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Abstract

We analyze nonlinear evolution of torsional Alfvén waves in a straight magnetic flux tube filled in with a low-β
plasma, and surrounded with a plasma of lower density. Such magnetic tubes model, in particular, a segment of a
coronal loop or a polar plume. The wavelength is taken comparable to the tube radius. We perform a numerical
simulation of the wave propagation using ideal magnetohydrodynamics. We find that a torsional wave nonlinearly
induces three kinds of compressive flows: the parallel flow at the Alfvén speed, which constitutes a bulk plasma
motion along the magnetic field, the tube wave, and also transverse flows in the radial direction, associated with
sausage fast magnetoacoustic modes. In addition, thenonlinear torsional wave steepens and its propagation speed
increases. The latter effect leads to the progressive distortion of the torsional wave front, i.e., nonlinear phase
mixing. Because of the intrinsic non-uniformity of the torsional wave amplitude across the tube radius, the
nonlinear effects are more pronounced in regions with higher wave amplitudes. They are always absent at the axes
of the flux tube. In the case of a linear radial profile of the wave amplitude, the nonlinear effects are localized in an
annulus region near the tube boundary. Thus, the parallel compressive flows driven by torsional Alfvén waves in
the solar and stellar coronae, are essentially non-uniform in the perpendicular direction. The presence of additional
sinks for the wave energy reduces the efficiency of the nonlinear parallel cascade in torsional Alfvén waves.
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1. Introduction

The existence of plane Alfvén waves was theoretically
predicted by Alfvén (1942), and since then the ubiquitous
presence of Alfvén waves was found in magnetospheric, space,
cosmic, and laboratory plasmas (e.g., Cheng et al. 1985; Uberoi
1995; Chaston et al. 2000). In solar physics, Alfvén waves are
mainly considered to be candidates for coronal heating due to
their ability to freely propagate from lower layers of the solar
atmosphere to the corona (e.g., Ruderman 1999; Srivastava
et al. 2017). For example, Copil et al. (2008) suggested that
propagating Alfvén waves could locally heat coronal plasma
threads. In addition, Fletcher & Hudson (2008) proposed that a
flare-generated large-scale torsional wave could accelerate
electrons to high energies. Alfvén waves may also contribute
to the acceleration of the solar and stellar winds (e.g.,
Charbonneau & MacGregor 1995; Cranmer 2009; Matsumoto
& Suzuki 2012), and collimate astrophysical jets (Bisnovatyi-
Kogan 2007).

In the presence of field-aligned plasma non-uniformities,
typical for the corona, Alfvén waves appear in theform of
torsional waves (e.g., Van Doorsselaere et al. 2008). Torsional
Alfvén waves are azimuthal (rotational) perturbations of the
plasma velocity accompanied by azimuthal components of
the magnetic field. Linear torsional waves propagate along the
magnetic field at the local Alfvén speed.

The key element of the nonlinear evolution of linearly and
elliptically polarized Alfvén waves is the ponderomotive force
that is associated with the variation of the absolute value of the
magnetic field in the wave (e.g., Hollweg 1971; Tikhonchuk
et al. 1995). This variation results in the gradient of the
magnetic pressure that induces plasma flows and hence changes

the density of the plasma. The induced compressive perturba-
tions have double the frequency of the mother Alfvén wave.
The induced variations of the absolute value of the magnetic
field and plasma density change the local values of the Alfvén
speed, and cause the Alfvén wave self-interaction resulting in
steepening of the wave front (e.g., Ofman & Davila 1995;
Zheng et al. 2016).
Nonlinear dynamics of Alfvén waves are actively studied

analytically and numerically, with the main emphasis put
on the study of plane waves. It has been shown that
weakly nonlinear plane Alfvén waves are governed by the
Cohen–Kulsrud evolutionary equation, which is a modification
of the well-known Burgers equation, accounting for the
cubic nonlinearity intrinsic to Alfvén waves (e.g., Cohen &
Kulsrud 1974). In addition, when the wave front is non-plane
or oblique, Alfvén waves induce oblique compressive pertur-
bations (e.g., Malara et al. 1996; Nakariakov et al. 1997). The
ponderomotive acceleration effects have been intensively
studied in the context of acceleration of the solar and stellar
winds (e.g., Ofman & Davila 1998; Nakariakov et al. 2000;
Suzuki 2011), and also of the first ionization potential effect
(e.g., Laming 2015).
Nonlinear evolution of plane Alfvén waves is strongly affected

by transverse structuring of the plasma in the Alfvén speed and/
or field-aligned plasma flows. The transverse structuring of the
medium leads to the wave front distortion, the wave becomes
progressively non-planar, and the effect of phase mixing comes
into play. It causes enhanced dissipation of Alfvén waves (e.g.,
Heyvaerts & Priest 1983; Hood et al. 2002)and induces
compressive perturbations that produce fast and slow magnetoa-
coustic waves (e.g., Nakariakov et al. 1997, 1998; Botha
et al. 2000; Tsiklauri & Nakariakov 2002; Tsiklauri et al. 2003).
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However, in a plane wave, the perpendicular scale, i.e., the
length of the wave front, should be much larger than the
parallel wavelength, which is rarely fulfilled. For example, in
the solar corona, the generation of a plane Alfvén wave with a
10 minute period and the Alfvén speed of 1Mm s−1 the wave
driver at the base of the corona should be much larger than
600Mm (i.e., much larger than the radius of the Sun). Because
the solar corona is structured into magnetic flux tubes,
represented, for example, by coronal loops, plumes, and
various filaments, coronal Alfvén waves are likely to appear
in the form of torsional, rather than plane perturbations.
Torsional waves have received attention in the context of
heating of the plasma in coronal loops. In particular, Poedts &
Boynton (1996)andRuderman et al. (1997) considered
dissipation of finite-amplitude waves driven periodically at
one footpoint of a closed magnetic structure. On the other hand,
Antolin & Shibata (2010) established several constraints on the
parametric range of Alfvén waves as a coronal heating
mechanism.

The understanding of the appearance of coronal Alfvén
waves in the torsional form stimulated intensive studies of
nonlinear evolution of torsional waves. Kudoh & Shibata
(1999) and Vasheghani Farahani et al. (2011) numerically and
analytically, respectively, demonstrated that propagating
torsional Alfvén waves, similarly to plane waves, induce
compressive perturbations due to the ponderomotive force
associated with nonlinear effects. Vasheghani Farahani et al.
(2012) found that weakly nonlinear self-interaction of
torsional Alfvén waves results in the Cohen–Kulsrud steeping
of the wave profile, while the coefficients are different from
the case of a plane wave. The self-interaction occurs due to
the nonlinear excitation of compressive waves and their back-
reaction on the mother torsional waves. Fedun et al. (2011)
showed by means of numerical simulations that chromo-
spheric magnetic flux tubes can act as a frequency filter for
torsional waves. Mikhalyaev & Bembitov (2014) analytically
studiedthe resonant generation of compressive waves by
nonlinear coupling of two torsional waves propagating in the
opposite directions. Murawski et al. (2015) andWójcik et al.
(2017) highlighted the effect of the expanding magnetic tube
on the evolution of torsional Alfvén wavesand emphasized
the importance of the stratification. Williams et al. (2016)
modeled the propagation of torsional waves in the presence of
slow compressive shocks.

However, the efficiency of nonlinear interaction of torsional
and compressive waves is not understood in detail so far. In
particular, the role of the transverse profile of the torsional
wave needs to be revealed. The main motivation for this study
is the intrinsic non-uniformity of the wave fronts of torsional
waves. Indeed, as the finite-amplitude effects increase the wave
propagation speed (e.g., Cohen & Kulsrud 1974), and as the
torsional wave has a zero amplitude at the axis of the guiding
magnetic flux tube and increases to the tube boundary, the
propagation speed is always non-uniform across the field. It
creates the conditions for phase mixing even if the Alfvén
speed inside the flux tube is uniform, because the torsional
waves have different nonlinear increase in the propagation
speed at different distance from the tube axis. This nonlinear
phase mixing leads to the generation of compressive perturba-
tions. The induced compressive perturbations may lead to the
torsional wave self-interaction. Also, in contrast with the
incompressive Alfvén waves, the induced compressive

perturbations can be detected with imaging telescopesand are
subject to enhanced damping by various dissipative
mechanisms.
The aim of this paper is to study by means of 3D

magnetohydrodynamic (MHD) modeling the effects of non-
linear excitation of compressive perturbations by a torsional
wave of finite amplitude. We consider the parallel wavelength
to be not much larger than the radius of the magnetic flux tube,
and thus account for the nonlinear phase mixing. This approach
is a finite-wavelength generalization of the analytical theory
developed by Vasheghani Farahani et al. (2011) in the thin flux
tube approximation that corresponds to the long-wavelength
limit. We neglect the effect of the stratification of the
atmosphere, as the typical radii of coronal field-aligned plasma
non-uniformities and hence the considered wavelengths are
about 1–10Mm, while the typical scale heights of the
stratification exceed 50Mm. Thus, we consider theevolution
of torsional waves in a flux tube that is uniform along its axis.
The paper is organized as follows. In Section 2, we describe
our numerical setup, in Section 3, we discuss the results
obtained, and wefinally give conclusions in Section 4.
Appendix A illustrates the nonlinear excitation of compressive
perturbations by a long-wavelength torsional waves in the thin
flux tube approximation, and Appendix B illustrates the
generation of compressive waves due to the phase mixing
effect.

2. Numerical Setup and Initial Conditions

2.1. MHD Equations and Normalization

The simulations were performed using the numerical code
MPI-AMRVAC (Porth et al. 2014). The code applies the
Eulerian approach to the solution of the resistive MHD
equations,
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where e, ρ, v, andB are the total energy density, mass density,
velocity, and magnetic field, p e v B1 2 22 2g r= - - -( )( )
is the thermal pressure, p p B 2tot

2= + is the total pressure,
J B=  ´ is the electric current density; η is the electrical
resistivity, and γ is the ratio of specific heats. Because,in this
study, we are not interested in dissipative processes, we take

5 3g = , and 0h = .
The physical quantities were normalized with the use of the

following constants: the lengths are normalized to L 1N = Mm,
magnetic fields to B 20N = G,and densities to

1.67 10N
15r = ´ - gcm−3. The mass density normalization

corresponds to the electron concentration n 10N
9= cm−3.

The normalizing speed was calculated inunits of vN =
B 4 NN pr =1,380 km s−1, that is, the Alfvén speed
corresponding to the values of BN and Nr , the normalizing
time was set to t L v 0.7246 sN N N= = , the normalization of
the radial derivative of the azimuthal velocity was set to
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v L 1.38N N NW = = s−1. The values used for the normal-
ization are typical for the solar corona; their use justifies our
intention to analyze nonlinear effects in the coronal plasma.
Further in the text, we imply normalized units if it is not stated
otherwise.

2.2. Numerical Setup

We used a cylindrical frame of reference, and considered a
straight magnetic tube directed along the z-axis of the
computational box. The equilibrium magnetic field is parallel
to the tube axis. The equilibrium concentration of electrons,
ne(r) was set using the generalized symmetric Epstein function
(Cooper et al. 2003), and the equilibrium parallel magnetic field
Bz(r) was set to equalize the equilibrium total pressure
everywhere in the computational box,
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where R 10 = is the tube radius, n 0.2=¥ , n 10 = , B 10 = ,
and the temperature T is constant throughout the whole volume.
In physical units, these values correspond to R 10 = Mm,
n 2 108= ´¥ cm−3, n 100

9= cm−3,and B 200 = G, i.e.,
typical for the corona. The parameter α controls the tube
boundary steepness. We used 36a = , which results in a rather
sharp boundary. The radial profiles of the electron density ne(r)
and magnetic field Bz(r) are depicted in Figure 1.

All the equilibrium values are constant along the z-axis,
sincewe consider neither gravity nor transition region in this
study.

The torsional Alfvén wave is driven at the bottom wall
z z 0min= = of the equilibrium magnetic flux tube by the
following perturbations,
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where JM is the amplitude of the radial derivative of the
azimuthal component of the magnetic field, JM MW = -

r4pr ( ) is the amplitude of the radial derivative of
the azimuthal component of the velocity, and the factor

r Rcosh 2
0

a- [( ) ] is introduced to avoid the excitation of the
torsional wave outside the tube. The frequency ω is set to

C2A Aw w p l= = , where λ is a wavelength. The top
boundary is set to keepzero gradients of the variables (the
cont flag in MPI-AMRVAC). In this study, we consider
the waves before they reach the top boundary, and hence the
specific choice of the top boundary condition is not important.

2.3. Parameters of Numerical Experiments

We analyzed dynamics of the torsional Alfvén wave,
controlling the following parameters: the plasma temperature

T (and hence, for the fixed value of B0, on the plasma parameter
β that is the ratio of the gas and magnetic pressures), amplitude
of the derivative of the azimuthal velocity perturbation, MW ,
and wavelength λ. The specific values of these parameters in
various numerical runs are shown in Table 1.
In all ofthese setups,the relative variation of the magnetic

field is small, and the plasma-β is less than unity everywhere.
The simulations were performed in a cylindrical frame of

reference, in either a 3D r z, ,j( ) or 2D r z,( ) computational
boxes. We used a 3D computational box for the investi-
gation of the general picture of the wave propagation, and

Figure 1. Top: radial profiles of the normalized initial azimuthal velocity v rj ( )
and equilibrium Alfvén speed C rA ( ) in the simulated magnetic flux tube.
Bottom: radial profiles of the equilibrium electron density ne(r) and normalized
equilibrium magnetic field Bz(r). The line segment at the point 1.0, 109( ) in the
bottom panel indicates the scale of a single pixel used during the simulation.

Table 1
Parameters of the Simulations

Title T (MK) λ (Mm) MW Plasma β

setup1 0.2 5.0 0.05 0.0035
setup2 0.2 10.0 0.05 0.0035
setup3 1.0 2.0 0.05 0.0173
setup4 1.0 5.0 0.05 0.0173
setup5 1.0 10.0 0.05 0.0173
setup6 1.0 10.0 0.075 0.0173
setup7 1.0 10.0 0.10 0.0173
setup8 1.0 10.0 0.15 0.0173
setup9 1.0 10.0 0.20 0.0173
setup10 5.0 10.0 0.05 0.087

Note.The plasma temperature T, thewavelength λ, the initial amplitude of the
radial derivative of the azimuthal velocity perturbation MW (normalized), and
the plasma parameter β.
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high-resolution 2D computational boxes were used for the
analysis of wave-steepening, radial profiles and generation of
sausage waves.

In the 3D case, the box size was 128 64 256´ ´ grid
points, which corresponds to the physical volume 0, 2[ ] Mm in
r, 0, 2p[ ] in j, and 0, 40[ ] Mm in z. The numerical grid (pixel)
size corresponds to 0.0156Mm in r (see Figure 1) and
0.156Mm in z, i.e., much less than the characteristic scales of
the non-uniformity and wavelength. In order to test the
undesirable effect of the grid resolution, we carried out a test
run with double the spatial resolution. We found that, in both
ofthe cases,the evolution of the torsional wave shows similar
behavior, in general, but the setup with the lower spatial
resolution demonstrated faster decay and a smoother wave
profile at the tube boundary.

In 2D simulations, we used different grids. For the
investigation of wave steepening,we used the numerical grid
384×2048, with r 0, 3Î [ ] Mm and z 0, 80Î [ ] Mm,
respectively. For the investigation of the radial profiles of the
perturbations, we used the numerical grid 1024×256, with
r 0, 2Î [ ] Mm and z 0, 20Î [ ] Mm, respectively, and for the
investigation of sausage magnetoacoustic wave generation, we
used the grid 384×8192, with r 0, 3Î [ ] Mm and
z 0, 320Î [ ] Mm. In all of the cases, the spatial resolution in
the “important” dimension was much higher than in the 3D
setup.

In MPI-AMRVAC, we choose either HLLC (for 3D
simulations), or thessprk54 (for 2D simulations) discretiza-
tion method, with the vanleer slope limiter. The constraint

B 0 = is controlled by the powel approach. Since we
already analyzed the effect of numerical resolution on the
results, we use no mesh refinement and set the parameter
mxnest to 1.

3. Results and Discussion

3.1. General Picture of Torsional Wave Propagation

In general, results of the simulation agree with the theory
highlighted in Appendix A. A torsional wave appears as an
alternate perturbation of the azimuthal plasma velocity
accompanied by a perturbation of the azimuthal component
of the magnetic field, Bj. The wave dynamics preserves the
axial symmetry. Snapshots demonstrating perturbations of
various physical quantities in the wave are shown in Figure 2.
The wave is seen to propagate along the flux tube, in the
positive z-direction, at the speed of about the Alfvén speed CA

in the body of the flux tube. At the time of the snapshots
t t15 10.9 s1 N= = , the wave has propagated the distance
l C t 15 Mm 1.51 A 1 l= » = from the point of the excita-
tion, z=0.
The local Alfvén speed (see Figure 1) increases near the tube

boundary, in a thin layer where the equilibrium plasma density
decreases. This leads to the outrunning of the torsional wave
near the tube boundaries, producing a distortion of the wave
fronts. It is a clear signature of phase mixing caused by
the transverse non-uniformity of the Alfvén speed. We refer to
the effect as linear phase mixing and will further consider it in
Section 3.7.
The detected torsional wave induces flows with two other

velocity components, the radial velocity vr and parallel velocity
vz, and also the density perturbations that propagate at the
Alfvén speed and have double the frequency of the driver and
the perturbations of the azimuthal velocity vj and magnetic
field Bj. The amplitudes of induced vr and vz amounts to square
of the amplitude vj of the initial wave.
In addition, in the bottom part of the computational domain

(Figure 2),one can see the development of the tube wave

Figure 2. Torsional Alfvén wave propagating along the magnetic flux tube. The panels show the spatial structure of the plasma density ρ and velocities vr, vj, vz (from
left to right) in the xz cross-section through the axis of the flux tube, shown in the inlet. The torsional Alfvén wave is excited at z=0, and propagates in the positive
z-direction (upward). The snapshot corresponds to setup 5, i.e., T=1MK, 10l = Mm, 0.05;MW = the time instant is t t15 10.9 sN= = .

(An animation of this figure is available.)
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propagating at the tube speed C 0.15T » Mm s−1. At the time
of the snapshot, the wave has propagated the distance
l C t 1.62 T 1= » Mm from the excitation point, which is
consistent with Equation (26). The tube wave is excited when
the plasma temperature is finite, and hence the tube speed CT is
greater than zero.

The appearance of the parallel compressive perturbations
characterized by ρ and vz may be attributed to the effect of the
nonlinear ponderomotive force associated with the gradients of
the perturbed Alfvén speed in the parallel direction, and that is
in agreement with the theory developed in Vasheghani
Farahani et al. (2011), see also Equation (25). The excitation
of the radial flows, which are compressive too, may be
attributed to the nonlinear ponderomotive force associated with
the gradients of the perturbed Alfvén speed in the perpendicular
direction (Nakariakov et al. 1997), see also Appendix B, and to
the effect of nonlinear phase mixing, connected with the radial
non-uniformity of the torsional wave amplitude.

3.2. Radial Profiles of Induced Compressive Perturbations

The radial structure of the induced parallel flows at the speed
vz, obtained in the simulation (see Figure 3), is seen to be
different from that described by expressions(8) and (27)
obtained in the thin flux tube approximation. It clearly shows a
parabolic shape, ∝r2. This difference could be attributed to the
finite-wavelength effects. A similar radial dependence is seen
in the radial structure of the perturbed parallel magnetic field Bz

(not shown here).
The simulated radial profile of vz was found to be well fitted

with an almost parabolic dependency,

v r z t
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determined empirically, by a guess. The radial dependence in
the denominator is artificially used to reproduce the disap-
pearance of the perturbation at the flux tube boundary. This
parabolic dependence is different from the solution for up,

given by Equation (27), whichis independent of the radial
coordinate r. We need to emphasize that the dependence given
by Equation (7) is fully empirical, and is not based on any
theoretical result. It is shown here for its possible usefulness for
forward modeling of the observational manifestation of this
effect, when it would be convenient to have a single functional
expression for the radial structure of the induced parallel flows.
The perturbations of the density ρ and pressure p do not show
dependence on the radial coordinate, and have a constant
amplitude across the flux tube.
The radial profiles of vr and Br are different from the other

variables. They have half the wavelength of the mother
torsional wave (given by the perturbations of vj and Bj), and
are shifted by 4p+ relative to the mother torsional wave. The
radial structure of vr can be expressed using the odd terms of
the Taylor expansion (see Figure 3), beginning with the linear
one that is prescribed by the boundary condition at the loop
axis (see also the discussion in Zhugzhda 1996). In the
performed numerical run, we found that the radial dependence
of the radial velocity inside the flux tube could be best-fitted by
the expression v r r r0.33 0.28r

2= -( ) ( ). We note that the
radial velocity has relatively large values outside the tube’s
boundary, whereas the azimuthal and parallel velocities do not
penetrate into the external medium.

3.3. Parallel Spatial Structure of
Induced Compressive Perturbations

Parallel spatial profiles of the velocities vr, vj, vz measured
along the z-axis at r1 = 0.75 Mm are shown in Figure 4. The
profiles are rescaled for the purpose of visualization: vj is
divided by r 3.75 10M 1

2W = ´ - , and vr and vz are divided by
r C4 3.52 10M A

2
1
2 4W = ´ - . This rescaling corresponds to

theomitting of amplitudes and radial dependencies of the
variables in Equations (6) and (7) (and with the caveat in
Equations (26) and (27)). These profiles are consistent with the
theory described in Appendix A: the wavelength of the induced
parallel flows ishalf of the wavelength of the torsional wave,
the induced parallel flows have a positive average value, and
the amplitude corresponds to one given by Equation (25), i.e.,

Figure 3. Radial profiles of vr, vj,and vz velocities in the wave maximum.
Thick curves areresults of numerical simulation: the black line shows the
azimuthal velocity vj, themagenta curve shows the parallel velocity vz, and
thegreen curve shows the radial velocity vr. The profiles are rescaled for the
purpose of visualization: vj is divided by 0.05MW = , and vz and vr are divided
by 6.25 10 4´ - . The thin curves indicate the best-fitting analytical
dependencies.

Figure 4. Spatial profiles of vr, vj, vz velocities measured along the z-axis at
r1 = 0.75 Mm at the time instant t t30 N= . The black curve shows the
azimuthal velocity vj, the magenta curve the parallel velocity vz, and the green
curve the radial velocity vr. The profiles are rescaled for the purpose of
visualization: vj is divided by r 3.75 10M 1

2W = ´ - , and vr and vz are divided
by 3.52 10 4´ - .
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the amplitude of induced parallel velocities is proportional to
the squared amplitude of the azimuthal perturbation.

The positive average value of the parallel velocity means a
field-aligned bulk plasma flow (e.g., see Ofman &
Davila 1998), which can be referred to as the “Alfvénic wind.”
The wind is produced by the ponderomotive force. However,
the wind is canceled on the arrival of the slow, tube wave uT. A
similar effect has been studied in detail in the case of plane
Alfvén waves by McLaughlin et al. (2011).

In addition, we see small amplitude perturbations of vr. The
amplitude of this perturbation is approximately five times
smaller than the amplitude of parallel motions, and the speed of
propagation in the z-direction is higher than the speed of the
torsional wave. These perturbations correspond to the third
kind of the induced compressive perturbations, the fast
magnetoacoustic sausage wave (e.g., Edwin & Roberts 1983;
Nakariakov et al. 2012; Yu et al. 2016). In the low-β plasma
considered here, this mode is characterized by compressive,
mainly radial flows, and propagates at the speed that lies
between the Alfvén speed inside and outside the tube. Positive
and negative half-periods of these perturbations are symmetric.
Hence, in contrast with the induced parallel flows, they do not
constitute any bulk flow of the plasma.

3.4. Efficiency of the Generation of Compressive Perturbations

To study whether the efficiency of the nonlinear generation
of compressive perturbations depends on various parameters of
the plasma, such as the temperature T, wavelength λ and the
tube’s radius, i.e., to check the validity of the approximation
given by Equation (27), we perform a parametric study
summarized in Table 1.

We analyzed amplitudes of the parallel velocity perturba-
tions, vz, in the leading cycle of the induced wave, at the
distance of 10–15Mm from the origin in Figure 2. According
to Equation (27), the behavior of the induced ponderomotive
wave depends neither on the temperature T, nor on the
wavelength λ. For the amplitude of the ponderomotive wave,
numerical setups with different plasma temperatures T and
wavelength λ were found to show good agreement with
Equation (27) near the boundary of the flux tube. In addition,
we saw the tube wave propagating at the tube speed, which is
consistent with Equation (26), again, near the boundary.

3.5. Nonlinear Wave Steepening

The ponderomotive excitation of compressive flows by an
Alfvén wave, leads to the modification of the local Alfvén
speed, which, in turn, affects the Alfvén wave itself. This chain
of events is considered to benonlinear self-interaction of the
Alfvén wave, which leads to the wave steepening (e.g., Cohen
& Kulsrud 1974). In the long-wavelength limit, steepening of a
torsional wave due to nonlinear self-interaction has been
considered by Vasheghani Farahani et al. (2012). In that study,
it was found that the torsional wave steeping occurs at the rate
that is lower than in the case of plane Alfvén waves. The
difference between the evolution of the torsional and plane
waves disappears in the case of the cold ( 0b = ) plasma. In our
work, we consider this effect on torsional waves of finite
wavelength. For comparison, we modeled nonlinear evolution
of a plane Alfvén wave numerically in a 2D Cartesian
geometry, and compared it with the results obtained for a
torsional wave in the cylindrical geometry. Snapshots of the

parallel, along the equilibrium field, structure of the steepened
torsional and plane waves of the same amplitudes and
wavelengths are shown in Figure 5.
The spatial profiles of both torsional and plane Alfvén waves

clearly show the steepening: in the extremes, the perturbations
in both the waves overtake the harmonic dependence. It occurs
in both positive and negative extremes, which is a typical
signature of the nonlinear evolution of linearly or elliptically
polarized Alfvén waves (e.g., Cohen & Kulsrud 1974;
Vasheghani Farahani et al. 2012). In the case of plane Alfvén
waves, this effect is seen to be more pronounced, which is
consistent with the results obtained by Vasheghani Farahani
et al. (2012). However, in contrast to the long-wavelength limit,
the decrease in the nonlinear steepening of the finite-
wavelength torsional waves occurs even in the case of low-β.
It can be attributed to the presence of other sinks of energy,
such as the excitation of the sausage mode.

3.6. Excitation of a Sausage Wave

The radial velocities vr, that were nonlinearly generated by
the torsional wave, have an axisymmetric structure, i.e., they
are independent of the azimuthal coordinate. In a low-β plasma,
this spatial structure is similar to the structure of sausage
(“m = 0”) magnetoacoustic modes of the magnetic flux tube,
which is an essentially compressive perturbation of the tube.
Sausage modes are collective perturbations of the flux tube, and
fill in the whole flux tube. Their specific properties, such as the
radial structure and dispersion, are prescribed by the specific
radial profile of the fast speed (e.g., Nakariakov et al. 2012; Yu
et al. 2016). Consideration of this effect is out of scope of this
paper.
In a low-β plasma, a fast sausage mode propagates at the

phase speed vsaus, which is lower than the Alfvén speed of
external media C C rA

ext
A=  ¥( ), but higher than the Alfvén

speed of plasma near the tube’s axis, CA (Edwin &
Roberts 1983). Becausefast sausage modes are highly
dispersive, a broadband pulse develops in a sausage wave
train. For example, Shestov et al. (2015) numerically studied

Figure 5. Comparison of snapshots of the azimuthal velocity vj in a torsional
wave (red) and perpendicular velocity in a plane Alfvén wave (green) of the
same relative amplitude. The blue line shows a harmonic function that
corresponds to the linear case. Both waves have propagated the distance of
8 80l = Mm from the point of the excitation. The amplitude of the torsional
wave is measured at 0.75Mm from the tube axis.
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the dispersive evolution of fast sausage wave trains guided by a
magnetic flux tube, and confirmed the formation of wave trains
with pronounced modulation of the instant period and
amplitude. Also, it was found that the propagation speed is
higher than the local Alfvén speed in the flux tube, and hence
of the torsional wave. Thus, the nonlinearly induced fast
sausage wave should propagate faster than the mother
torsional wave.

Figure 6 shows the spatial structure of the incompressive and
compressive perturbations in the vicinity of the leading front of
the torsional wave, with the clear evidence of the fast sausage
wave characterized by the perturbations of the density ρ and
radial flows vr preceding the torsional wave demonstrated by
the perturbations of vj and the ponderomotively induced
parallel flows vz. The sausage perturbations are seen to
propagate at the speed v C1.3saus A» , which is consistent with
the theoretical estimation of Edwin & Roberts (1983). The
amplitude modulation of the sausage wave is also evident. Its
amplitude varies in the z-direction, and, in particular, has a
maximum at z 280» Mm at the instant of time of the snapshot
shown in Figure 6.

3.7. Linear and Nonlinear Phase Mixing

The effect of linear phase mixing occurs near the tube
boundary, where the local Alfvén speed gradually increases
due to the decrease in the plasma density. The efficiency of
phase mixing can be estimated using the following kinematic
reasoning. The difference δ between the distance traveled by
the torsional perturbation near the boundary and in the body of
the tube is equalto the product of the difference of the local
Alfvén speeds at these radial surfaces, CAD and the travel
time t. Thus the travel time required for phase mixing of one
wavelength d l= is the ratio of the wavelength in the body of
the tube and the speed difference t CAl= D . The travel time
isequalto the distance traveled by the wave from the source,
divided by the Alfvén speed in the body of the tube t z CA= .
Thus, the distance at which phase mixing reaches one
wavelength isequalto z C CA Al= D . In particular, in the
numerical setup shown in Figure 1, the local Alfvén speed
increases near the boundary by about C C1.2A AD » , hence for
the wavelength of 10Mm the phase mixing reaches the
wavelength at the distance of about 8.3Mm from the wave

source. This value is consistent with the deformation of the
torsional wave front seen in the left panel of Figure 7.
Comparing the shapes of the torsional perturbations taken at

different distances from the source in Figure 7, we see that at large
distances from the source, the perturbation shape experiences
some deformation even in the body of the flux tube. More
specifically, near the source (left panel), the wave front is clearly
deformed because of the non-uniformity of the local Alfvén speed
in the region r 0.95> Mm. At r 0.95< Mm, near the source the
wave fronts are symmetric with respect to the parallel coordinate.
On the other hand, at a larger distance from the source (right
panel), the wave front becomes clearly deformed even at theradial
distances of r 0.8< Mm. This deformation has the typical
signature of phase mixing: the perturbations at alarger radial
distance from the axis propagate slightly faster. However, at these
radial locations, the relative change of the local Alfvén speed is
negligible. Thus, this phase mixing is not connected with the non-
uniformity of the local Alfvén speed. The wave front deformation
should be attributed to the variation of the propagation speed of
the torsional wave caused by the variation of its amplitude with
the radial coordinate. As the torsional wave amplitude increases in
the radial direction, it causes additional radial non-uniformity of
the torsional wave speed because of the nonlinear acceleration. It
can further enhance phase mixing of torsional waves—the effect
we shall refer to as “nonlinear phase mixing.” In the right
panel,the torsional perturbation is absent from the region r 0.8>
Mm, because of the numerical dissipation of the very strong phase
mixing occurring in this region at much shorter distances from the
source.
Following the reasoning used in the case of linear phase

mixing, the distance at which nonlinear phase mixing reaches
one wavelength isequalto the product of the wavelength and
the ratio of the local Alfvén speed and the increase in the speed
caused by the nonlinearity, z C CA A

nll= D , where CA
nlD is the

difference in the local propagation speeds between the
nonlinear and linear torsional waves. The increase in the local
speed of the torsional wave, CA

nlD , is proportional to the
product of the local Alfvén speed and the square of its relative
amplitude (see the second term in the brackets on the right-
hand side of Equation (22) of Vasheghani Farahani et al. 2012).
As in the performed simulation, the relative amplitude of the
torsional wave amplitude was 0.05, the effect of nonlinear
phase mixing should be rather weak. More specifically, in this
run, the efficiency of nonlinear phase mixing ismore than a
hundred times (0.052) weaker than that of the linear phase

Figure 6. Spatial structure of perturbations in the vicinity of the leading front
of the torsional wave, at the distance of 26l from the excitation point, at the
time instant t t260 188 sN= = .

Figure 7. Comparison of linear and nonlinear phase mixing in a torsional
Alfvén wave with the relative amplitude 0.05. Left: snapshot of the azimuthal
velocity in the torsional wave that traveled 20Mm from the source. Right: the
same but at adistance of 310Mm from the source. The vertical dashed lines
highlight the radial distances discussed in the text.
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mixing that operates near the boundary. Indeed, according to
Figure 7, at the distance of about 30 wavelengths from the
source, phase mixing is equalto a fraction of the wavelength.

4. Conclusions

We performed numerical simulations of axisymmetric finite-
amplitude torsional Alfvén waves in a field-aligned magnetic
flux tube filled in with a low-β plasma. The flux tube is straight,
untwisted, and non-rotating. The flux tube is surrounded by a
plasma with the magnetic field directed in the same direction as
inside the tube, in the direction of the tube axis. The plasma
density inside the flux tube is enhanced, which makes the tube
a fast magnetoacoustic waveguide. The plasma parameter β is
taken to be small everywhere. The torsional perturbations are
excited at one footpoint of the tube as alternate periodic
azimuthal rotations of the tube. The wavelength of the driven
torsional wave is of the same order as the diameter of the flux
tube. In the linear regime, the torsional wave is incompressive
and consists of the alternate azimuthal flows and the
perturbations of the azimuthal component of the magnetic field.

We found that nonlinear evolution of the torsional Alfvén
wave leads to the excitation of three different kinds of
compressive motions that propagate along the axis of the
magnetic flux tube: the well-known parallel flow of the plasma
at the Alfvén speed; another parallel flow, at the tube speed,
that is the slow magnetoacoustic wave; and, in addition, the
mainly radial axisymmetric perturbations propagating at the
speed higher than the Alfvén speed inside the flux tube, i.e.,
faster than the speed of the mother torsional waves. The latter
kind of induced waves is the sausage fast magnetoacoustic
modes. The sausage mode perturbs the plasma also outside the
flux tube, which is consistent with the radial structure of
sausage modes. Nonlinearly induced flows of all three kinds
have double the frequency of the mother torsional wave.

The nonlinearly induced parallel plasma flow that propagates
at the Alfvén speed can be considered as the “Alfvénic wind,”
becauseits average over the oscillation period is not zero. The
Alfvénic wind is absent from the vicinity of the flux tube axis,
where the torsional wave amplitude is always zero. Thus, the
parallel plasma flow that is nonlinearly induced by a torsional
Alfvén wave has an annulus shape. The effect of Alfvénic wind
has been concluded to be a possible mechanism for the
acceleration of solar and stellar winds (e.g., Ofman &
Davila 1998; Suzuki 2011), but those estimations were based
on the assumption of plane Alfvén waves. Our study
demonstrates that the field-aligned compressive flows induced
by Alfvén waves in the solar and stellar coronae are essentially
non-uniform in the transverse (e.g., the horizontal direction in
the case of open magnetic configurations in coronal holes).
There are always regions that are situated near the axes of the
wave-guiding magnetic flux tubes, where the Alfvénic winds
are zero. It may have important implications for the solar and
stellar wind acceleration problems, which require a dedicated
study.

The intrinsic radial non-uniformity of the torsional wave
amplitude, which is connected with the need to satisfy the zero
boundary condition at the axis of the flux tube, leads to the
effect of nonlinear phase mixing. This effect is connected with
the nonlinear increase in the wave speed at the radial shells
where the wave amplitude is higher. It leads to the additional
distortion of the torsional wave front and hence the generation

of progressively small scales in the radial direction. In
particular, this effect should enhance the nonlinear generation
of the sausage modes. For example, for a simple, linearly
growing in the radial direction radial profile of the torsional
wave amplitude, the wave front propagates faster near the flux
tube boundary because of the nonlinear effects. Thus, phase
mixing occurs even if the radial profile of the Alfvén wave is
flat, when this effect is absent for linear Alfvén waves. Further
investigation of this effect would be of interest.
The induced compressive flows modify the local Alfvén

speed, causing the self-interaction of torsional Alfvén waves. It
causes the wave profile steepening that is a signature of the
nonlinear cascade along the field. The comparison of the
nonlinear steepening of the torsional wave with this effect in a
plane Alfvén wave of the same amplitude and wavelength
showed that the efficiency of the parallel nonlinear cascade in a
torsional wave is lower than in a plane Alfvén wave. It could be
attributed to the presence of additional sinks for the torsional
wave energy, for example, the excitation of the sausage wave.
The steepening takes place at some radial distance from the flux
tube axis, and is strongest where the torsional wave amplitude
is highest, e.g., near the flux tube boundary in the case of a
linear radial profile of the torsional wave amplitude.
For the linear profile of the torsional wave amplitude, we

found that the amplitude of the induced parallel flows has a
parabolic radial structure. It is not a surprise, as the amplitude
of the parallel motions is proportional to the mother torsional
wave amplitude squared: the parallel flows could not be
nonlinearly induced near the flux tube axis, where the mother
wave amplitude tends to zero. This result is different from the
flat radial dependence assumed in the thin flux tube approx-
imation given by expression(8). However, it does not show a
problem with the thin flux tube approximation, becausethere
the physical quantities are taken either at the flux tube axis or
its boundary. The empirically determined best-fitting depen-
dences of the radial profiles of the velocity vector components
could be of interest for forward modeling of torsional waves,
e.g., in the further development of the studies of Van
Doorsselaere et al. (2016).
Our study demonstrates the importance of the transverse

profile for the evolution of coronal torsional waves. The
follow-up work should account forimportant effects of
stratification, and the variation of the flux tube area and plasma
temperature.
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Appendix A
Weakly Nonlinear Torsional Waves in

Thin Flux Tube Approximation

We illustrate the excitation of compressive perturbations by
the analysis of long-wavelength weakly nonlinear torsional
Alfvén waves. We consider perturbations of a straight
cylindrical magnetic flux tube, using the cylindrical coordinate
axis with the axis z coinciding with the flux tube’s axis. A
torsional Alfvén wave consists of alternate twisting azimuthal
motions vj of the plasma, accompanied by the azimuthal
components of the magnetic field Bj. Since both quantities
should vanish on the axis of the magnetic tube, torsional
Alfvén waves could be considered in terms of the second order
thin flux tube approximation of Zhugzhda (1996). In this
approach, the parallel wavelength of the perturbations is taken
to be much larger than the flux tube radius, which allows one to
consider only a few lowest order terms in the Taylor expansion
with respect to the radial coordinate,

p p p r v Vr v r v u
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where Br, Bj, and Bz are the radial, azimuthal, and longitudinal
components of the magnetic field, and vr, vj, and vz are the
radial, azimuthal,and parallel components of the velocity,
respectively; V, Ω, and J are the radial derivates of the radial
and azimuthal components of the velocity, and the azimuthal
field, respectively; ρ is the mass density; and p is the gas
pressure. The quantities with the overtilde are the zeroth-order
terms of the expansions with respect to the radial coordinate.
The overtilde will be omitted hereafter. In the derivation of
these equations it is assumed that the longitudinal wavelength
of the perturbations is much larger than the radius of the
flux tube.

Applying expansion (8) to the ideal MHD equations, and
omitting terms with higher degrees of r, one obtains
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The effect of the gravitational force is neglected. All considered
physical parameters are independent of the azimuthal coordi-
nate, i.e., 0j¶ ¶ = . In other words, we restrict our attention
to the consideration of the axisymmetric perturbations only.
The equations are supplemented by the magnetic flux

conservation equation and total pressure balance at the tube
boundary,
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where A R2p= is the cross-sectional area of the tube of radius
R, and pT

ext is the external total pressure.
The equations are linearized with respect to the equilibrium

that is an untwisted and non-rotating flux tube, 0r , p0, Bz0, A0

(or R0), and u V J B 0r0 0 0 0 1
0= = = W = = . All equilibrium

quantities are constant.
In the linear regime, torsional motions are decoupled from

compressible motions. Torsional perturbations given by Ω and
J and described by Equations (10) and (14),
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which are readily combined in the wave equation
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where k CAw = and C B 4zA 0 0pr= is the Alfvén speed. A
harmonic torsional wave is J J t kzcosM w= -( ) and W =

t kzcosM wW -( ), where the constant amplitudes MW =
J 4M 0pr- .
Compressive perturbations given by u, V, ρ, p, Bz, and A, and

linked by Equations (11), (12), (15), (16), (18), and (19).
Excluding all variables but u, one can readily obtain the wave
equation
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S
2 1 2= +( ) is the tube speed, and

C pS 0 0g r= is the sound speed. Equation (23) has a
propagating wave solution u U t kzcosm w= -( ), where Um is
a constant amplitude, and k CTw = .
Consider thenonlinear interaction of torsional and compressible

waves of finite amplitudes. Taking into account the quadratically
nonlinear term containing the torsional variables in the derivation
of Equation (23), we obtain the inhomogeneous wave equation
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The right-hand-side term of Equation (24) describes the
ponderomotive force. The solution of the equation is a sum
of solutions of the homogeneous and inhomogeneous
equations, i.e., the longitudinal, or “tube” wave propagating
at the tube speed, CT, and the induced, “ponderomotive” wave
propagating at CA. The ponderomotive wave constitutes the
Alfvénic wind.

If the torsional wave is driven by a harmonic oscillation with
the frequency ω at a certain location z=0, the solution of the
equation is
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and the ponderomotive wave u z t,p ( ) is
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Equation (25) indicates that in the weakly nonlinear case,
thetorsional Alfvén wave induces parallel flows that consist of
two motions, the tube wave uT and the ponderomotive wave up,
both of which have the amplitude R C40

2
M
2

AW and the
frequency that is double the driving frequency. These parallel
flows are accompanied by the perturbations of the plasma
density ρ. Hence the nonlinearly induced perturbations are
compressive.

However, this formalism does not allow one to take into
account the effect of nonlinear phase mixing, connected with
the increasing non-uniformity of the torsional wave fronts
across the equilibrium magnetic field.

Appendix B
Weakly Nonlinear Effects Associated
with Alfvén Wave Phase Mixing

Consider a plane Alfvén wave in a plasma with a 1D non-
uniformity of the Alfvén speed across the field. For
simplicity,the plasma is taken to be of zero-β. In this
consideration, we follow the formalism developed in Botha
et al. (2000). Let the equilibrium magnetic field of the strength
B0 be directed along the z-axis. The equilibrium density of the
plasma, 0r , varies in the x-direction. A linearly polarized
Alfvén wave is characterized by the perturbations of By and Vy.

In the weakly nonlinear case, we can restrict our attention to
the quadratically nonlinear terms only. In this case, the
nonlinearly induced flows are described by the equations
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Both ofthese flows are essentially compressive becauseboth
cause the density perturbation
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Equation (28) is similar to Equation (24), in the zero-β limit.
It describes the nonlinear excitation of the parallel plasma flows
by the Alfvén wave, the ponderomotive wave,or the Alfvénic
wind. It is clear that the induced parallel flows have the highest
speed at the magnetic field lines where the amplitude of the
Alfvén wave is the highest.
Equation (29), which describes the nonlinearly induced

perpendicular flows is essentially different. Its left-hand side
describes freely propagating fast magnetoacoustic waves that
are subject to refraction connected with the non-uniformity of
C xA ( ). In particular, in a magnetic flux tube with the enhanced
plasma density, this effect leads to the appearance of fast
magnetoacoustic modes, for example, sausage modes (e.g.,
Nakariakov et al. 2012). The nonlinear excitation of the
perpendicular compressive flows occurs when the Alfvén wave
is non-uniform in the perpendicular direction. Because of
Alfvén wave phase mixing, the right-hand-side term experi-
ences continuous growth, magnifying the effect of the
nonlinear excitation.
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