multi. P. Multi. Stellar Solar

G E G E G E G E G E G E G E G E G E
(25) (25) (2) (2) (2) (1) (1) (2) (2) (2) (0) (1) (0) (1) (3) (3) (4) (4) (15) (6)

LAH—W 7 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
LAH—A 6 8 2 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 2 4
ARI 11 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
CEP 14 5 2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2
TVDa 9 9 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 3 4
JAM 8 6 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 4 2
JRAD 24 15 2 2 2 1 1 1 0 2 0 1 0 0 2 2 4 2 10 5

TM—Fb 9 (10) 0 2 (3) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
TM—EMDb 12 (15) 2 (2) 2 (3) 0 1 (2) 0 0 0 2 (3) 2 (2) 0 0 0 0 0 0 3 0 0 1

CEP “flare” 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CEP “whole” 2 2 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
AFINO trim 8 8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1
LAH—W trim 12 12 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 3 5

Notes.Here “G” stands for flares constructed from two half-Gaussian curves, while “E” stands for flares with a two-stage exponential decay, as described in Section 2.
a TVD only analyzed 58 flares.
b TM only analyzed 26 flares. Since, on occasion, more than one “detection” was made per flare, the number in parentheses contains the total claimed detections.
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single sinusoidal QPPs, which is expected because the majority of
methods were based on some from of transform to the frequency
domain, based on the assumption that any signals are sinusoidal in
nature.
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