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Abstract

Negative energy wave (NEW) phenomena may appear in shear flows in the presence of a wave decay mechanism
and external energy supply. We study the appearance of negative energy surface waves in a plasma cylinder in the
incompressible limit. The cylinder is surrounded by an axial magnetic field and by a plasma of different density.
Considering flow inside and viscosity outside the flux tube, we derive dispersion relations and obtain analytical
solutions for the phase speed and growth rate (increment) of the waves. It is found that the critical speed shear for
the occurrence of the dissipative instability associated with NEWs and the threshold of Kelvin–Helmholtz
instability (KHI) depend on the axial wavelength. The critical shear for the appearance of sausage NEW is lowest
for the longest axial wavelengths, while for kink waves the minimum value of the critical shear is reached for the
axial wavelength comparable to the diameter of the cylinder. The range between the critical speed of the dissipative
instability and the KHI threshold is shown to depend on the difference of the Alfvén speeds inside and outside of
the cylinder. For all axial wavenumbers, NEW appears for the shear flow speeds lower than the KHI threshold. It is
easier to excite NEW in an underdense cylinder than in an overdense one. The negative energy surface waves can
be effectively generated for an azimuthal number m=0 with a large axial wavenumber and for higher modes
(m>0) with a small axial wavenumber.

Unified Astronomy Thesaurus concepts: The Sun (1693); Magnetohydrodynamics (1964)

1. Introduction

The solar atmosphere is a highly structured and dynamic
medium with pronounced nonuniformities of the macroscopic
parameters of the plasma, such as the density and temperature, and
the magnetic field, and also with a number of transient and long-
living plasma flows. The nonuniform nature of the atmosphere
strongly affects the propagation of magnetohydrodynamic (MHD)
waves, leading to the appearance of wave dispersion, enhanced
damping, mode coupling, amplification, and many other effects
(e.g., Edwin & Roberts 1983; Ruderman & Roberts 2002; De
Moortel & Nakariakov 2012; Jess & Verth 2016; Verth & Jess
2016; Goossens et al. 2019, and references therein). In particular,
shear flows may greatly modify MHD wave propagation(e.g.,
Goossens et al. 1992; Nakariakov & Roberts 1995). Strong shear
can induce Kelvin–Helmholtz instability (KHI)(Chandrasekhar
1961; Zaqarashvili et al. 2015). In addition, the effect of
overreflection may occur for MHD waves reflected from a
plasma nonuniformity with a velocity shear(Fejer 1963; Sen
1963; McKenzie 1970; Nakaryakov & Stepanyants 1994;
Gogichaishvili et al. 2014). In overreflection, the amplitude of
the reflected wave is higher than the amplitude of the incident
wave, i.e., the wave gains energy from the shear flow, or, more
correctly, from the source that supports the shear flow. Over-
reflection is related to a backward nature of the transmitted wave,
which changes the sign of the phase velocity due to the velocity
shear, and its energy becomes negative. A wave with negative
energy is called a negative energy wave (NEW) (see, e.g.,
Cairns 1979). The use of this term emphasizes that the amplitude
of a NEW increases when the energy of the system decreases, for
example, due to dissipative and wave leakage processes (e.g.,
Ostrovskiĭ et al. 1986; Stepanyants & Fabrikant 1989). It leads to
the occurrence of various NEW instabilities. Nonlinear coupling

of NEWs with regular waves with positive energy can become
subject to explosive instabilities which are faster than the standard
linear instabilities. MHD waves of negative energy attract
attention in the context of the stability of shear flows in natural
and laboratory plasmas (e.g., Khalzov et al. 2008; Ilgisonis et al.
2009), including the solar atmosphere (e.g., Joarder et al. 1997;
Andries & Goossens 2001; Taroyan & Ruderman 2011; Ballai
et al. 2015).
An important feature of NEWs is that they can be unstable

for the velocity shear well below the KHI threshold. If the
NEW instability is caused by a dissipative process, this
phenomenon is called dissipative instability(Cairns 1979;
Joarder et al. 1997). Cairns (1979) considered two parallel
flows with a perpendicular profile of the velocity in the form of
a step function and viscosity in one side, and proposed a
criterion for the dissipative instability to occur at a shear flow
speed below the KHI threshold. Despite the obvious impor-
tance of the effect of NEWs for the plasma nonuniformities of
the solar atmosphere, there have been only several dedicated
studies of this phenomenon. Adopting Cairnsʼ (1979) criterion
scheme, Joarder et al. (1997) studied the excitation condition
for NEWs in a plasma slab, and showed that surface kink
modes with negative energy could occur in magnetic structures
of the solar photosphere. Ryutova (1988), considering kink
modes in the long-wavelength limit, was first to show that
NEW may be crucial for the energy transfer to the upper solar
atmosphere. Ruderman & Goossens (1995) obtained analytical
solutions for the negative energy Alfvén surface wave
propagating on a discontinuous shear flow boundary in an
incompressible plasma, taking into account viscosity at the one
side and a constant flow at the other side. They showed that
when the flow speed is above the critical value, one wave mode
of two solutions changes the sign of the phase speed, and then
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two wave modes become copropagating. The wave mode with
the smaller phase speed has negative energy. Its growth rate
(increment) increases with the increase in the viscosity
coefficient. A recent study by Ruderman (2018) showed that
the growth rate of a standing surface wave is equal to the
growth rate of the (backward) propagating wave with negative
energy minus the damping rate (decrement) of the (forward)
propagating wave with positive energy.

In this paper, we investigate the appearance of a negative
energy MHD surface mode with an arbitrary azimuthal
wavenumber m in a plasma cylinder penetrated by an axial
magnetic field, in the incompressible approximation. We
describe the model in Section 2, present the results in
Section 3, and conclude the paper in Section 4.

2. Model

Our governing equations are the viscous MHD equations for
an incompressible plasma:
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where v is the velocity; B and E are the magnetic and electric
fields, respectively; j is the electric current density; ρ is the
mass density; η is the shear viscosity; μ0 is the permeability of
vacuum and γ is the ratio of specific heat. We consider an
infinitely long, axisymmetric cylindrical magnetic flux tube
with radius R, i.e., a plasma cylinder with a sharp boundary,
surrounded by a plasma with different physical quantities,
similar to the model of Edwin & Roberts (1983). The magnetic
field is parallel to the axis of the cylinder. The equilibrium is
reached by the balance of the total pressure inside and outside
the cylinder. Inside the cylinder there is a field-aligned steady
flow, uniform in the radial direction. The external plasma is
static. Thus, the boundary of the cylinder is a tangential
discontinuity. The plasma outside the cylinder has finite
viscosity, while the internal plasma is ideal.

In the following, we linearized Equations (1)–(6) in
cylindrical coordinates. We consider the regions inside and
outside the cylinder separately as homogeneous media.
Perturbations are considered to be harmonic in time and with
respect to the axial and azimuthal coordinates. Then, applying a
matching condition at the tube boundary, we derive the
dispersion relation and obtain the solutions for the phase speed
and damping or growth rate.

2.1. Wave Equations

We denote the quantities inside (outside) of the cylinder by a
subscript i(e). In the equilibrium, inside the cylinder, the magnetic
field is B0=(0, 0, B0), and the flow is v0=(0, 0, U0). Both U0

and B0 are constants. The plasma density ρi is constant too. The
Alfvén speed is m r=v Bi iA 0 0 . Linearizing the ideal MHD
equations with respect to the equilibrium, and applying the Fourier
transformation ( [ ( )]f w~ + -i k z m texp z ), we obtain the fol-
lowing set of coupled ordinary differential equations for the
perturbations of the radial velocity v̂ri and total pressure P̂i (see
Appendix A):
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where w̃ w= - k Uz 0, ωAi=kzvAi, and the prime denotes the
derivative with respect to r. Here kz and m are real, while ω

could be complex.
Outside of the cylinder, we assume the same magnetic field

as inside it, while the density is ρe. Linearization of
Equations (1)–(6) with the same Fourier transform leads to (see
Appendix B)
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for ψ. Notice that f̂v denotes the perturbation of the azimuthal
velocity.

2.2. Dispersion Relation

Taking the divergence of Equation (2) yields the condition
ˆ ( ) =P 0i e (see, e.g., Ruderman & Goossens 1995), which has

Bessel functions as solutions.
In this study we consider surface MHD modes,

ˆ ( ) ( )=P A I k r , 12i i m z

ˆ ( ) ( )=P A K k r , 13e e m z

ˆ ˆ ˆ ˜ ˆ ( )wz z wz= - + = -v i ik U i , 14ri ri z ri ri0

ˆ ˆ ( )wz= -v i , 15re re

where Ai and Ae are constant, Im(kzr) and Km(kzr) are modified
Bessel functions of the first and second kinds, respectively, and
ẑr is the Fourier-transformed Lagrangian displacement in the
radial direction. Hereafter we use the notations Im and Km

instead of Im(kzr) and Km(kzr), respectively.
From the kinematic boundary condition, and continuity

condition of the stress tensor at the boundary (r=R), we
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obtain
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Next, substituting Equations (12)–(17) into Equations (7)
and (9), we derive
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where the prime denotes the derivative with respect to the
entire argument kzR. In Equation (20), we neglect the term with
νe
2, assuming the viscosity to be weak, νe/(ωR

2)=1. This
condition can be written as RekzR?1, where Re=ωR/kzνe is
the Reynolds number. For sufficiently large values of Re, this
approximation is valid regardless of the value of kzR
(Re?kzR). In other words, this condition implies that there
exists a lower limit (cutoff) to kzR for a given νe such that
kzR?(1/Re), which must be considered for the interpretation
of the results in Figures 7 and 8 in Section 3.3.

Then we obtain for Ai and Ae
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Combining Equations (15) and (17) yields
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As we are interested in the behavior of the wave amplitude in
time, we may assume that approximately
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Then we obtain the dispersion relation, by using boundary
condition(18) and Equation (25),
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Equation (26) can be rewritten as
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and introducing dimensionless ratios Rei=ρe/ρi, ˜ =U U v i0 0 A ,
and Vei=vAe/vAi. When U0=η=0, Equation (27) reduces
to the dispersion relation for MHD surface waves in the
incompressible limit(Edwin & Roberts 1983).
Taking that ω=ωr+iωi, where ωr and ωi are the real and

imaginary parts of the cyclic frequency, and assuming ωi=ωr,
we reduce Equation (27) to
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γ are consequently given as
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The solutions of c=0 and b2−4ac=0 correspond to the
critical speed, Uc, and the threshold for KHI, UKH,
respectively(e.g., Ruderman & Goossens 1995):
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We now establish the criterion for the NEW excitation.
Using the dispersion relation without viscosity, D0=aω2+
bω+c, we can determine the criterion for the negative wave
energy to exist as w= <

w
¶
¶

C 0D0 (Cairns 1979; Joarder et al.
1997). In the absence of the steady flow, we need to have
C>0 and find that C is positive except ω=0. In the presence
of flow, from the condition C<0, we obtain the criterion for
the occurrence of a negative energy MHD surface wave

( )w w w< < = - =
-

¢
¢

b

a

k U
0 ,

2 1
. 39N N

z

R I K

I K

0

ei m m

m m

The condition ω(=ωr)>0 yields the relation U0>Uc,
which is consistent with previous results(e.g., Ruderman &
Goossens 1995).

We point out that if we ignore the term with the factor d in
Equation (32) (no viscosity), Equation (33) describes the KHI
when b2−4ac<0.

3. Results

3.1. Dispersion Curves

We first compare the dispersion curves for the phase speed
with and without the steady flow. In Figure 1 we present the
phase speed vp as a function of kzR for two lowest azimuthal
mode numbers and different values of the Alfvén speed ratios
Vei in a cylinder with ˜ =U 00 . The phase speed curves obtained
in the cases Vei>1 and Vei<1 show different behavior,
which is consistent with the result obtained by Edwin &
Roberts (1983). In the following, we shall denote the higher
and lower phase speeds as vp+ and vp−, respectively. In the
static ( ˜ =U 00 ) case, the modes with vp+ and vp− propagate in
the positive and negative z-directions, and vp+=−vp−. The
dispersion curves for m>1 are similar to m=1 case, but as m
increases the curvature of the curves becomes flatter, i.e., the
wave dispersion decreases.

Figure 2 shows the dependence of dispersion curves for
m=0 sausage modes on the steady flow speed for two

different values of the Alfvén speed ratio Vei. In the presence of
the steady flow U0, the symmetry of the waves propagating in
the opposite directions is broken, i.e., the values of vp+ and vp−
are affected by the steady flow differently. It is consistent with
the result obtained by Joarder et al. (1997). For a sufficiently
large U0 both vp+ and vp− are positive. In this regime, the vp−
mode becomes a backward wave. For Vei<1, as the steady
flow speed U0 increases, the curve for vp+ shifts first upward
and then shifts downward, which does not happen for vp−. The
curve for vp− goes upward as U0 increases. On the other hand,
for Vei=5, both curves go up with U0 increment. The same
behavior is found for the m=1 kink modes (see Figure 3). The
feature of backward shift for vp+ appears to be common for
Vei<1, for both m=0 and m=1 modes.

3.2. Conditions for the Excitation of NEWs

From Equation (39) we infer that in the backward regime,
when vp−>0, a mode with vp− can become a NEW. In
Figure 4 we plot several characteristic speeds (vp−,
vN(=ωN/kzvAi), Uc, and UKH), as a function of kzR for (a)
m=0 and (b) m=1, for fixed ˜ ( )=u U vz i0 A and Vei<1. As
shown in the previous section, it is demonstrated that the
condition U0>Uc corresponds to vp−>0 and vp−<vN.
When Ũ0 is over 1 for the sausage mode and 1.3 for the kink
mode, the backward wave become a NEW, and hence its

Figure 1. Phase speeds of Alfvén surface modes of an incompressible plasma
cylinder as a function of the axial wavenumber kzR for (a) m=0 and for (b)
m=1 in the case with no steady flow ˜ =U 00 .
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amplitude can grow exponentially due to one of the NEW
instabilities (see Figure 7(c)). When U0 is sufficiently large, the
KHI threshold could be reached for certain values of the axial
wavenumber. For them=0 mode, UKH approaches infinity as
kzR goes to zero, so it is not possible for the sausage surface
mode to be KH unstable in the long-wavelength limit. Other
modes have finite values of UKH.

For Vei>1, the picture slightly changes, see Figure 5. The
value of UKH becomes large depending on Rei(Vei) (see
Equation (38)). The shape of the dependence of vN also greatly
changes. The shape of the Uc curve does not change
significantly.

As UKH and Uc both changes with Vei, the interval of the
values of U0 in which NEW instabilities are possible needs to
be specified. In Figure 6, we plot ΔU≡(UKH−Uc)/vAi)
versus kzR for (a) Vei<1 and (b) Vei>1. For positive ΔU,
NEW instabilities have lower threshold than KHI. The
dependences of ΔU on the axial wavenumber are different in
the cases of Vei<1 and Vei>1. An increase in the Alfvén
speed ratio Vei increases the KHI threshold, implying NEW
instabilities are more likely.

3.3. Growth Rate for the Negative Energy MHD Modes

In the NEW regime, the finite viscosity leads to the
amplification of the waves, which is characterized by the

imaginary part of the frequency, given by Equation (36). In
Figures 7(a) and (b), we plot ˜g n- e, the growth rate γ− of the
backward wave divided by ñe, versus kzR for the sausage and
kink modes for different shear flow speeds Ũ0 for both Vei<1
and ñ = 0.0001. As Ũ0 increases, the values of γ− grows, and
its value is higher for the kink mode than for the sausage mode.
The growth rate of the kink mode has a minimum near
kzR=1, with its specific value depending on U0. In contrast,
the growth rate of the sausage mode may have a local
maximum, while it keeps growing with the increase in kzR.
In Figure 7(c) we show the range of kzR for the existence of

NEW instabilities, which is obtained by applying the condition
U0=Uc. For the sausage mode, the range starts from kzR=0
where ˜ =U 10 and extends to larger values of kzR as Ũ0
increases. On the other hand, for the kink mode, the NEW
unstable range starts from the point kzR≈1.58 for the used
plasma parameters, and becomes wider with the increase in U0.
For m>0, it is found that as m increases, γ− increases in the
whole range of kzR. From the results, one may anticipate that
the sausage mode is most unstable to NEW instability when kzR
is sufficiently large while higher modes are most unstable in
kzR≈0. The growth rate for high-m modes becomes large
when kzR approaches zero, which violates the assumption
ωi=ωr.
The behavior of γ− for Vei>1 is presented in Figure 8. The

growth rate is much lower than in Figure 7, implying that an
overdense flux tube is more stable to NEW instabilities than an

Figure 2. Phase speeds of the sausage mode (m=0) as a function of the axial
wavenumber kzR for (a) Vei=0.5, and (b) Vei=5.0 for different values of the
steady flow speed U0.

Figure 3. The same as in Figure 2 but for the kink mode (m=1).
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underdense flux tube. The range of kzR corresponding to NEW
instabilities is the same in both Vei>1 and Vei<1 cases (c).

Equation (36) shows that γ± is proportional to ñe. Using the
estimating expression for the viscosity η≈10−17 T5/2 kg m−1

s−1 (Hollweg 1986), we have ñ r» - T v R10e e i
17 5 2

A in MKS
units. For the typical parameters of a coronal active region,
ρe=0. 5×10−12 kg m−3, T=2.5×106 K, vAi=6×105

m s−1, and R=106 m, we obtain ñ » 0.33e . Thus, the
appearance and growth rate of NEW depend on the background
plasma temperature and shear flow speed. The Reynolds
number can be written as ( ) ˜w n=R k ve z i eA , from which the
valid condition for our approach is induced as ˜w nk vz e iA .
As discussed in Section 2.2, it is also necessary to consider the
lower limit of kzR for the valid range of NEW instability for a
given νe: kzR?(1/Re).

4. Conclusions and Discussions

We studied conditions for the existence of NEW surface
MHD waves in a cylindrical flux tube with a shear flow in the
incompressible limit. The equilibrium plasma density and shear
flow experience a sharp change at the boundary of the tube. By
matching the boundary condition at the tube boundary, we
analytically derived dispersion relations for Alfvénic perturba-
tions, and analyzed dependences of the phase speed and growth

rate on the plasma parameters. Instabilities associated with
NEW can be excited when the shear flow speed is between the
critical speed for the appearance of NEW, Uc, and the KHI
threshold, UKH. In other words, the steady flow shear which
leads to the occurrence of NEW instabilities could be
significantly lower than the KHI threshold. For example, in
the long-wavelength regime, the NEW instability threshold
requires the flow speed shear to be several times lower than the
KHI threshold. A similar result was obtained for the kink mode
by Ryutova (1988) in the thin flux tube approximation.
Moreover, the critical value of the flow shear for the onset of
NEW instabilities should be comparable, only 20%–40%
higher than the Alfvén speed inside the plasma cylinder. Such
flow shears could be reached in various solar coronal plasma
jets (see, e.g., Raouafi et al. 2016), making them subject to
NEW instabilities. Thus, NEW effects could be responsible for
the occurrence of kink oscillations on a hot plasma jet,
analyzed by Vasheghani Farahani et al. (2009).
For the shear flow speeds lower than the KHI threshold,

NEW are found to appear for all axial wavenumbers. More
rigorously, the shear flow range that corresponds to NEW
phenomena, Uc<U0<UKH, is found to depend on the
Alfvén speed contrast inside and outside the flux tube, and also
on the axial wavenumber of the perturbation. For all considered
combinations of the parameters, the threshold value of the
shear flow for the appearance of sausage NEW is lowest for the

Figure 4. Dependence of the characteristic speeds vp−, vN, U0, UKH, and Uc on
the axial wavenumber kzR for (a) m=0 and (b) m=1 modes, for U0/
vAi=1.4 and Vei=0.5.

Figure 5. Same as Figure 4, but for U0/vAi=1.5 and Vei=5.
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longest axial wavelengths, while the minimum value of the
shear flow for kink waves is reached for the axial wavelength
comparable to the diameter of the cylinder. This allows for the
excitation of quasi-monochromatic perturbations by a NEW
instability at a coronal jet, which is consistent with the findings
of Vasheghani Farahani et al. (2009). It is easier to excite MHD
NEW in an underdense flux tube than in an overdense one,
which may be used in the interpretation of kink waves observed
in supra-arcade flows (Verwichte et al. 2005; Costa et al. 2009).
It may also play an important role in the MHD wave generation
and propagation in other plasma nonuniformities with field-
aligned shear flows in the solar atmosphere, in particular, in the
photosphere and chromosphere.

As an example of a NEW instability, we demonstrated the
occurrence of dissipative NEW instability caused by finite
viscosity, and found that the instability increment depends
strongly on the plasma temperature and the shear flow speed.
The excitation of nonaxisymmetric NEW, i.e., with m>0,
such as kink waves, is most effective in the long-wavelength
limit. Our results indicate that the omnipresence of inhomoge-
neous flows in the Sun’s atmosphere(e.g., Morgan &
Hutton 2018) may lead to the effective excitation of guided
MHD waves by NEW instabilities. In particular, the NEW
effect may be responsible for decayless (undamped) kink

oscillations(see, e.g., Nakariakov et al. 2016), which would
require a dedicated study in the compressible regime typical for
the solar corona. In addition, the developed model may have
applications to the solar wind, the Earth’s magnetotail and
other plasma environments with shear flows.
Our results are based on the assumption that the viscosity,

which is assumed small, only affects the temporal behavior of
the wave displacement, which may be valid in the early stage of
the NEW instability. Our theory can be tested and its valid range
can be investigated rigorously in the numerical simulations.

Figure 6. The difference between the thresholds of KHI and NEW instabilities
ΔU(=(UKH−Uc)/vAi) vs. the axial wavenumber kzR for (a) Vei=0.5 and
(b) Vei=5.

Figure 7. The curve of ˜g n- e vs. kzR for (a) m=0 and (b) m=1 modes, and
(c) the range of kzR (denoted by the arrows) for the existence of NEW
instabilities for Vei=0.5 and ñ = 0.0001e .
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Appendix A
Wave Equation inside the Flux Tube

Inside the flux tube, using Equations (1)–(6), and assuming
an axial constant magnetic field B0=(0, 0, B0) and a
background steady flow U0 along the field, the perturbed
quantities of the radial and azimuthal velocities, magnetic field
components, and total pressure, vr, vf, br, bf, bz, and
P(=B0bz/μ0), can be written as

( )r
m

= - ¢ +


v P b , A1i u ri i
B

ri
0

( )r
m f

= -
¶
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where prime and dot denote the derivative with respect to r and
time, respectively, and
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From Equation (A5), we obtain the equation for P
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With Equations (A2)–(A3) and (A7), by applying u to
Equations (A1) and (A7), we derive the wave equations for P
and vr,
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Appendix B
Wave Equation outside the Flux Tube

With the same axial magnetic field B0 as inside the flux tube,
assuming shear viscosity and no background flow, and using
Equations (1)–(6), we obtain for vr, vf, br, bf, bz and P
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where νe=μ/ρe and
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From Equation (B5) we obtain the equation for P
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Taking time derivative of Equations (B1)–(B2) results in

( ) r = + - ¢fF v J v J v P , B9e a re a re c e e

Figure 8. Same as Figures 7(a) and (b), but for Vei=5. The range of kzR for
the excitation condition of NEW instabilities is the same as Figure 7(c).
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With Equation (B10), by applying Lz to Equations (B7)
and(B9), we derive the equations for vr and P
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