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Abstract

Quasi-periodic pulsation (QPP) is a common phenomenon in solar flares. Studying QPP is important to further our
understanding of the physical processes operating in flares. However, detection of QPP is complicated by the
presence of noise in flaring lightcurves. In this study, we apply the Bayesian-based Markov-Chain-Monte-Carlo
(MCMC) technique to the QPP detection. We use MCMC to fit the Fourier power spectral density (PSD) profiles
of flaring lightcurves, aiming to determine a quasi-periodic component by model comparison and test statistics.
Two models fitting the PSD were compared: the first model consists of colored and white noise only, and the
second model adds a spectral peak of a Gaussian shape representing a short-living oscillatory signal. To evaluate
MCMC of the QPP detection, we test it on 100 synthetic signals with spectral properties similar to those observed
in flares. Subsequently, we analyzed QPP events in 699 flare signals in the 1–8 Å channel recorded by the
Geostationary Operational Environmental Satellite from 2010 to 2017, including 250 B-class, 250 C-class, 150
M-class, and 49 X-class flares. Approximately 57% X-class, 39% M-class, 20% C-class, and 16% B-class flares are
found to show a strong evidence of QPP, whose periods range mainly from 6.2 to 75.3 s. The results demonstrate
that QPP events are easier to detect in more powerful flares. The distribution of the detected QPP periods is found
to follow a logarithmic normal distribution. The distributions in the four flare classes are similar. This suggests that
the established distribution is a common feature for flares of different classes.

Unified Astronomy Thesaurus concepts: Solar flares (1496); Solar flare spectra (1982); Solar activity (1475); Solar
oscillations (1515)

1. Introduction

In the past few decades, many studies have proved that
quasi-periodic pulsation (QPP) is a common feature of solar
flares (e.g., Nakariakov et al. 2010; Inglis et al. 2016; Tian et al.
2016; Hayes et al. 2020; Zimovets et al. 2021). Typically, QPP
is defined as a sequence of pluses or cyclic variations of the
emission, with similar (while not necessarily identical) time
intervals between the successive peaks or time durations of the
oscillation cycles. QPP events have been observed in all phases
of a flare (i.e., in the pre-flare, impulsive, and decay phases),
and in both thermal and non-thermal emissions (e.g., Zimovets
& Struminsky 2009; Tan & Tan 2012; Milligan et al. 2017;
Clarke et al. 2021).

Typical QPP periods range from a few seconds to several
minutes (Nakariakov 2007; Nakariakov & Melnikov 2009; Yuan
et al. 2019; Li et al. 2020a, 2020b). The vast majority of QPP
studies have focused on flares of powerful M- and X-classes, or
some high-power C-class flares (Inglis et al. 2016; Kolotkov et al.
2018; Hayes et al. 2019; Yuan et al. 2019). QPP has also been
detected in flares of weaker classes (Nakariakov et al. 2018;
Hayes et al. 2020). Often, QPP appears to have a non-stationary
character, i.e., the instantaneous period, amplitude, and signal
shape seem to vary in time (e.g., Nakariakov et al. 2019).

However, whether the apparent duration of a QPP pattern
reflects its true duration or is limited by observational conditions
is unclear. Furthermore, whether a QPP occurs in a certain time
interval in a certain phase of a flare or if the actual duration of
the QPP process is comparable with the whole duration of the
flare or is even longer is also unclear. The occasional detection
of QPP in the pre-flare phase (e.g., Tan et al. 2016; Abramov-
Maximov & Bakunina 2020; Li et al. 2020b; Altyntsev et al.
2022; and Zimovets et al. 2022 for an alternative point of view)
could be considered in favor of the latter scenario, at least for
certain classes of QPP.
Most QPP studies have addressed one or a few specific

events. However, statistical studies of QPP that have addressed
the distribution of their parameters, the relationships between
them and the parameters of the host flare, and the detection
confidence levels have also been conducted. The most
comprehensive investigations have been carried out by Inglis
et al. (2016), who analyzed 675 M- and X-class flares observed
by the Geostationary Operational Environmental Satellite
(GOES) and 261 events from Fermi/Gamma Burst Monitor,
and Hayes et al. (2020), who analyzed 5516 X-, M-, and
C-class flares observed with GOES from 2011 to 2018. In
addition, a number of smaller-scale statistical studies have
addressed specific types of QPP or flares (e.g., Kupriyanova
et al. 2010; Simões et al. 2015; Pugh et al. 2017b).
Together with the non-stationary character, QPP detection is

also complicated by the presence of colored and white noise in
the data (e.g., Vaughan 2005, 2010; Inglis et al. 2015, 2016;
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Pugh et al. 2017a; Liang et al. 2020). Colored noise is
characterized by a power abundance at low-frequency spectral
components, while white noise is characterized by a power
abundance that is uniformly distributed over all frequencies.
Thus, it is important to estimate the effect of colored and white
noise on the detection and analysis of QPP signals. In
particular, some standardization of the QPP detection proce-
dure (i.e., the minimization of the subjective choices of various
parameters) is highly demanded.

The most straightforward method to detect QPP, based on
the assumption of the harmonic and long-living nature of a
QPP signal, is to estimate the significance of a candidate
spectral peak above the noise level in the time frequency
domain using signal processing techniques such as Fourier
transform, periodograms, or wavelet transform (Broomhall
et al. 2019).5 The Bayesian-based Markov-Chain-Monte-Carlo
(MCMC) technique is often used as the fitting method to
estimate the most probable period of a QPP signal (Inglis et al.
2015, 2016; Sharma 2017; Hayes et al. 2020; Anfinogentov
et al. 2021).

In the present work, we investigate distributions of
oscillation periods of QPP detected in the thermal emission
generated by solar flares, and then search for relationship
between the period distributions and the host flare classes. This
study is based on an analysis of the power spectra of flaring
lightcurves. The feasibility of the robustness of the QPP
detection and the oscillation period estimation with Bayesian-
based MCMC is verified by its application to 100 synthetic
QPP signals. Each synthetic signal included a quasi-periodic
component, colored noise, and white noise (see Broomhall
et al. 2019). In general, a flaring lightcurve also has a trend that
can either be removed by smoothing or averaging, or be present
in the signal. In the latter case, the power spectrum would
resemble the colored noise spectrum. In the processing, two
different models—with and without a QPP—are used to fit the
power spectral density (PSD) as a function of frequency. The
technique was then applied to randomly selected 699 solar flare
signals that were recorded by GOES from 2010 to 2017,
including X-, M-, C-, and B-class flares. We estimated the
mean oscillation periods using Bayesian-based MCMC and
then explored the statistical characteristics of QPP in the flares.

The rest of this paper is structured as follows. In Section 2,
we describe the methodology for the QPP detection, including
Bayesian-based MCMC, model comparison and calculating
statistics. Sections 3 and 4 present the results of the analysis of
the synthetic signals and solar flare signals. A discussion of the
results and a conclusion are given in Section 5.

2. Methodology

2.1. Data Preprocessing

The first step of the analysis is to normalize an input signal,

=
- ( )S

S S

S
, 1norm

where S is the original signal and S is the mean of the signal.
We then calculate the PSD of the normalized input signal Snorm
multiplied by a time window function, to minimize the effects
of the finite duration of the signal. In our case, because the

input signal is evenly sampled, the PSD is constructed with the
use of the standard discrete Fourier transform (i.e., a period-
ogram). In this step, we tested several window functions (e.g.,
the Blackman-, triangular-, and Hanning-window functions) to
evaluate the effect of the frequency leakage. We found that the
accuracy of the frequency representation using the Hanning
window is superior to the other window functions, giving good
frequency resolution and less frequency leakage. In the
following calculations, we apply the Hanning-window
function.

2.2. Bayesian-based MCMC

Bayesian-based MCMC is a sampling method that per-
forms well with multi-parameter distributions (Hastings 1970;
Anfinogentov et al. 2021). In the context of QPP detection, it
allows us to fit a PSD with a certain guessed function (i.e., a
model), determine its best-fitting parameters, and then compare
different models. The Bayes theorem states

Q =
Q Q( ∣ ) ( ∣ ) ( ∣ )

( ∣ )
( )p D M

p M p D M

p D M
,

,
, 2

where D is the PSD of an observed signal, M denotes a selected
model and Θ(={Θ1, Θ2, K}) presents the parameters of
model M. The quantity p(D|Θ, M) is the likelihood, which
represents the probability of obtaining the observed data
under the assumption of the model. The quantity p(Θ|M) is
the prior distribution of the parameters, which indicates the
estimation of parameters and is based on existing information.
The coefficient p(D|M) is a normalizing constant. The quantity
p(Θ|D,M) is the posterior distribution of the parameters, which
is the re-estimation of the probability of the parameter based on
the observed data. Therefore, the posterior distribution is
represented by the product of the prior distribution and the
likelihood.
The periodogram of any observed stochastic time series with

the regular time axis of length N has the Fourier power
= ¼( { })D D D, ,j

obs
1
obs obs

N
2

at a Fourier frequency = ¼( { })f f f, ,j 1 N
2

,
and is exponentially distributed about the true spectral density
Sj= S( fj) (Chatfield 2003). So the likelihood can be written as

Q = -
=

( ∣ ) ( )p D M
S

D

S
,
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j
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In the Bayesian technique, the choice of the prior affects the
posterior distribution of the parameters. Here, each parameter
distribution is considered as a normal distribution because each
parameter is affected by each independent sampling point. In a
previous study, Vaughan (2010) set different priors and then
observed the influence on the posterior, and came to the
conclusion that the independent normal distribution results for
parameter setting were the most appropriate. Thus, we set the
parameters of the selected model as an independent normal
distribution.
After determining the prior distribution and likelihood, we

use MCMC to sample the posterior distribution. MCMC can
effectively map a posterior distribution in a multi-dimensional
parameter space. After some initial iterations (known as burn-
in), the values of each parameter of the selected model will
converge and the Markov chain returns samples of convergent
parameter values. The convergent distribution of the Markov

5 For alternative QPP detection techniques, see, e.g., Kolotkov et al. (2015),
Broomhall et al. (2019), Anfinogentov et al. (2022).

2

The Astrophysical Journal, 944:16 (9pp), 2023 February 10 Guo et al.



chain is the same as the posterior distribution, which means that
the parameters of the selected model are frequently sampled
within a more reasonable range. MCMC provides us with the
sampling results of each parameter of the selected model,
which can be used to calculate the parameters of the best-fit
model and for the subsequent statistical calculations.

2.3. Model Selection and Model Comparison

We selected two candidate models to fit PSD of the analyzed
signals. The first model, M0, is a power law plus a constant
model,

= +a- ( )M Af c, 40

where Af−α with constant A and α> 0 is used to reflect the
Fourier power-law property of colored noise, and constant c is
to reflect the constant property of white noise.

The second model, M1, is the power-law-plus-constant
model with an additional Gaussian component around a certain
frequency, which accounts for the possible appearance of the
QPP in the solar flare, i.e.,

b
s

= + -
-( ( ) ) ( )M M B

f
exp

log

2
, 51 0

2

2
⎧
⎨⎩

⎫
⎬⎭

where B is the amplitude of the Gaussian component, β is its
central frequency of the Gaussian component, and σ is the
width of the Gaussian. The finite width of the spectral peak
reflects the finite duration of the QPP signal. It could also
account for the transient, non-stationary nature of QPP patterns
(Nakariakov et al. 2019). To a given model, each parameter
distribution is adjusted according to different input data,
including their mean and standard deviation.

To determine which model is more consistent with the PSD of
a given signal, we use the Bayesian information criterion (BIC,
Schwarz 1978; Burnham & Anderson 2004; Anfinogentov et al.
2021), which is defined as

= - +( ) ( ) ( )L k nBIC 2 log log , 6

where L is the maximum likelihood of the fit, k is the number of
free parameters of the selected model, and n is the number of
data points used for fitting. The smaller the result calculated by
this method, the better the fitting result. BIC takes into account
the number of parameters of the model. The model with more
parameters will be punished to reduce the probability of an
over-fitting model being selected. By comparing the BIC of
two fitted models, we choose the model that is more suitable for
the PSD of the input signal, calculating the difference of BICs
of the models as

D = - ( )BIC BIC BIC , 7M M0 1

where the indices correspond to the compared models. A
positive ΔBIC would imply that model M1 is superior to model
M0, otherwise model M0 is better. In this step, we take
D ∣ ∣BIC 10 as the criterion that one model is significantly
superior to another (Burnham & Anderson 2004).

It is worth noting that BIC is only used to measure which of
the two compared models is more suitable for the input data. It
does not confirm that any of them is a good choice. It is
possible that both models are not very suitable. After all, for
any data, we can use countless number of models to get

countless fitting results. To confirm how well a fitted model
matches the data, we need to calculate the test statistics.

2.4. Test Statistic and Significance Testing

The statistic that we use is as follows (Vaughan 2010).

= ( )T
D

M
max

2
, 8R

j

j

j
⎜ ⎟
⎛
⎝

⎞
⎠

where the index j ranges from 1 to N/2. The quantity TR
reflects the maximum deviation between the observed value Dj

and the model Mj; that is, TR indicates the local anomalies
between two data sets.
As mentioned in Section 2.2, by sampling the Bayesian

posterior distribution with the use of MCMC, we obtain
sampling results of each parameter of the selected model M0 or
M1. For either M0 or M1, after a certain number of iterations, the
values of every parameter of the selected model will converge. If
we set the sampling times after convergence to K, then we will
get K sets of model parameters, which are used to generate K
groups of simulated model data Bi(= {B1, K , BK}). In each
group Bi, we multiply each datum Bij by a random number Xij
from a chi-square distribution with two degrees of freedom
(Vaughan 2010), and obtain K groups of simulated PSD Dj

rep.
Thus, the quantity = ¼( { })D D D, ,ij j Kj

rep
1
rep rep can be written as

= ( )D
B X

2
. 9ij

ij ijrep

We can then get K values of TR
rep (see Equation (8)) to

calculate the distribution of TR
rep.

At the same time, we get the best-fit model Mj of the current
model through the Bayesian posterior distribution. After
calculating the distribution of TR

rep, we take the PSD of the
input signal as Dj

obs to calculate TR
obs. We can then calculate the

Bayesian p-value as

ò= =
+¥

( ) ( ) ( )p f T dT Pr T T . 10
T

R R R R
rep rep rep obs

R
obs

The Bayesian p-value is the proportion of the tail area from
TR

obs in the probability density distribution of the statistic TR
rep

(see Figure 1(d)). A relatively small Bayesian p-value indicates
that the current model cannot well interpret the PSD of the
input signal. In this step, we disregard a model with p< 0.01
(Inglis et al. 2016). On the contrary, the measured test statistic
value TR

obs is very small compared to the TR
rep obtained from

Bayesian posterior distribution, giving a Bayesian p-value very
close to 1, which would be an indication of over-fitting. Thus,
we discard a model if p> 0.99 too.

3. Evaluating the Performance of Bayesian-based MCMC

In this section, we evaluate the accuracy of the QPP
detection method described in Section 2 by applying it to
100 synthetic signals. The signals consist of a superposition
of power law and white noise, and an oscillatory signal
which mimics a QPP. In different synthetic signals, relative
amplitudes of the oscillatory component are randomly gene-
rated in the range [0, 0.15] and their instantaneous frequencies
are also random values with a normal distribution, 0.004±
0.001 Hz in 50 synthetic signals, and 0.008± 0.001 Hz in
50 other signals. Figure 1(a) shows a typical synthetic signal in
the time domain with a built-in QPP with a mean frequency of
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0.008 Hz. The PSD and its best-fitting with model M0 (see
Equation (4)) are shown in Figure 1(b). The solid-red line is the
best-fit model obtained by Bayesian-based MCMC and the red-
dashed line is its 95% confidence level. We can see that the
peak with a certain width near frequency 0.0082 Hz exceeds
the 95% confidence level in Figure 1(b). This means that the
peak is unlikely to come from colored or white noise, and
hence can be interpreted as a QPP.

Figure 1(c) shows the best-fitting result of M1 (see
Equation (5)). The black-dashed line marks the Gaussian peak
position whose frequency value is 0.0082 Hz. The ΔBIC (see
Equation (7)) value is then calculated to compare models M0

andM1. The value ofΔBIC is equal to 32.91, which means that
model M1 better suits the given PSD than model M0.
Figure 1(d) presents the distributions of TR

rep and TR
obs from

model M1, The Bayesian p-value described in Section 2.4 is
p= 0.5796, which indicates that the PSD can be well
interpreted by this model (i.e., model M1).

We also test the QPP detection technique on some synthetic
signals that contain only the colored and white noise. In
Figure 2, we use the same processing for a synthetic signal that
contains only the colored and white noise. Figure 2(c) shows
there is no obvious peak to fit in the PSD and the value of
ΔBIC is negative, which means that model M0 better suits the
given PSD than model M1. Figure 2(d) presents the distribu-
tions of TR

rep and TR
obs from model M0. Our experiments

demonstrate that this technique does not detect false peaks in
purely noisy environments and allows for the confident
detection of a built-in oscillatory pattern in noisy data.

Figure 3 presents the estimations of the oscillation frequency
in our 100 synthetic signals, which are made with the use of
Bayesian-based MCMC. The orange and blue lines represent
the two mean values of the frequencies of two built-in
oscillatory components, 0.004 Hz and 0.008 Hz, respectively.
A total of 50 orange dots and 50 blue dots mark the positions of
the detected frequencies. They fluctuate around the means,
0.004 Hz or 0.008 Hz, which demonstrates that the results are

Figure 1. An example of analysis of a synthetic signal. (a) The time series of a synthetic signal which consists of colored and white noises and a short-living
oscillation train. (b) The PSD and its fitting with model M0. The solid-red curve is the model composed of the best parameters obtained by MCMC sampling. The red-
dashed curve is its 95% confidence level. (c) The PSD fitted by model M1. The black-dashed line indicates the central frequency of the best-fitting Gaussian,
0.0082 Hz. In this example,ΔBIC is equal to 32.91, meaning that modelM1 is more suitable than modelM0. (d) The distributions of TR

rep and TR
obs from the best-fitting

model M1. The value p = 0.5796 indicates that the PSD can be well interpreted by model M1.

Figure 2. An example of analysis of a synthetic signal that contains only the colored and white noises. From left-hand to right-hand, the panels show the synthetic
signal, the M0 model fitting to the PSD, the M1 model fitting, and the distribution of TR

rep and TR
obs, respectively.

Figure 3. Frequencies of oscillatory components determined with use of the
Bayesian-based MCMC method in 100 synthetic noisy signals. Half of the
synthetic signals have a built-in oscillatory signal with a frequency
0.008 ± 0.001 Hz (the orange-horizontal line), while the half have a frequency
of 0.004 ± 0.001 Hz (the blue-horizontal line).
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Figure 4. Examples of eight solar flare lightcurves obtained in the soft X-ray band. In rows, the panels show the original signal, the M0 model fitting to the PSD, the
M1 model fitting, and the distribution of TR

rep and TR
obs, respectively.
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very close to the given frequencies. The distribution results
shown in Figure 3 indicate that the methodology described in
Section 2 is accurate and feasible.

4. Analysis of GOES Flare Signals

A total of 699 flare events observed at soft X-rays with
GOES were randomly selected from 2010 to 2017, including
250 B-class flares, 250 C-class flares, and 150 M-class flares, as
well as all 49 X-class flares. The flare signals were recorded by
the XRS instrument on GOES-15 in the 1–8 Å channel. The
start and end times of the time series are selected according to
the GOES flare catalog.

Figure 4 shows analysis of eight typical flare signals,
including two samples from each flare class. One of the flares
of each class has a detected QPP event and the other is not. For
example, Figures 4(a) and (b) show X-class flares. A QPP is
detected in the first flare and is not detected in the second.
Similar to Figure 1, each row in Figure 4 from left-hand to
right-hand shows the time series signal, i.e., the lightcurve,
fitting of its PSD with models M0 and M1, and the TR

rep and TR
obs

distribution.
The processing is the same as that of the synthetic signals

shown in Figure 1. In particular, Figure 4(a) shows an X1.3
flare which occurred on 2012 March 7 and lasted for about 18
minutes. We used models M0 and M1 to fit its PSD. We then
determined the best-fitting parameters of each model and
calculated their BIC values separately to get ΔBIC. A value of
ΔBIC= 34.21 indicates that modelM1 is better than modelM0.
Thus, the flare has a QPP pattern which is manifested by a
Gaussian peak centered at 0.021 Hz (i.e., the period about
47.62 s). The Bayesian p-value for Model 2 is p= 0.72 m,
which indicates that the PSD of the input signal can be well
interpreted by the current model. In summary, the results
demonstrate that there is a quasi-periodic signal in this flare and
its period is about 48 s.

The solar flares shown in Figures 4(a), (c), (e), and (g)
present strong evidence that models M1 fit well their PSDs
because ΔBIC> 10 and 0.99� p� 0.01. Thus, we conclude
that the QPP is presented in these four flares. On the contrary,

Figures 4(d), (f), and (h) strongly favor model M0 because
ΔBIC<−10 and 0.99� p� 0.01, which means that the QPP
is not detected in these three flares. The analysis of the flare
shown in Figure 4(b) gives us insufficient evidence
(D <∣ ∣BIC 10), and hence we are unable to discriminate
between these two models.
In addition, the flare shown in Figure 4(d) has an additional

peak in the high frequency part of the spectrum, at 0.1827 Hz
(the period about 5.47 s). Because the sampling interval of
GOES-15 satellite is about 2 s, according to the Nyquist
sampling theorem we cannot determine whether or not this
peak is caused by a quasi-periodic signal.
The Bayesian-based MCMC method led to the QPP

detection in 177 out of 699 analyzed flares, in other words,
approximately in 25.5% of the analyzed events. Figure 5
illustrates the number of the QPP detections in flares of various
classes. The orange part of each bar represents the proportion
of QPP events and the blue part represents the proportion of
events without QPP. A total of 28 QPP events in 49 X-class
flares, 59 in 150 M-class flares, 50 in 250 C-class flares, and 40
in 250 B-class flares are determined by the Bayesian-based
MCMC method. Approximately 43.7% of X- and M-class
GOES events show strong evidence of QPP, which is higher
than the result (∼30%) obtained in Inglis et al. (2016). The
fractions of flares with detected QPP in X-, M-, and C-class
GOES events are higher than the results of Hayes et al. (2020).
In addition, our results indicate that QPPs are detected more
frequently in flares of more powerful classes.
Figures 6 and 7 present the distributions of the detected QPP

periods. In Figure 6, we show the distribution of all periods, of
177 QPP detected in 699 flares. A total of 165 of the 177 QPP
are found to have periods between 6.2 and 75.3 s, and 121 of
the 177 QPP events have periods between 6.2 and 37.5 s. The
minimum period is 6.28 s and the maximum period is 130.2 s.
The distribution is close to the logarithmic normal distribution,
which is consistent with the results of Hayes et al. (2020).

Figure 5. The percentage of flares with detected QPP. There are a total of 28
QPP events detected in 49 X-class flares, 59 in 150 M-class flares, 50 in 250
C-class flares, and 40 in 250 B-class flares.

Figure 6. The period distribution in the detected QPP. We detected 177 QPP
events in the 699 flares. The periods are mainly in a range between 6.2 and
75.3 s. The minimum and maximum periods are 6.3 s and 130.2 s, respectively.
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In Figure 7, the distribution of the QPP periods in B-, C-,
M-, and X-class flares are shown in panels (a)–(d),
respectively. In panel (a), there are 40 periods of QPP events
from 250 B-class flares, 38 of the 40 periods are between
12.2 and 74.6 s. In panel (b), 47 of the 50 periods from 250
C-class flares are between 11.5 and 74.9 s. In panel (c), 52 of
the 59 periods are between 7.5 and 48.0 s. In panel (d), 22 of
the 28 periods are between 6.2 and 32.0 s. The distributions
of QPP periods in different flare classes are similar,which
indicates that the specific value of a QPP period does not
depend on the flare’s power.

5. Discussion and Conclusion

We performed a search for stationary QPP patterns in the
thermal emissions generated in solar flares. The QPP detection
was carried out with the use of the Bayesian-based MCMC
technique. The Fourier power spectra (PSD) of the time signals
(i.e., the lightcurves) were fitted with two candidate models: a
power-law-plus-constant model M0 and a power-law-plus-
constant model with an additional spectral peak of the Gaussian
shape M1. The latter model, M1, represents a typical spectrum
of a flare with a QPP pattern (e.g., Pugh et al. 2017a;
Broomhall et al. 2019). The models were compared with the

Figure 7. Distributions of QPP periods in flares of B-, C-, M-, and X- classes are shown panels (a)–(d), respectively. In panel (a), there are 40 QPP periods detected in
250 B-class flares, 38 of the 40 periods are between 12.2 and 74.6 s. In panel (b), 47 of the 50 periods detected in 250 C-class flares range between 11.5 and 74.9 s. In
panel (c), 52 of the 59 periods detected in M-class flares are found to range between 7.5 and 48.0 s, and in panel (d), in X-class flares, 22 of the 28 periods are between
6.2 and 32.0 s.
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use of BIC, which takes into account the maximum likelihood,
the number of model parameters, and the number of data
points. This approach punishes the model with more para-
meters more heavily, which is conducive to improving the
accuracy and reliability of the experimental results. In addition,
we calculated the Bayesian p-value. When the Bayesian p-
value is within the range of 0.01...0.99, we conclude that this
best-fitting model explains well the PSD of the analyzed
lightcurve. If the best-fitting model is model M1, then we
conclude that the analyzed flare has a QPP pattern. The
feasibility of this technique was tested on 100 synthetic signals,
which consist of the superposition of colored and white noises
and an oscillation.

We analyzed 699 solar flares of various classes, which were
observed with GOES-15 from 2010 to 2017. We summarize
the main findings as follows:

1. Approximately 25.3% (177 cases) of GOES flares show
strong evidence of QPP. The proportions of QPP events
in the four classes of flares are: ∼57% (28) in the X-class,
39% (59) in the M-class, 20% (50) in the C-class, and
16% (40) in the B-class. Thus, QPP is detected more
frequently in more powerful flares.

2. A total of 165 of the 177 QPP events have periods
between 6.2 and 75.3 s, and 121 of the 177 QPP events
have periods between 6.2 and 37.5 s. The minimum
period is 6.3 s and the maximum period is 130.2 s. The
population distribution is close to the logarithmic normal
distribution. In class B, 38 of the 40 QPP periods are
between 12.2 and 74.6 s. In class C, 47 of the 50 QPP
periods are between 11.5 and 74.9 s. In class M, 52 of the
59 QPP periods are between 7.5 and 48.0 s. In class X, 22
of the 28 QPP periods are between 6.2 and 32.0 s. The
distributions of QPP periods in each class of flares are
similar. We conclude that a QPP period is independent of
the flare power. This may indicate that the parameters of
QPP are determined by geometric parameters of the
flaring active region (e.g., the characteristic length and
minor radius of coronal loops) rather than the speed and
power of the magnetic reconnection process. This
suggests that QPP could be connected with magneto-
hydrodynamic oscillatory processes in the flaring active
region (e.g., McLaughlin et al. 2018; Zimovets et al.
2021), the parameters of which are determined by the
geometric sizes of plasma non-uniformities.

3. In general, QPP is the result of a variety of influence
factors (e.g., McLaughlin et al. 2018; Zimovets et al.
2021). The population distribution of QPP periods is
close to the logarithmic normal distribution rather than
the normal distribution, which indicates that these factors
are not independent events. Consequently, we speculate
that the influence factors of QPP are non-independent.

The performed analysis may have a few limitations. First, in
PSD, if the power of QPP is low, then it will be drowned by
background noise and so we cannot detect such QPP. Data
acquisition may also be affected by the sampling environment
and the instrument itself. Second, because we pursue the
accuracy and reliability of the estimation, the experimental
process is relatively rigorous at each step. Take the width σ of
the Gaussian component as an example. The instantaneous
frequency of QPP in a flare signal could change with time,
which widens the corresponding spectral peak. In our work, to

ensure that this obvious feature of QPP can be extracted, we
made certain restrictions on the width σ of the Gaussian
component of model M1. This may lead to a situation where
model M1 cannot completely capture this feature of QPP,
which leads to a lack of detection. Likewise, a QPP pattern may
be localized in time (i.e., be an oscillation train). This non-
stationary feature could also decrease the detection rate.
Another complication could be connected with oscillatory
patterns of a non-harmonic shape. In this case, the spectral
power of the oscillation is distributed over several frequencies,
which reduces the power of the main spectral peak. In addition,
the flares that we randomly selected were of relatively long
duration, and thus the lightcurves had a sufficiently large
number of data points for a Fourier transform. At the same
time, to avoid making the data fitting time too long, we did not
choose flares with a very long duration, so the durations of the
four types of flares in the experiment are basically within the
same range. We speculate that the occurrence rate of QPP
events is independent of flare duration. Thus, we should admit
that our QPP detection procedure could miss QPP of certain
types. This means that the QPP appearance rate that is
determined in this study is rather a lower boundary.
A series of methods used in these experiments can also be

applied to the detection of QPP in fixed flare signal and other
application scenarios that need to be sampled in high-
dimensional space.
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