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We provide strongly conclusive evidence that the cubic nonlinearity plays an important part in the
evolution of the large amplitude magnetic structures in the terrestrial foreshock. Large amplitude nonlinear
wave trains at frequencies above the proton cyclotron frequency are identified after nonharmonic slow
variations are filtered out by applying the empirical mode decomposition. Numerical solutions of the
derivative nonlinear Schrödinger equation, predicted analytically by the use of a pseudopotential approach,
are found to be consistent with the observed wave forms. The approximate phase speed of these nonlinear
waves, indicated by the parameters of numerical solutions, is of the order of the local Alfvén speed. We
suggest that the feedback of the large amplitude fluctuations on background plasma is reflected in the
evolution of the pseudopotential.
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Introduction.—Upstream regions of quasiparallel colli-
sionless astrophysical shocks are among the most complex
plasma systems. When the magnetic field direction is
quasiparallel to the shock normal, a fraction of incoming
ions are reflected upstream generating an extended and
turbulent foreshock. The interactions of the superthermal
ions with the background plasma lead to multiscale
collective dynamics which mediates energy dissipation
and isotropy [1]. In the last decade, the nonlinear evolution
of magnetic field fluctuations emerged as a critical ingre-
dient of Earth’s quasiparallel shock, which is cyclically
reformed by generating short large amplitude magnetic
field structures (SLAMS) [2] in the foreshock. These
SLAMS advect downstream, decelerate, and combine to
form a temporary shock front.
The advent of the multispacecraft Cluster mission

combined with the more accurate numerical simulations
have dramatically improved our understanding of terrestrial
foreshock and, in particular, the role and the typical features
of SLAMS [3]. SLAMS originate from the ultra low
frequency (ULF) modes destabilized by the beams of ions
reflected from the shock, propagating along the magnetic
field and towards the Sun with phase speeds that are much
smaller than the solar wind speed. The ULF waves are then
advected towards the bow shock, experiencing refraction,
due to the gradient in the diffused ion population, and
achieving a large propagation angle. The relative drifts
between incoming and reflected species, free energy in the
density gradients of the diffused ions, and the advective
nonlinearity conspire to generate isolated structures with
large magnetic compression (δB=B0 > 2). Numerical stud-
ies [4] and observations [5] put the growth rate of SLAMS
at a few seconds and the observations suggest that their
spatial size is larger than 1000 km [6].
There is growing evidence to suggest that SLAMS

have a fine internal structure, which originates from the

third-order nonlinearity within the SLAMS wave packet
[7,8]. Such cubic nonlinearity introduces the dependence of
phase upon the amplitude in the observed wave packets.
The presence of nonlinear waves in quasiparallel fore-
shocks may lead to wave collapse and self-focusing [9,10],
which generate strong electrostatic fields on kinetic scales.
This field accelerates particles, modifying their velocity
distribution function [11,12]. In warm plasmas, parametric
instabilities can develop through, for example, four-wave
interactions, and these may generate low frequency har-
monics and proceed towards fully developed turbulence
[13]. Understanding the nonlinear evolution of large
amplitude Alfvén and fast magnetosonic waves, their
transition to quasiparallel turbulence, as well as their
coexistence with the oblique strong turbulence, is funda-
mental not only to the terrestrial bow shock, but also to the
evolution of the interplanetary shocks [14], supernova
remnants [15], the acceleration of galactic cosmic rays
[16], and solar wind turbulence [17].
While the instabilities generating foreshock fluctuations

may be of kinetic origin, the subsequent nonlinear evolu-
tion of a subset of these perturbations can be described by a
few classes of nonlinear fluidlike evolutionary equations.
These equations account for the intrinsic phenomena that
affect the wave evolution, such as dispersion, nonlinearity,
and dissipation, and hence are independent of the specific
details of various generation mechanisms. Finite amplitude
dispersive slow and fast magnetosonic waves propagating
at large oblique angles with respect to the magnetic field,
obey the Korteweg–de Vries (KdV) equation [18]. For
parallel and nearly parallel propagating Alfvén and fast
magnetosonic fluctuations, the derivative nonlinear
Schrödinger (DNLS) equation proved to be a good
description [19–22]. Beyond magnetohydrodynamics
(MHD) approximations, high-frequency nonlinear fluctu-
ating structures on the whistler dispersion branch,
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exhibiting solitonlike features, have been identified in
numerical and analytical studies, e.g., Refs. [23,24].
We examine the foreshock region of the quasiparallel

terrestrial bow shock and, for the first time, quantify
propagation characteristics and spatial structure of non-
linear waves by direct comparison of experimental obser-
vations and numerical solutions. We find nonlinear wave
trains with periods of several seconds and with speeds
consistent with the background plasma Alfvén speeds.
Numerical analysis confirms that the nonlinear wave forms
found in observations agree with the numerical solutions of
the DNLS.
Experimental data and methodology.—The data set

corresponds to a foreshock crossing by the Cluster tetra-
hedron on February 20, 2002 at 16:56–17:52 UT. We
examine three subintervals, hereafter referred to as I1, I2,
and I3, each a few tens of seconds long. We use magnetic
field measurement of ∼22.4 samples per second from the
Cluster FGM instrument [25] and 4 second averaged
measurements of plasma parameters from the CIS-HIA
instrument [26]. The transverse magnetic field fluctuations
are obtained using minimum variance coordinates, which
is equivalent to solving an eigenvalue problem for the
measured magnetic field variance matrix [27].
Figure 1 shows the summary plot of key macroscopic

plasma parameters as well as the omnidirectional Hþ flux
(color) at different energies. The Hþ flux (bottom panel)
shows a broad high energy ion component between
103–104 eV. The Cluster CIS instrument was operating
in the magnetospheric mode, in which the instrument
samples all angular directions. This leads to the solar wind
population dominating the spectrum at the energy∼103 eV.
The magnitude of the transverse magnetic field compo-

nents is processed using the Hilbert-Huang transform

(HHT) spectral technique [28], which is designed for
analyzing nonstationary and nonharmonic fluctuations.
Unlike traditional spectral methods based on the Fourier
decomposition and wavelets, which are restricted by an
a priori assignment of harmonic basis functions, the HHT
technique uses the empirical mode decomposition (EMD),
which expands the given signal onto a set of intrinsic modes
derived directly from the data. The stability of intrinsic
modes is evaluated using the noise-assisted ensemble
empirical mode decomposition (EEMD) [29]. Each
EEMD trial consists of the intrinsic modes of a dummy
signal obtained by adding artificial small-amplitude white
noise to the original data. Ensemble averaging of these
independent realizations leads to frequency stabilization,
while the effect of the white noise is statistically cancelled.
We note that we do not examine each empirical mode
separately, but rather use this technique as a filter allowing
us to find a nonharmonic trend in the signal, which can
then be subtracted. This is an essential step, which allows
us to examine fluctuations on scales smaller than these
of SLAMS.
Results.—Figures 2–4 show nonlinear large amplitude

quasiparallel transverse waves for intervals I1, I2, and I3,
respectively. Panel (a) of each figure shows the squared
magnitude of the original transverse fluctuations, B2

t ðtÞ, in
black and a nonharmonic trend, TðtÞ, determined with the
EEMD technique, in red. We subtract this trend from the
original signal and normalize the residue by the mean value
of the first and the last point of the trend. This new signal,
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FIG. 1. Summary of Cluster observations for the interval of
interest. Panels from top to bottom show: solar wind ion plasma
number density, solar wind ion bulk speed, magnetic field
magnitude and the omnidirectional proton flux spectrum. Vertical
dashed lines mark the start of intervals I1, I2, and I3.
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FIG. 2. Nonlinear wave forms in the magnitude of the trans-
verse magnetic field fluctuations for interval I1. Panel (a):
Original squared magnitude of transverse fluctuations (black)
and the trend (red). Panel (b): Normalized and detrended signal
with color dots marking the start of nonlinear waves (red), the end
of the nonlinear waves or start of small amplitude waves (blue),
and the end of small amplitude waves (green). The mean
spacecraft frame frequency of the signal (red) is given in the
top right corner. Panel (c): Hodograms of the transverse compo-
nents used in (a). Panel (d): The phase space of the signal shown
in (b) with the same color scheme and the equivalent trajectories
obtained from the numerical solutions of Eq. (2) for parameters:
Cb ¼ 18.9, V ¼ 5.1, C ¼ 3.7 (nonlinear solution, black) and
Cb ¼ 3.91, V ¼ 8, C ¼ 7.2 (small amplitude solution, blue).
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SðtÞ ¼ 2½B2
t ðtÞ − TðtÞ�=½Tð1Þ þ TðNÞ�, where N is the

number of points in the signal, is plotted in panel (b) of
each figure. We determine the mean frequency in the
spacecraft frame, in units of the mean proton gyrofrequency
ωci, for the nonlinear (red) signal and these are given in the
top right-hand corner of each panel (b). We mark the start of
the nonlinear waves (red), end of nonlinear waves and
transition to small amplitude fluctuations (blue), and the
end of small amplitude fluctuations (green). Panels (c)
show hodograms of the minimum variance transverse
components of the magnetic field, which are left-hand
polarized for all intervals, in the spacecraft frame of
reference. Previous studies found modes propagating pre-
dominantly away from the bow shock for this foreshock
crossing [3,30], which implies a reversed sense of polari-
zation with respect to the plasma frame of reference,
indicating that the observed fluctuations are fast magneto-
sonic waves. This is consistent with the polarization
parameter used in the numerical solution presented below.
Panels (d) show the phase plane of the signal, using the
color scheme of panel (b), and the equivalent trajectories

obtained from numerical solutions, which we will discuss
in the next section, in black and blue. First, we comment on
the nonharmonic trends identified using the EEMD tech-
nique in each example. These have a variability of tens of
seconds, which coincides with the period of the ULF waves
[31]. We emphasize the importance of the EMD technique
and its ability to extract this nonharmonic trend, which is
critical in obtaining the statistically stationary nonlinear
wave trains presented here.
The main results of this work are contained in panels (b)

and (d) of each figure. In each example, we are able to
identify large amplitude nonlinear wave forms (red lines)
which are approximately circularly polarized, span several
cycles, and have a characteristic shape, with round minima
and narrowly peaked maxima. Their amplitude is a factor
2–3 times larger than the background magnetic field and
their periods (in the spacecraft frame of reference) are a
factor 0.18–0.24 shorter than that of the ion cyclotron
motion. We note, however, that in terms of the amplitude
of transverse magnetic field components, Bt, the ratio
δBt=hBti is in the range of 15%–30%, for all intervals
considered here. For all three examples, the nonlinear wave
train is followed by small amplitude nearly harmonic
oscillations (green lines). Since the solar wind velocity
is of order of 400 km=s, that is much higher than the local
Alfvén speed, the Taylor’s hypothesis implies that we do
not observe the temporal evolution of these waves, rather
their spatial structure. Using the average solar wind
velocity of 420 km=s, the observed periods indicate spatial
gradients of approximately 200 km, in agreement with
previous Cluster observations [6].
Discussion and conclusions.—We now consider the

DNLS equation as a possible model for the observed
nonlinear waves. Consider a magnetized plasma with
elliptically polarized Alfvén or magnetoacoustic waves
propagating in the quasiparallel z direction perturbing
the transverse components of the magnetic field, b ¼
bx þ iby. We define the sound speed, c2s ¼ γkBT=mi and
the Alfvén speed c2A ¼ B2

0=ðμ0nimiÞ, where γ is the
adiabatic index, T is the temperature, ni is the proton
number density, andmi is the proton mass. The evolution of
these left- and right-hand polarized modes, is described by
the DNLS equation [22]

∂b
∂t þ α

∂
∂z ðbjbj

2Þ − iμ
∂2b
∂z2 ¼ 0: ð1Þ

In Eq. (1) the temporal and spatial variables have been
normalized by the ion gyrofrequency, ωi ≡ eB0=mi, and
the ion inertial length cA=ωi, respectively. The constant
α≡ c2A=½4ðc2A − c2sÞ�, and μ ¼ �1=2 corresponds to left (−)
and right-hand (þ) polarized mode. The transverse com-
ponents of the magnetic field are then expressed as
b ¼ b expðiΘÞ, with the phase Θðt;ϕÞ ¼ −Ωtþ PðϕÞ,
where Ω is a constant, P is an a priori unknown function,
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FIG. 3. Same as Fig. 2 for interval I2. Parameters of numerical
solutions: Cb ¼ 25.08, V ¼ 4.3, C ¼ 3.7 (nonlinear solution,
black) and Cb ¼ 5.31, V ¼ 8, C ¼ 7.2 (small amplitude sol-
ution, blue).
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and ϕ≡ ð1=μÞðz − VtÞ represents the change of the frame
of reference to that travelling at the phase speed of the
perturbation, V (normalized by cA). One finds the first
integral of the phase equation to be 2sdP=dϕ ¼
Cþ Vs − 3s2, where s ¼ αb2=2 and C is a constant.
The equation for the magnitude of the magnetic field

transverse components, expressed in the new variable s,
takes the following form:

FðsÞ d
2s

dϕ2
þ dFðsÞ

ds

�
ds
dϕ

�
2

¼ −
ffiffiffiffiffi
2s
α

r
GðsÞ; ð2Þ

where FðsÞ ¼ 1=
ffiffiffiffiffiffiffiffi
2αs

p
and GðsÞ ¼ Ωμþ VdP=dϕ −

2sdP=dϕ − ðdP=dϕÞ2. The first integral of Eq. (2) can
then be found using Bernoulli’s method, which gives

1

2

�
1ffiffiffiffiffiffiffiffi
2αs

p ds
dϕ

�
2

þ Ub ¼ Cb; ð3Þ

where

Ub ¼
1

4α

�
s3 − 2Vs2 þ ð4Ωμþ V2 þ 2CÞsþ C2

s

�
; ð4Þ

and Cb is a new constant of integration. Treating s and ϕ as
a generalized coordinate and time of a pseudoparticle, the
first and second terms on the left-hand side of Eq. (3)
represent generalized kinetic and potential energies written
in the canonical form, and the constant of integration Cb
can be interpreted as the total energy of a particle, which
depends only on the initial conditions [32]. The form of Ub
clearly shows that Ub → ∞ when s → 0 and when s → ∞,
so the solutions of Eq. (1) are oscillatory for arbitrarily
large amplitudes. In order to compare the oscillatory
solutions of Eq. (1) with the nonlinear wave forms found
in the terrestrial foreshock, we solve Eq. (2) numerically for
different initial conditions and using experimentally mea-
sured plasma parameters.
Panels (d) of Figs. 2–4 show a direct comparison of the

numerical and experimental phase space trajectories.
Numerical solutions were obtained for different initial
energies, Cb, set to values that match the observations
shown in Figs. 2–4, and with μ ¼ 1=2, Ω ¼ 1 and α ¼ 1.
We note that the proton number density measurements from
Cluster C3 spacecraft give a plasma β ≈ 2.5 for these
intervals, resulting in a negative value of α. However, these
measurements are likely contaminated by a dense energetic
proton beam reflected from the bow shock. The NASA
OMNI data give a plasma β in the range 0.75–0.9, which
is consistent with the number density of ions shown in the
top panel of Fig. 1 and the value of α used in numerical
solutions. Clearly, there is a good agreement between
experimental and numerical results, indicating that the
observed fluctuations are consistent with nonlinear waves

governed by the DNLS equation, rather than superposition
of harmonic signals.
The speed, V, used in the numerical solutions is

modified by the solar wind speed. Recalling that V is
normalized to the Alfvén speed, and considering parallel
propagating waves, the true phase speed of the wave is
Vph ¼ VcA þUsw cosðΘvBÞ, where ΘvB is the angle
between the solar wind velocity and the magnetic field
vectors. Using averaged values (in km=s) of cA ¼ 86,
Usw ¼ 410, ΘvB ¼ 141° for I1, cA ¼ 110, Usw ¼ 412,
ΘvB ¼ 140° for I2, and cA ¼ 110, Usw ¼ 420, ΘvB ¼
156° for I3, we obtain VI1

ph ¼ 120� 36 km=s, VI2
ph ¼ 157�

47 km=s and VI3
ph ¼ 159� 48 km=s, and the error reflects

standard deviation in the solar wind velocity, density, and in
the magnetic field magnitude. The phase speeds are larger
than the local Alfvén speed and the waves of higher
amplitude [panel (b) of Figs. 2–4] propagate faster. In
each case the propagation direction is sunward. This
confirms that, within the reasonable range of physical
parameters, the observed fluctuations are consistent with
the DNLS model.
Figure 5 shows normalized functional forms of the

pseudopotential Eq. (4), which correspond to solutions
plotted in the phase space panels of Figs. 2–4. In each case
the value of Ub is calculated from Eq. (4) using parameter
values obtained from the observational data. Dashed lines
in each panel correspond to the initial condition for the
outermost black trajectory (red dashed) and the outermost
blue trajectories (green dashed) shown in panels (d) of
Figs. 2–4. The nonlinear trajectories, plotted as solid lines
in panels (d) of Figs. 2–4 correspond to the pseudopoten-
tials with a single local minimum, which likely are transient
states between the single and the double well potentials. We
note that the exact form of the pseudopotential for its low
values is not critical to our results since the energy of the
observed nonlinear fluctuations is still much higher than
any local extrema or plateau visible in the red curve of
Fig. 5(c). In the classification given in Ref. [22], these
fluctuations were called algebraic soliton solutions. In
contrast, the linear trajectories of Figs. 2–4 represent
solutions near the local equilibrium of a double-well
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potential. A double-well potential solution corresponds to a
limit of the large phase speeds V; however, the available
energy in the system can only sustain small amplitude
oscillations, near one of the equilibrium points. The
pseudopotential reflects the properties of the medium in
which the wave propagates. The change of its functional
form may be interpreted as the feedback of nonlinear waves
on the background plasma, but low temporal resolution of
plasma data from Cluster (4s) prohibits more quantitative
analysis of this phenomenon.
In summary, we have presented the first explicit detec-

tion of nonlinear waves with frequencies higher than that of
the ion cyclotron and have shown that these waves are
consistent with analytical predictions and numerical sol-
utions of the DNLS equation. Our findings suggest that
cubic nonlinearity, equivalent to four-wave interactions in
the weak turbulence approach, is an essential component of
foreshock dynamics. The phase speed of the large ampli-
tude nonlinear waves exceeds the local Alfvén speed by the
factor of 1.4–1.5 and the speed is positively correlated with
the amplitude. The impact of the nonlinear waves on the
background plasma has been quantified by the change of
the pseudopotential, which shows a transition from a
double well to a single well form. The presence of a
double-well potential could, in principle, support a super-
nonlinear wave [33].
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