
Effect of Local Thermal Equilibrium Misbalance on Long-wavelength
Slow Magnetoacoustic Waves

V. M. Nakariakov1,2 , A. N. Afanasyev3, S. Kumar2, and Y.-J. Moon2
1 Centre for Fusion, Space and Astrophysics, Physics Department, University of Warwick, Coventry CV4 7AL, UK; V.Nakariakov@warwick.ac.uk

2 School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi, Korea
3 Institute of Solar-Terrestrial Physics SB RAS, P.O. Box 291, Lermontov St. 126A, Irkutsk 664033, Russia

Received 2017 September 13; accepted 2017 September 18; published 2017 October 31

Abstract

Evolution of slow magnetoacoustic waves guided by a cylindrical magnetic flux tube that represents a coronal loop
or plume, is modeled accounting for the effects of finite gas pressure, weak nonlinearity, dissipation by thermal
conduction and viscosity, and the misbalance between the cooling by optically thin radiation and unspecified
heating of the plasma. An evolutionary equation of the Burgers–Malthus type is derived. It is shown that the
cooling/heating misbalance, determined by the derivatives of the combined radiative cooling and heating function,
with respect to the density, temperature, and magnetic field at the thermal equilibrium affect the wave rather
strongly. This effect may either cause additional damping, or counteract it, or lead to the gradual amplification of
the wave. In the latter case, the coronal plasma acts as an active medium for the slow magnetoacoustic waves. The
effect of the cooling/heating misbalance could be important for coronal slow waves, and could be responsible for
certain discrepancies between theoretical results and observations, in particular, the increased or decreased
damping lengths and times, detection of the waves at certain heights only, and excitation of compressive
oscillations. The results obtained open up a possibility for the diagnostics of the coronal heating function by slow
magnetoacoustic waves.
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1. Introduction

Magnetohydrodynamic (MHD) waves are detected every-
where in the solar atmosphere, and play a significant role in the
structure and dynamics of the corona (see, e.g., Jess et al. 2015;
Nakariakov et al. 2016, for recent comprehensive reviews).
During the last few decades, these waves have been intensively
studied observationally, from ground- and space-based instru-
ments, and theoretically, in particular, as a possible source of
coronal plasma heating and solar wind acceleration. In
addition, the waves provide us with important seismological
information about the physical parameters of the corona, which
are difficult or even impossible to measure directly. The
seismological diagnostics not only provide the information
about the physical parameters of the medium, but also allows
us to reveal main physical mechanisms operating in the plasma.
In particular, seismological techniques could be used for the
evaluation of the relative importance of different heating
mechanisms (e.g., De Moortel & Browning 2015) and the
determination of the coronal heating function.

Coronal oscillations are often observed as propagating quasi-
periodic extreme-ultraviolet (EUV) and soft X-ray intensity
disturbances, in particular, with the high-resolution imaging
telescopes SOHO/EIT (e.g., DeForest & Gurman 1998;
Berghmans & Clette 1999), TRACE (e.g., De Moortel et al.
2000; De Moortel 2009), SDO/AIA (e.g., Kiddie et al. 2012;
Krishna Prasad et al. 2012; Su 2014), and Hinode/XRT
(e.g., Sakao et al. 2007). These propagating quasi-periodic
disturbances are usually detected in legs of long loops and in
open coronal structures, for example, in polar plumes. These
waves are essentially compressive, and propagate along the
apparent direction of the magnetic field, at approximately
the local sound speed that is determined by the plasma
temperature (e.g., Marsh et al. 2009; Yuan & Nakariakov 2012),

and are therefore confidently interpreted as propagating slow
magnetoacoustic waves. Propagating compressive waves
detected in coronal loops and in polar plumes appear to be
similar, with the exception that the oscillation period in plumes
is typically longer than in loops (e.g., Nakariakov 2006;
Krishna Prasad et al. 2014). However, long period oscillations
have been detected in loops of plasma fans of coronal active
regions too (e.g., Yuan et al. 2011; Krishna Prasad et al. 2012;
Abedini 2016). These waves could also be detected as a
periodic Doppler shift and the enhancement of emission in the
blue wing of the emission line (e.g., Banerjee et al. 2009;
Kitagawa et al. 2010; Verwichte et al. 2010). Many authors
studied the speed of propagating disturbances detected
simultaneously at different EUV wavelengths, corresponding
to different temperatures (e.g., King et al. 2003; Kiddie
et al. 2012; Uritsky et al. 2013). The speed of the EUV
disturbances situated at nonsunspot regions was not found to
show a clear dependence on the temperature, whereas those
disturbances propagating above the sunspots show a clear
temperature dependence. In particular, Uritsky et al. (2013)
estimated the speed of a propagating wave in warm fan-like
structures, and found that the speed obeys a square-root
temperature dependence predicted for slow magnetoacoustic
waves, i.e., the phase speed of the disturbance increases with
the plasma temperature. Analysis of the relationship between
relative density and temperature perturbations in those waves
allowed to estimate the value of the adiabatic index γ
(Van Doorsselaere et al. 2011).
The period of the coronal slowly propagating EUV intensity

perturbations is likely to be determined by the conditions
at the footpoints of the coronal waveguiding structures. Chae
& Goode (2015) showed that, in response to impulsive
disturbances, the gravitationally stratified atmosphere came to
oscillate along the field with a period determined by the
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acoustic cut-off frequency. There is a possibility of leakage of
these oscillations along the magnetic fan structures to the
corona as was demonstrated numerically by Botha et al. (2011),
and observationally by Sych et al. (2009, 2015).

Propagating slow magnetoacoustic waves in coronal plasma
structures are usually observed to damp rapidly with height.
Theoretical modeling has addressed several mechanisms
potentially responsible for the wave amplitude evolution, such
as thermal conduction, viscosity, gravitational stratification,
magnetic flux tube divergence, field geometry, and nonlinear
cascade (e.g., Nakariakov et al. 2000b; Ofman et al. 2000;
Tsiklauri & Nakariakov 2001; De Moortel & Hood 2003;
Ofman 2005; Selwa et al. 2005; Owen et al. 2009). In
particular, it has been found numerically that the damping
lengths vary with the periods (Gupta 2014; Mandal et al. 2016).
The vast majority of these studies has been performed in the
approximation of the infinite magnetic field, when the model
describes the plasma flows strictly along the magnetic field. In
other words, the waves have been considered as plane acoustic
waves with the wave fronts perpendicular to the field. This one-
dimensional approach is well justified in the case when the
effect of the magnetic field on the plasma motions dominates,
in other words, when the ratio of the gas and magnetic
pressures, known as the plasma parameter β, is very small.
However, it is known that in the finite β case, the effects of the
wave front obliqueness, which are intrinsic for the waves
guided by field-aligned plasma nonuniformities, become
important. In particular, in this regime, the speed of the slow
magnetoacoustic waves propagating apparently along the
field approaches the subsonic and sub-Alfvénic tube (cusp)
speed (e.g., Roberts & Webb 1978), the cut-off frequency
(Roberts 2006; Zhugzhda & Sych 2014; Afanasyev &
Nakariakov 2015a) becomes dependent on the magnetic field,
the effectiveness of the nonlinear cascade decreases (Afanasyev
& Nakariakov 2015b), and the geometrical dispersion is
introduced (Zhugzhda & Goossens 2001). If the parallel, along
the field, wavelength of the perturbations is much longer than the
transverse size of the waveguiding plasma nonuniformity, the
obliqueness effects could be accounted for by the thin
flux tube approximation (e.g., Roberts & Webb 1979; Zhugzhda
1996) that reduces the three-dimensional consideration to a
one-dimensional one too. However, it is still not clear how so
rapidly damped coronal slow waves could reach the heights of
about one solar radius above the surface, for example, detected by
Ofman et al. (1997).

Another important physical effect that is intrinsic for the
corona is the apparent thermal equilibrium of the waveguiding
plasma structures. Indeed, as coronal field-aligned plasma
nonuniformities, such as loops and plumes, have lifetimes
much longer than the radiative cooling and thermal conductive
times, there must be a process that compensates the losses of
the internal energy, the enigmatic coronal heating process (e.g.,
Parnell & De Moortel 2012, for a recent review). Thermal
equilibrium should be taken into account in the consideration
of MHD wave dynamics together with the mechanical
equilibrium. A compressive wave can modify differently the
different equilibrium quantities responsible for the internal
energy losses and gains, e.g., the density, temperature,
magnetic field, causing a local thermal equilibrium misbalance
(i.e., the “cooling/heating misbalance”) that, in turn, affects the
wave dynamics (e.g., Nakariakov et al. 2000a). The effect of
the cooling/heating misbalance has been intensively studied in

the context of the cool prominence formation and oscillation
(e.g., Arregui et al. 2012, for a comprehensive review). The
main attention was paid to the enhanced damping of the
oscillations caused by the nonadiabatic effects and induced
plasma condensation. For hotter plasma structures, it was
recently shown that the cooling/heating misbalance could
significantly modify the damping and nonlinear evolution of
standing slow magnetoacoustic waves in coronal loops (Kumar
et al. 2016). In the latter work, the effects of the finite plasma-β
were neglected.
The aim of this paper is to study the effect of the

local cooling/heating misbalance on long-wavelength slow
magnetoacoustic waves guided by a field-aligned plasma
nonuniformity, in terms of the thin flux tube approximation.
The mathematical formalism is similar to that adopted by
Afanasyev & Nakariakov (2015b), with additional terms in the
dispersion relation and the evolutionary equation, which
account for the effect of the cooling/heating misbalance. The
paper is organized as follows. In Section 2, we present and
discuss the governing equations. In Section 3, we derive the
wave equation for weakly nonlinear slow waves in the presence
of finite thermal conduction, viscosity, and plasma-β, and
allowing for the local thermal equilibrium misbalance. In
Section 4, we obtain dispersion relations, and determine the
threshold of the thermal over-stability. In Section 5, we derive
and analyze the Burgers–Malthus equation that describes the
slow wave evolution in the presence of weakly nonlinear,
dissipative, and cooling/heating misbalance effects. Our
findings are summarized and discussed in Section 6.

2. Governing Equations and Equilibrium

Dynamics of long-wavelength slow magnetoacoustic waves
in a straight untwisted and nonrotating field-aligned plasma
nonuniformity is described by the first-order thin flux tube
approximation derived by Roberts & Webb (1978) and
Zhugzhda (1996). The governing equations comprise the
energy, momentum, transverse total pressure balance, induc-
tion, mass continuity, and state equations,
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where ρ is the plasma density, p is the plasma pressure, T is the
temperature, u is the speed of bulk flow along the tube, v is the
radial derivative of the radial component of the plasma
velocity, and B is the longitudinal component of magnetic
field strength. All of these parameters are measured at the axis
of the flux tube; and pT

ext is the total external pressure. The
coefficient γ is the adiabatic index, kB is the Boltzmann
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constant, and m is the mean particle mass, i.e., about a half of
the proton mass. The coefficients η and κ describe the viscosity
and field-aligned thermal conduction, respectively.

The function r( )Q T B, , is the cooling/heating function that
accounts for the optically thin radiative cooling and coronal
heating. The radiative cooling can be modeled by the
expression r ( )T2 . The function  depends on the temperature
of the plasma. This dependence, especially its fine structure,
based on the detailed knowledge of the atomic physics effects
associated with the presence of minor species, is not known
exactly. Different authors give rather different dependences in
the temperature range from a few to several millions of K (e.g.,
Schure et al. 2009; Soler et al. 2012). In almost all cases, the
derivative of  with respect to the temperature is highly
nonmonotonic in the coronal temperature range (e.g., Somov
et al. 2007). Also, as the specific heating mechanism of the
coronal plasma remains unknown, we assume that the heating
function depends, in general, on the thermodynamical
parameters, i.e., the temperature T and density ρ, and possibly
the magnetic field B too (e.g., Hood 1992). Because of those
uncertainties in both radiative cooling and heating functions,
we treat the derivatives of the function r( )Q T B, , with respect
to its arguments in the thermal equilibrium as free parameters.

The set of Equations (1)–(6) is similar to the equations used
in Afanasyev & Nakariakov (2015b), but in addition accounts
for the effects of field-aligned thermal conduction and cooling/
heating misbalance. The set of Equations (1)–(6) does not
include the rotation of the flux tube and the magnetic field
twist. These two quantities are assumed to be zero in the
equilibrium. Their perturbations constitute a torsional wave that
is linearly decoupled from the slow magnetoacoustic wave
(e.g., Vasheghani Farahani et al. 2011), and hence is not
considered in our analysis. Also, we neglect the effects
associated with the dispersion connected with the finite ratio
of the flux tube diameter and wavelength, i.e., the geometrical
dispersion, discussed in Zhugzhda & Goossens (2001). The
effects of the field-aligned nonuniformity of the plasma, in
particular, the appearance of the tube cut-off frequency (e.g.,
Roberts 2006; Zhugzhda & Sych 2014; Afanasyev &
Nakariakov 2015a), are also neglected.

3. Dynamics of Small Perturbations

Consider perturbations of a mechanical equilibrium that are
characterized by constant quantities p0, r0, B0, T0, and pT

ext,
without steady flows. In addition, the thermal equilibrium

r =( )Q T B, , 00 0 0 is fulfilled, i.e., the heating compensates the
radiative losses in the equilibrium. The parallel thermal
conduction does not contribute to the equilibrium, as the
equilibrium temperature is constant. We assume that the effects
of quadratic nonlinearity, dissipation and local radiation/
heating misbalance are weak and of the same order of
magnitude with each other. Let the perturbations of the
equilibrium physical quantities be small,
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where the subscript 1 denotes small but finite perturbations. In
the following, we omit this subscript for the variables u and v.

Following the procedure described in Afanasyev & Nakariakov
(2015b) and Kumar et al. (2016), we substitute expansion (7) in
Equations (1)–(6) and, taking into account quadratically nonlinear

terms everywhere except the terms on the right-hand sides of
Equations (1) and (2), where we keep linear terms only, we obtain
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where g r=C pS
2

0 0 is the sound speed. We use the Taylor
expansion of the cooling/heating function Q near the
equilibrium, with r= ¶ ¶ra Q , = ¶ ¶a Q TT , and

= ¶ ¶a Q BB taken at r0, T0, and B0, respectively. As
mentioned above, in our study, we consider the values of aρ,
aT, and aB to be unknown, and hence treat them as free
parameters. We use the standard expressions for the estimation
of the field-aligned thermal conductivity, k » - T10 11 5 2

Wm−1 K−1 and the dynamic viscosity, h » - T10 17 5 2

kg m−1 s−1 (e.g., De Moortel & Hood 2003), and hence
neglect the possible enhancement of the transport coefficients
by micro-turbulence. Both the nonlinear and nonadiabatic
terms that are assumed to be small are gathered on the right-
hand sides of the equations. With the use of the expression

g=C k T mS
2

B 0 , the ideal gas law given by Equation (13) can
be written as

g
r

r
g

r- + =
⎛
⎝⎜

⎞
⎠⎟ ( )p

C

T
T

C

T
T . 141

S
2

0

0
1 1

S
2

0
1 1

The total pressure pT
ext in the external medium was assumed

to be constant, and consequently the effect of the slow
magnetoacoustic waves on the external medium was neglected.
This assumption is justified if the phase speed of the wave is
lower than the characteristic speeds in the external medium (see
the discussion in Roberts & Webb 1979; Zhugzhda 1996).
However, the perturbation of the external medium must be
accounted for in the consideration of the fast magnetoacoustic
wave (e.g., Vasheghani Farahani et al. 2014).
Eliminating all the variables in Equations (8)–(13) in favor

of u being a natural variable of a slow magnetoacoustic wave,
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we obtain the wave equation
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and the derivatives of the cooling/heating functions at the
equilibrium are combined in the parameter
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In the derivation, we neglected terms that contain products of
the coefficients κ and η with each other and also with aρ, aT,
and aB, taking that the associated effects are small in the
considered case of weak dissipation and cooling/heating
misbalance.

In addition, we obtain the linear relations of variables p1, r1,
B1, T1, and v with u,
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which are obtained from the left-hand side of the set of
Equations (8)–(13), neglecting the nonlinear and nonadiabatic
terms.

Equation (15) is a self-consistent partial differential equation
for a single scalar variable u, and can be used for modeling the
dynamics of a weakly nonlinear, weakly nonadiabatic slow
magnetoacoustic wave guided by a magnetic flux tube,
accounting for the effects of weak nonlinearity, weak
dissipation, and weak misbalance of the radiative losses and
unspecified heating. These equations contain only one
dependent variable ( )u z t, . In the linear, adiabatic limit the
right-hand side of Equation (15) is zero, and the equation
reduces to the standard wave equation describing two waves of

an arbitrarily smooth shape propagating in the opposite
directions along the field at the speed CT.
It is evident that in the small plasma-β limit, C V 0S A , the

speed CT tends to the sound speed CS, and the perturbations of
the magnetic field and the perpendicular flow speed in the slow
magnetoacoustic wave vanish. Thus, the wave becomes purely
longitudinal, with the plasma flows directed strictly along the
equilibrium magnetic field. Therefore, in the b  0 limit one
can use the infinite field approximation, describing the slow
magnetoacoustic waves guided by the magnetic flux tube as
plane acoustic waves. In this limit, Equation (15) reduces to
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4. Linear Dispersion Relation

Neglecting nonlinear terms, we assume the harmonic
dependence of perturbed quantities on time t and the field-
aligned coordinate z, wµ - +( )i t ikzexp , where ω is the
frequency and k is the parallel wavenumber, and obtain from
Equation (15) the dispersion relation
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This equation has been derived under the assumption that the
nonadiabatic effect caused by the finite thermal conduction,
viscosity, and misbalance of radiation and heating is small.
Thus, the terms on the right-hand side are much smaller than on
the left-hand side. Considering the waves that propagate in the
positive direction of z, and taking that the wavenumber k is
real, we obtain w » C kT and w wR I, where wR and wI are
the real and imaginary parts of the frequency, respectively.
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Thus, dispersion relation (21) can be simplified to
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Hence, the real and imaginary parts of omega are

w » ( )C k, 23R T

 w » + ( )k , 24I
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The imaginary part of the frequency, given by Equation (24)
consists of two terms. The first term,  , that accounts for the
effects of the thermal conductivity κ and viscosity η, is always
negative, and hence always contributes to the damping of the
slow waves. The damping time is inversely proportional to k2,
i.e., the waves of shorter wavelengths decay more rapidly than
those of longer ones. This is consistent with the previous
findings (see, e.g., Nakariakov et al. 2000b; De Moortel &
Hood 2003; Mandal et al. 2016).

The second term, , can be either positive or negative,
depending on the local dependences of the cooling/heating
function r( )Q T B, , on its arguments at the equilibrium. When
 < 0 this term contributes to damping. However, the
damping caused by this term is independent of k. In the case
 > 0, this term suppresses damping, and can even lead to the
increase in the wave amplitude, the phenomenon known as
thermal over-stability (e.g., see Nakariakov et al. 2000a; Kumar
et al. 2016, for this effect on magnetoacoustic waves). The
critical value of  that separates the damping and over-stable
regimes is
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For  > crit, the plasma becomes thermally over-stable, and
a slow magnetoacoustic perturbation grows in time. The value
of crit reduces with the increase in the oscillation wave-
length, p k2 .

5. Weakly Nonlinear Wave Evolution

Following the procedure described in detail in Afanasyev &
Nakariakov (2015b; see, also, Nakariakov et al. 2000b), we
adopt the single-wave approximation, and use Equation (15) to
derive the evolutionary equation for the weakly nonlinear

perturbations,
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where we introduced the new independent variables
x = -z C tT and =Z z in the frame of reference moving
at the tube speed CT, ò is a small parameter characterizing the
weak rate of the wave evolution caused by the right-hand-side
terms in Equation (15). In the limit k = 0, and  = 0,
Equation (27) reduces to the Burgers equation for slow waves,
derived by Afanasyev & Nakariakov (2015b). In the case when
the effects of the local radiation/heating misbalance are small
but finite, Equation (27) is a generalized Burgers equation with
an additional linear term (the “Malthus” term) that accounts for
the effect of nonzero derivatives of the radiative cooling/
heating function. This equation can be called the Burgers–
Malthus equation, or a version of the Burgers–Fisher equation
with a linear reaction term. The coefficients aNL and aD are
always positive, while aM can be either positive or negative,
depending upon the specific form of the cooling/heating
misbalance. In the case of a negligibly small initial amplitude
and dissipation, a = 0NL and a = 0D , Equation (27) reduces
to the Malthus equation.
In the limit C VS A, the coefficients in Equation (27)

reduce to
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and the governing equation corresponds to the case of plane
acoustic waves.

5.1. Analytical Estimations

It is possible to estimate the characteristic distances of the
evolutionary processes caused separately by the specific
mechanisms. If the effects of nonlinearity and radiative
cooling/heating misbalance are neglected, a = 0NL and
a = 0M , respectively, and the initial perturbation is assumed
to be harmonic, x x= µ( ) ( )u Z k, 0 sin , where k is the
wavenumber, one obtains that µ -( )u Z Zexp D , where

a= -( )Z kD D
2 1 is the damping length. For a fixed oscillation

period, P, using p= -( )k C P2 T
1, the damping length becomes

p a
= ( )Z

C P

4
. 29D

T
2 2

2
D
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Considering the values of ZD to be caused separately by
thermal conduction and viscosity, described by the first and
second terms, respectively, on the right-hand side of the
expression for aD, one can compare the effects of these
dissipative mechanisms on the slow wave. In particular, for the
broad range of the typical parameters of nonflaring active
regions, the temperature ´7 105– ´2 106 K, and the mass
density 10−14

–10−10 kg m−3, the ratio of the values of ZD
caused only by thermal conduction and only by viscosity is
from 2.5 to 14.4. Thus, in the corona, the effect of thermal
conduction on the slow wave damping is stronger than of
viscosity, which is consistent with the findings of De Moortel
& Hood (2003). In the low-β limit, the dependence of the ratio
of the damping length to the wavelength can be estimated as

r
» ( )Z

C P
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T
. 30D

T

0

0
3 2

For a ¹ 0M , and still neglecting nonlinear effects, the
damping length becomes a a= - -( )Z kD D

2
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. 31D
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This expression is consistent with dispersion relations (23) and
(24). For a < 0M ( < 0), the cooling/heating misbalance
decreases the damping length; while for a > 0M it increases it.
In the particular case a a p a= = C P4M M

crit 2
D T

2 2 that corre-
sponds to  = crit, the oscillation becomes decayless,

= ¥ZD . For a a>M M
crit, an over-stability takes place

( <Z 0D ), see Equation (26). In the limit a aD M,
a» - -ZD M

1, and the over-stability occurs for any a > 0M .
Neglecting the dissipative effects, a = 0D , but accounting

for nonlinear effects, Equation (27) has the implicit solution
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where the function x( )F is the profile of the wave at the initial
time, x x= =( ) ( )u Z F, 0 (e.g., Nakariakov et al. 2000a). This
equation describes the nonlinear steepening of the initial
perturbation. The distance at which the wave breaks, i.e., the
shock is formed, is given by the expression
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where ¢f is the value of the derivative of the function f at the
inflection point, with f being the inverse function of the initial
shape of the wave, x = ( )f u , i.e., f is the function inverse to F.
In particular, for x x= =( ) ( )u Z A k, 0 sin , ¢ = -( )f Ak 1. As
a > 0NL , the shock forms at the slope with the negative
derivate, x¶ ¶ <F 0. We would like to stress that in the
expressions in this section the amplitude A is dimensional,
having the units of the speed. For an initially harmonic wave,
the expression for the breaking distance becomes
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For a  0M , the breaking distance is a= - ¢Z fB NL. For
an initially harmonic wave, the breaking distance is
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(see, e.g., Afanasyev & Nakariakov 2015b, for a discussion).
The ratio Z ZB D determines the mutual importance of the

effects of nonlinear steepening and damping. Figure 1 shows
the dependence of this ratio on the value of aM. We can see that
the cooling/heating misbalance affects the relative importance
of nonlinear and dissipative effects rather significantly, and
thus should be taken into account. In a general case when ZB
and ∣ ∣ZD are of the same order of magnitude, estimating
expressions (31) and (35) should be used with caution, because
of the mutual influence of the effects of nonlinear steepening,
dissipation and either enhanced or reduced damping or over-
stability due to the cooling/heating misbalance.

5.2. Numerical Solutions

To illustrate the possible scenarios of the wave evolution in
the case when all three considered physical mechanisms, the
nonlinearity, dissipation, and cooling/heating misbalance,
operate simultaneously, we solve Equation (27) numerically
with the use of the pdsolve function of Maple2016.1.
Figure 2 shows the effect of the cooling/heating misbalance on

the slow wave evolution in a typical coronal active region loop.
The left panel corresponds to the case without the misbalance. The
wave experiences slight steepening caused by the nonlinear
cascade, and decay because of the dissipation caused by thermal
conduction and viscosity. This behavior is consistent with the
models developed in Nakariakov et al. (2000b), Ofman et al.
(2000), and Afanasyev & Nakariakov (2015b). The middle panel
shows the over-stable regime caused by a positive aM. In this
case, the cooling/heating misbalance amplifies the wave more

Figure 1. Dependence of the ratio of the breaking and damping distances on
the parameter of the cooling/heating misbalance in a plasma with the
temperature 700,000K, mass density 10−12 kg m−3, and magnetic field 10G.
The red (solid) curve corresponds to a tube wave of the period of 300s and
with the initial amplitude of ´1.3 104 m s−1; the blue (dotted) to the period of
180s and amplitude of ´1.3 104 m s−1; the yellow (dashed) to the period of
180s and amplitude of ´7 103 m s−1; and the green (dotted–dashed) to the
period of 300s and amplitude of ´7 103 m s−1.
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effectively than the dissipation causes the wave decay, and the
wave amplitude increases—the effect of the thermal over-stability
of slow magnetoacoustic waves. Because of the suppressed decay,
the nonlinear cascade effectively steepens the wave shape,
forming a shock at the negative slope. When the wave becomes
sufficiently steep, the dissipation that enhances with the wave
steepening because of its dependence on the wavenumber
squared, stops the further increase in the wave amplitude. The
right panel shows the case of a negative aM. In this case, the
cooling/heating misbalance contributes to the wave damping. In
this case, the wave amplitude decreases with the travel distance
much more rapidly than it is caused by thermal conduction and
viscosity (see the left panel). Figure 3 shows a similar behavior,
but for the conditions typical for a polar plume. The effect of the
cooling/heating misbalance on a slow wave is similar to the case
of a coronal loop, discussed above.

Figure 4 shows the variation of the wave amplitude with the
distance from the origin for the same conditions as in Figures 2
and 3. It is evident that the cooling/heating misbalance may
either increase the wave damping or counteract the dissipation.

The gradual decrease in the amplification seen in the green
(dashed) curves that correspond to the over-stable case, is
attributed to the increase in the dissipation because of the
nonlinear cascade—the effect of nonlinear dissipation. In
the left panel, because of this effect the amplitude reaches the
maximum and then begins decreasing when the wave becomes
sufficiently steep. In the right panel, this regime is not evident,
and the over-stable wave seems to reach some saturation when
the amplitude and the saw-tooth shape remain the same during
the wave propagation. The latter case corresponds to a so-
called stationary wave regime (e.g., Chin et al. 2010).

6. Discussion and Conclusions

Assuming the effects of nonlinearity, dissipation connected
with finite thermal conduction and viscosity, and misbalance of
the radiative losses and unspecified heating to be weak, we
derived a self-consistent wave equation describing the
propagation of long-wavelength slow magnetoacoustic waves
guided by a cylindrical field-aligned nonuniformity of a finite-β

Figure 2. Evolution of the shape of an initially harmonic slow magnetoacoustic wave of the period of 300s and with the initial amplitude of ´1.3 104 m s−1, guided
by a plasma cylinder with the plasma of the temperature 700,000K, mass density 10−12 kg m−3, and magnetic field 10 G, which corresponds to the sound speed of

´1.27 105 m s−1, Alfvén speed of ´8.92 105 m s−1, and tube speed of ´1.26 105 m s−1. Left panel: the effect of the misbalance of radiative cooling and heating is
neglected. The red (solid) curve shows the initial shape of the wave. The orange (long-dash) curve at the distance 27.5 Mm from the wave origin; the green (dotted) at
82.5 Mm; the blue (dash) at 110 Mm; and the violet (dashed–dotted) at 132 Mm. The distance along the cylinder ξ is given in meters, and the wave amplitude u in
meters per second. Middle panel: the same, but for a = ´ -1.3 10M

8 m−1. Right panel: the same, but for a = - ´ -1.7 10M
8 m−1.

Figure 3. Evolution of the shape of an initially harmonic slow magnetoacoustic wave of the period of 600s and with the initial amplitude of ´2 104 m s−1, guided
by a plasma cylinder with the plasma of the temperature 1.4×106K, mass density 10−12 kg m−3, and magnetic field 1G, which corresponds to the sound speed of

´1.79 105 m s−1, Alfvén speed of ´8.92 105 m s−1, and tube speed of ´1.76 105 m s−1. Left panel: the effect of the misbalance of radiative cooling and heating is
neglected. The red (solid) curve shows the initial shape of the wave. The orange (long-dash) curve at the distance 54 Mm from the wave origin; the green (dotted) at
98 Mm; the blue (dash) at 141 Mm; and the violet (dashed–dotted) at 184 Mm. The distance along the cylinder ξ is given in meters, and the wave amplitude u in
meters per second. Middle panel: the same, but for a = ´ -7 10M

9 m−1. Right panel: the same, but for a = - ´ -7 10M
9 m−1.
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plasma. This equation contains only one dependent variable,
and hence provides us with a convenient ground for the study
of the wave evolution by asymptotic techniques, addressing the
effects of nonlinearity, dissipation, and activity of the
waveguiding medium. The effect of the activity of the medium
occurs when a wave gets amplified during its propagation. In
the considered case, the activity is caused by the cooling/
heating misbalance.

Using the single-wave approximation, we reduced the wave
equation to a Burgers–Malthus evolutionary equation that
generalizes the Burgers equation derived in Afanasyev &
Nakariakov (2015b) by accounting for the effects of the finite
thermal conduction and cooling/heating misbalance. It is
established that the slow wave behavior is very sensitive to the
particular features of the dependences of the radiative cooling/
heating function on the physical quantities perturbed by the
wave, i.e., the plasma density and temperature, and the
magnetic field. Depending upon the specific combination of
the derivatives of the cooling/heating function with respect to
the density, temperature, and the magnetic field, taken at the
equilibrium, and dissipation, slow magnetoacoustic waves may
experience enhanced or reduced damping, or amplification. In
the latter case, there is no violation of the energy conservation,
as the considered system is nonconservative, because of the
energy supply by the heating, i.e., the plasma acts as an active
medium for the magnetoacoustic waves. The strength of this
effect depends upon the steepness of the radiative cooling/
heating function, which is still unknown. For example, we
could expect the dependence of the heating function upon the
magnetic field to be quite steep in the case of cyclotron
resonance mechanisms.

If the wave amplitude is sufficiently high, e.g., exceeds
several percent of the equilibrium value, or the wave
amplification by thermal over-stability is stronger than the
damping by dissipation, the wave experiences nonlinear
steepening because of the nonlinear cascade. It may either
lead to the nonlinear dissipation that is much stronger for the
same value of the transport coefficients than the dissipation in
the linear regime (see, e.g., Afanasyev & Nakariakov 2015b),
or to the occurrence of a stationary regime similar to that

described in Chin et al. (2010), in which the wave has a saw-
tooth shape but the amplitude does not decay. This phenom-
enon could be understood in terms of the wave spectrum
evolution. The terms on the right-hand side of Equation (27)
affect the wave spectrum differently. The first, nonlinear term
causes the nonlinear cascade via the continuous doubling of the
wavenumber. In other words, this term is responsible for the
energy transfer to larger wave numbers. The second, dissipative
term causes the conversion of the wave energy into the internal
energy of the medium, which is most effective for larger wave
numbers. The enhanced, nonlinear dissipation occurs when
these two effects operate together: the nonlinearity transfers the
wave energy from longer wavelengths where the dissipation is
ineffective, to the shorter wavelengths where this energy is
effectively dissipated. In the presence of the third term that
describes the cooling/heating misbalance, the wave is either
amplified or decayed, depending on the sign of the coefficient
aM. It occurs with the same effectiveness for all wave numbers.
In the over-stable regime, there could be a balance between the
energy supply, transfer to larger wave numbers, and dissipa-
tion, which causes the occurrence of stationary, i.e., none-
volving, propagating waves.
In several important limiting cases, namely when either the

dissipation, or cooling/heating misbalance, or nonlinearity are
negligible, we obtained simple estimations for the characteristic
distances of the wave evolution. The wave damping and
breaking lengths are found to be determined by the wave
parameters (period, amplitude), and properties of the medium
(density, temperature, magnetic field, and the cooling/heating
function). These estimations allow one to assess the relative
importance of different physical effects in the slow wave
evolution in specific cases.
The results obtained provide us with a starting point for the

possible seismological estimation of the coronal heating
function and therefore identifying its mechanism. However,
this perspective requires the precise knowledge of the radiative
cooling function. In addition, in realistic coronal plasma
structures for the observed periods of the slow waves, i.e.,
several minutes, it may be important to account for stratifica-
tion. In particular, the stratification causes the increase in the

Figure 4. Evolution of the slow wave amplitude along a plasma cylinder. The red (solid) curves show the case a = 0M , green (dashed) curves a = ´ -7 10M
9 m−1,

and blue (dotted–dashed) curves a = - ´ -7 10M
9 m−1. Left panel: the parameters of the plasma and wave are the same as in the middle panel of Figure 2. Right

panel: the parameters of the plasma and wave are the same as in the right panel of Figure 2.
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amplitude of the slow wave propagating upwards (see, e.g.,
Nakariakov et al. 2000b; Ofman et al. 2000). Hence, the
variation of the wave amplitude caused by the cooling/heating
misbalance, is additive to the amplification due to the
stratification. In the over-stable regime the cooling/heating
misbalance acts together with the amplification by stratification.
Also, recent observational findings indicate a possible departure
of the thermal conductivity and dynamical viscosity coefficients
from the standard estimations (Wang et al. 2015). It would be of
interest to check whether this discrepancy could be attributed to
the effect of the cooling/heating misbalance. In addition, the
results obtained could possibly explain the occurrence of
periodic compressive disturbances at the coronagraph heights
(e.g., Ofman et al. 1997). A possible scenario could be a
variation of the coefficient aM with height, which leads to the
amplification of the slow waves propagating upward in a certain
range of heights. A dedicated study of this effect would be of
interest too.

The main outcome of this work is the demonstration that the
cooling/heating misbalance can affect slow magnetoacoustic
waves rather significantly, and may be responsible for certain
discrepancies between the previously obtained theoretical
results and observations. In particular, this effect can cause
additional, wavelength-independent damping of the waves, or,
otherwise, counteract the damping by finite thermal conduction
and viscosity. We would like to point out that the wave
damping is determined by the dependences of the cooling/
heating misbalance function on the plasma parameters, and not
by the actual cooling or heating time of the plasma structure.
Another interesting application of the obtained results is
connected with the excitation of slow magnetoacoustic (for
example, the “longitudinal”) oscillations in filaments. For
example, the simultaneous occurrence of transverse and
longitudinal oscillations by a shock wave, observed by Shen
et al. (2014). The slow magnetoacoustic oscillation in a
filament could be excited by a sudden change of the cooling/
heating misbalance in the filament plasma, caused by the
interaction with the shock. More specifically, the excitation
could take place when the sudden modification of the cooling/
heating misbalance changes the sign of aM. Thus, a further
modeling of this effect seems to be of interest for both hot and
cool coronal plasma structures. In particular, this study could
contribute to revealing the mechanisms for the excitation of
large amplitude oscillations in prominences (Arregui
et al. 2012). Also, the Burgers–Malthus evolutionary equation
derived here provides one with a starting point for the
analytical model of standing slow magnetoacoustic waves in
hot plasma loops, following the formalism developed in
Ruderman (2013) and Kumar et al. (2016), based on the use of
Equation (27).

We would also point out that this study demonstrated that in
the finite β case the slow wave in a field-aligned plasma
waveguide perturbs the absolute value of the magnetic field in
the waveguide. The magnetic field perturbation is in anti-phase
with the perturbation of the plasma density (see Equation (18)).
It may have an interesting effect on the thermal radio emission
from coronal plasma structures, modulating it via the wave-
induced variations of the electron plasma frequency and
electron gyrofrequency.
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