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ABSTRACT

Aims. We study the efficiency of the energy transfer to shorter scales in the field-aligned direction — the parallel nonlinear cascade —
that accompanies the propagation of torsional Alfvén waves along open magnetic fields in the solar and stellar coronae, and compare
it with the same effects for the shear Alfvén wave. The evolution of the torsional Alfvén wave is caused by the back reaction of
nonlinearly induced compressive perturbations on the Alfvén wave.

Methods. The evolution of upwardly propagating torsional Alfvén waves is considered in terms of the second-order thin flux-tube ap-
proximation in a straight untwisted and non-rotating magnetic flux-tube. The Cohen-Kulsrud equation for weakly nonlinear torsional
waves is derived. In the model, the effect of the cubic nonlinearity on the propagation of long-wavelength axisymmetric torsional
waves is compared with the similar effect that accompanies the propagation of plane linearly-polarised (shear) Alfvén waves of small
amplitude.

Results. The solution to the Cohen-Kulsrud type equation for torsional waves shows that their evolution is independent of the plasma-
[, which is in contrast to the shear Alfvén wave. In a finite-3 plasma, the nonlinear evolution of torsional Alfvén waves is slower and
the parallel nonlinear cascade is less efficient than those of shear Alfvén waves. These results have important implications for the
analysis of possible heating of the plasma and its acceleration in the upper layers of solar and stellar coronae. In particular, one-
dimensional models of coronal heating and wave acceleration, which use shear Alfvén waves instead of torsional Alfvén waves,

over-estimate the efficiency of these processes.
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1. Introduction

Torsional Alfvén waves are (linearly incompressive) perturba-
tions that do not perturb the plasma density and are a type
of magnetohydrodynamic (MHD) wave in structured plasmas
(Van Doorsselaere et al. 2008b) that travel at the Alfvén speed
along the magnetic field. These waves are azimuthal perturba-
tions of the plasma that are linked to the azimuthal compo-
nent of the magnetic field (Vasheghani Farahani et al. 2010).
Alfvén waves are important as they may play a role in coronal
heating (e.g. Hollweg et al. 1982; Ofman 2005) and both solar
and stellar wind acceleration (e.g. Cranmer 2009; Charbonneau
& MacGregor 1995; Suzuki 2007).

There is only indirect observational evidence of torsional
Alfvén waves in the solar corona. Zaqarashvili (2003) sug-
gested that standing torsional Alfvén waves may be observed
in coronal loops from the periodic variation in the spectral
line widths. Banerjee et al. (2009) reported the possible pres-
ence of propagating torsional Alfvén waves in polar coronal
holes, as manifested by the non-thermal broadening of emis-
sion lines. A similar interpretation can be made for the non-
thermal broadening of coronal lines observed during an eclipse
(Singh et al. 2011). Torsional Alfvén waves were also pro-
posed as one possible explanation of the transverse motions
of coronal rain plasmas observed by Hinode/SOT (Antolin &
Verwichte 2011). Jess et al. (2009) reported the possible detec-
tion of torsional Alfvén waves in the chromosphere. In addition,
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Tapping (1983) and Grechnev et al. (2003) linked the observed
periodic behaviour of the microwave emission generated in so-
lar flares with the possible existence of torsional waves in flar-
ing magnetic flux tubes. However, the unequivocal identifica-
tion of torsional waves in solar atmospheric structures requires
the simultaneous analysis of the Doppler and magnetic sig-
nals. Torsional Alfvén waves should not be confused with the
kink modes of coronal plasma structures (see the discussion in
Van Doorsselaere et al. 2008a; Van Doorsselaere et al. 2008b).
A series of theoretical studies of coronal heating and solar
wind acceleration by Alfvén waves were carried out in one-
dimensional (1D) models by Suzuki (2004), Suzuki & Inutsuka
(2005), Verdini & Velli (2007), Suzuki (2007, 2008, 2011), and
Verdini et al. (2012). A key ingredient of these models is the
nonlinear cascade of the wave energy from the low-frequency
injection range to shorter scales, where it becomes subject to
dissipation by MHD and kinetic mechanisms. In Alfvén waves,
this effect becomes possible because of the nonlinear interaction
of the waves with the nonlinearly induced compressive pertur-
bations, or, in other words, the self-interaction of Alfvén waves.
For weakly-nonlinear Alfvén waves, this process is described
by the Cohen-Kulsrud evolutionary equation (Cohen & Kulsrud
1974). In particular, Nakariakov et al. (2000b) derived a gener-
alised Cohen-Kulsrud equation for linearly-polarised spherical
Alfvén waves in coronal holes, and demonstrated that the non-
linear transfer of energy to shorter scales can play a significant
role in the conditions typical of the solar and stellar coronae.
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However, in the solar and stellar coronal context, the con-
sideration of torsional Alfvén waves is more appropriate than
the shear Alfvén wave, as the existence of shear Alfvén waves
would require the horizontal extent of wave fronts to be much
larger than their vertical wavelength. Thus, comparison of the
nonlinear evolution of torsional and shear Alfvén waves is an
important issue that is needed for the justification of the 1D mod-
els of coronal heating and solar wind acceleration or for their
modification.

Vasheghani Farahani et al. (2011) studied weakly nonlin-
ear long-wavelength torsional Alfvén waves in magnetic flux
tubes of the solar corona. They considered a straight mag-
netic flux tube and used the second-order thin flux-tube ap-
proximation (Zhugzhda 1996). Compressive perturbations in-
duced nonlinearly by long-wavelength axisymmetric torsional
waves were found to oscillate at twice the frequency of the
source waves themselves. In contrast to shear Alfvén waves,
the plasma-8 was found to have no effect on the efficiency of
the generation of compressive perturbations in propagating tor-
sional Alfvén waves. The reason for this discrepancy is that the
natural speed of the longitudinal compressive perturbations in
a magnetic flux is the tube (or cusp) speed, while in a uniform
medium it is the sound speed. The MHD tube speed is always
lower than both the sound and Alfvén speeds.

In this paper, we consider the back reaction of the
nonlinearly-induced compressive perturbations on torsional
Alfvén waves. The Cohen-Kulsrud evolutionary equation for
torsional waves is derived, and its solution is compared with
the corresponding solution obtained for shear Alfvén waves
(Verwichte et al. 1999). The efficiency of the nonlinear parallel
cascade of energy in torsional and shear Alfvén waves is com-
pared with the use of spectral methods.

2. Self-interaction of torsional waves
by compressive perturbations

We consider a static and straight magnetic flux tube of cylin-
drical cross-section and radius R that has an axial equilibrium
magnetic field By, a mass density pg, a pressure pg, and a
cross-sectional area Ag. The internal total pressure is balanced
by the external total pressure p$j. In the following, our anal-
ysis is carried out in cylindrical coordinates (r, ¢, 7). Linear tor-
sional waves are azimuthal perturbations of the equilibrium, with
the vorticity Q = v, /r being accompanied by the alternating
magnetic twist (electric current density) J = B,/r. We restrict
our attention to the consideration of long-wavelength (relative
to the tube radius R) axisymmetric perturbations. At the axis of
the flux tube r = 0, the magnetic twist and the azimuthal ve-
locity are zero, and the description of the torsional waves re-
quires the second-order thin flux-tube approximation (Zhugzhda
1996) instead of the first order approximation (Roberts & Webb
1978). In that approximation, perturbations of physical quanti-
ties are Taylor-expanded with respect to the radial coordinate,
and asymptotically analysed using a small parameter equal to the
ratio of the tube radius to the characteristic length scale of the
perturbations in the longitudinal direction. In the second-order
thin flux-tube approximation, the perturbations of the azimuthal
and radial components of the magnetic field and the plasma ve-
locity increase linearly with the radial coordinate. In addition,
the Alfvén speed inside the tube is assumed to be constant, hence
the effects of Alfvén wave phase-mixing are absent. Substituting
the perturbations of the physical parameters in to the MHD equa-
tions, keeping the linear terms on the left hand side and
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gathering the nonlinear terms on the right hand side (RHS),
we obtain

dQ By 0J
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where C2 = y po/po is the sound speed, u is the velocity per-
turbation along the cylinder axis and V is the radial derivative
of the radial velocity v, (see Vasheghani Farahani et al. 2011,
for details). In the following, we assume that in the system there
are initially no compressive perturbations. (A similar assump-
tion is made for the standard derivation of the Cohen-Kulrsrud
equation, see Cohen & Kulsrud 1974.) Taking into account the
quadratic nonlinear terms of Q and J and retaining the nonlinear-
ity caused by the back reaction of the twist on the compressive
variables, the RHS of Eqs. (1)—(7) are expressed as
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where p3 is the total pressure in the external medium. The

other nonhnear terms are zero. The induced compressive per-
turbations may be written in terms of J with the use of Egs. (2),
(3), and (5)—(7)

ou__Clop R 01 1)
ar po 0z 4dnpy 0z
1 R?
6_V:__ ,p+_i 8_‘] , (13)
at 200 8nppdz\ 0z
0’B. By R’B.y 0 ( 0J
t == J_ il 14
or? 00 P 4mpg 8z( c’)z) (14)
hence
A Ay 0*
2 2 0 0 2
(Cy +CHD1p + EDADS o c’)t2 (— — poQ2 )
R? o (. 0J
ez s 1) ] 27}, 15
T AT A (')z( az) (1>
where Ca = B,o/ \/4mpo is the Alfvén speed, and
&> &> cic?
DT%A 62 - %’S’Aa_zz’ and C C2 C2 (]6)



S. Vasheghani Farahani et al.: Nonlinear evolution of torsional Alfvén waves

We note that the perturbation of the total pressure in the exter-
nal medium, p$', is ignored because we concentrate only on
the compressive perturbations inside the flux tube, and weakly
nonlinear torsional waves do not perturb the flux-tube boundary
(Vasheghani Farahani et al. 2011). The first term on the RHS
of Eq. (15) corresponds to the magnetic tension and centrifugal
forces, and the second term to the ponderomotive force.
The torsional Alfvén wave equation is then obtained by elim-
inating Q from Egs. (1) and (4)
ON; 0Ny
DaJ Bzo EP + o1
We note that the terms with the product J(0 J/dz) are related
to the ponderomotive force, which causes the nonlinear self-
interaction of Alfvén waves that we are interested in.
Considering weakly nonlinear waves, we may change to the
running frame of reference
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Assuming that the perturbations are slowly varying, we rewrite
Egs. (12)—(15) in the new frame of reference as

T=1

(C3 + CHR? 2oy CIR®? 0J*
U= ———-—-— =,
81poC3 16mpoC3 0¢
B, C2R? R?
=———07, p=—=7 (19)
8mpoCy 8nCy

In addition, in the thin flux-tube approximation, since the tor-

sional wave exists on any magnetic surface as long as a linear

dependence on r is satisfied, the linear relation between J and

Q is obtained from the wave equation by combining Egs. (1)

and (4) in the linear regime. We obtain
Ca

Q= .
BZO

(20)
In the new frame of reference, Eq. (17) is re-written with the use
of Egs. (19), (20) as
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with the solution
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where a is a dimensionless constant, L is a characteristic length-
scale, and the relation J = B, /R has been used. We note that the
function f denotes the initial shape of the torsional wave, at the
time 7 = 0.

Figure 1 shows the evolution of an initially harmonic
Alfvén wave, plotting the value B,/B; VS. the running coor-
dinate £/L, using Eq. (22). One can see that the shape is grad-
ually distorted and the wave shape departs from the harmonic.
Moreover, in contrast to the typical quadratically nonlinear evo-
lution in terms of the Burgers equation describing, e.g. slow
magnetoacoustic waves in coronal loops and polar plumes (see
Nakariakov et al. 2000c; Ofman et al. 2000), the Alfvén wave
shape differs from the saw-tooth. The nonlinear steepening oc-
curs twice as frequently as in the case of the Burgers equation.
It is a typical feature of the waves affected by cubic nonlin-
earity, in particular Alfvén waves (e.g. Verwichte et al. 1999;
Nakariakov et al. 2000b).
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Fig. 1. Evolution of an initially harmonic, weakly nonlinear, torsional
Alfvén wave. B,/B is plotted against the distance along the flux
tube &/L, normalised to the initial wavelength. The red curve is the ini-
tial shape at T = 7Cs/L = 0. The blue curve corresponds to the time
T = 5.5 when the wave is about to overturn.

3. Nonlinear cascade in torsional and shear Alfvén
waves

We compare Eq. (21) to its equivalent for a plane, shear
Alfvén wave. We consider linearly polarised Alfvén waves for
which v, and B, propagate in the z-direction with no depen-
dence on the x and y coordinates (0/dy = 0 and d/0x = 0).
Following the formalism developed in Verwichte et al. (1999)
and Nakariakov et al. (2000a), the equivalent of Eq. (21) is

9B, 3Ca 0B,
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with the solution
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where b is a dimensionless constant. Since J = B, /R, Egs. (21)
and (23) appear to be similar, but interestingly differ in the coeffi-
cients of the nonlinear terms. In the zero-8 limit, the coefficients
become identical and the solutions of both Egs. (21) and (23)
coincide. However, the discrepancy appears in the finite-f3 case,
when the torsional wave solution in Eq. (22) shows no depen-
dence on the sound speed (or the value of ), while the shear
wave solution in Eq. (24) has a singularity in the case of the res-
onance between the phase speed of the wave, Alfvén speed, and
the sound speed.

The evolution of both the torsional (Eq. (22)) and shear
(Eq. (24)) Alfvén pulses of an initially Gaussian shape is shown
in Fig. 2 for different values of the plasma-g. In all cases,
the pulse experiences nonlinear steepening, resulting in a weak
shock. In the zero- case, torsional and shear Alfvén pulses
evolve identically. With the increase in the plasma-f (defined
here as C2/C%), the nonlinear distortion of the shear Alfvén
pulse starts earlier and the shock forms quicker. Moreover, for
B > 1, the nonlinear distortion experienced by the torsional and
shear pulses differ considerably: in the shear pulse, the shock
appears at the backward slope, while in the torsional shock it
appears at the front slope, as in the S < 1 case.

To quantify the efficiency of the generation of higher har-
monics in the cases of torsional and shear Alfvén pulses, we
show their power spectra in Fig. 3. It is evident that the plasma-g

(24)
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Fig. 2. Snapshots of a Gaussian profile using Eq. (22) for the torsional
Alfvén wave (solid lines), and Eq. (24) for the shear Alfvén wave
(dashed lines), where B,/B and B,/B are plotted against the run-
ning coordinate &£/L normalised to the initial length of the pulse. The
value of the plasma-g3 is stated on each panel and the characteristic time
is T = TCs/L. The top, left panel represents the times T = 0, 1,3 and
the top, right panel the times T = 0, 1, 1.5. The middle left panel is for
the times 7 = 0, 0.3, and the middle right panel the times T = 0, 1, 1.5.
The bottom left panel is for the times T = 0, 1, 3, and the bottom right
panel the times at 7 =0, 1,3, 4.

does not affect the nonlinear cascade in torsional Alfvén waves,
in contrast to the case for the shear Alfvén waves.

4. Conclusions

We have studied the nonlinear self-interaction of long-
wavelength torsional Alfvén waves of weak amplitude, in a
straight, untwisted, and non-rotating magnetic flux tube. This
is caused by the interaction of the waves with the nonlinearly
induced, compressive, longitudinal perturbations. Comparison
is made with the same phenomenon for shear (plane) Alfvén
waves. We can summarise our findings as follows:

1. Nonlinear evolution of torsional Alfvén waves is described
by the Cohen-Kulsrud equation, as for shear Alfvén waves.
Howeyver, in contrast to the case of shear waves, the coeffi-
cient in the nonlinear term is independent of the plasma-g.

2. In the cases of both shear and torsional Alfvén waves, the
nonlinear self-interaction causes a steepening of the waves.
The nonlinear evolution of the torsional and shear waves is
identical in the zero-8 limit, while in the case of finite-f3 the
nonlinear steepening of torsional waves develops slower than
that of the shear waves. Moreover, in the hot plasma where
the sound speed is greater than the Alfvén speed, shocks are
formed at the opposite slopes in torsional and shear Alfvén
waves.
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Fig. 3. Spatial spectra’s of the torsional (solid lines) and shear (dashed
lines) Alfvén profiles shown in Fig. 2. The times are the same as for the
corresponding panels.

3. Spatial spectra of torsional and shear Alfvén waves show
that the nonlinear flattening of the spectrum in the case of
torsional waves is less efficient than for shear waves in the
finite-3 case.

Our study shows that in a finite-8 plasma, the nonlinear evolu-
tion of torsional Alfvén waves is slower than that of shear Alfvén
waves. Hence, the parallel nonlinear cascade that is the transfer
of energy to smaller parallel wave numbers in the case of tor-
sional waves is less efficient than for shear waves. This result
has important implications for the analysis of the wave-based
plasma heating and acceleration mechanisms in the upper layers
of solar and stellar coronae. In particular, 1D models of coronal
heating and wave acceleration, which use shear Alfvén waves
instead of torsional Alfvén waves, overestimate the efficiency of
these processes and need to be revised.

Acknowledgements. T.V.D. acknowledges the funding of an FWO Odysseus
grant. S.V.F. acknowledges the funding of the GOA/2009-009 of the KU leu-
ven Research Council.

References

Antolin, P., & Verwichte, E. 2011, ApJ, 736, 121

Banerjee, D., Pérez-Sudrez, D., & Doyle, J. G. 2009, A&A, 501, L15
Charbonneau, P., & MacGregor, K. B. 1995, ApJ, 454, 901

Cohen, R. H., & Kulsrud, R. M. 1974, Phys. Fluids, 17, 2215
Cranmer, S. R. 2009, Liv. Rev. Sol. Phys., 6, 3

Grechnev, V. V., White, S. M., & Kundu, M. R. 2003, ApJ, 588, 1163
Hollweg, J. V., Jackson, S., & Galloway, D. 1982, Sol. Phys., 75, 35


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219569&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219569&pdf_id=3

S. Vasheghani Farahani et al.: Nonlinear evolution of torsional Alfvén waves

Jess, D. B., Mathioudakis, M., Erdélyi, R., et al. 2009, Science, 323, 1582

Nakariakov, V. M., Mendoza-Briceno, C. A., & Ibdnez S., M. H. 2000a, ApJ,
528,767

Nakariakov, V. M., Ofman, L., & Arber, T. D. 2000b, A&A, 353, 741

Nakariakov, V. M., Verwichte, E., Berghmans, D., & Robbrecht, E. 2000c, A&A,
362, 1151

Ofman, L. 2005, Space Sci. Rev., 120, 67

Ofman, L., Nakariakov, V. M., & Sehgal, N. 2000, ApJ, 533, 1071

Roberts, B., & Webb, A. R. 1978, Sol. Phys., 56, 5

Singh, J., Hasan, S. S., Gupta, G. R., Nagaraju, K., & Banerjee, D. 2011,
Sol. Phys., 270, 213

Suzuki, T. K. 2004, MNRAS, 349, 1227

Suzuki, T. K. 2007, ApJ, 659, 1592

Suzuki, T. K. 2008, Nonlinear Proc. Geophys., 15, 295

Suzuki, T. K. 2011, Space Sci. Rev., 158, 339

Suzuki, T. K., & Inutsuka, S. 2005, ApJ, 632, L49

Tapping, K. F. 1983, Sol. Phys., 87, 177

Van Doorsselaere, T., Brady, C. S., Verwichte, E., & Nakariakov, V. M. 2008a,
A&A, 491, L9

Van Doorsselaere, T., Nakariakov, V. M., & Verwichte, E. 2008b, ApJ, 676, L73

Vasheghani Farahani, S., Nakariakov, V. M., & Van Doorsselaere, T. 2010, A&A,
517, A29

Vasheghani Farahani, S., Nakariakov, V. M., van Doorsselaere, T., & Verwichte,
E. 2011, A&A, 526, A80

Verdini, A., & Velli, M. 2007, ApJ, 662, 669

Verdini, A., Grappin, R., & Velli, M. 2012, A&A, 538, A70

Verwichte, E., Nakariakov, V. M., & Longbottom, A. W. 1999, J. Plasma Phys.,
62,219

Zaqarashvili, T. V. 2003, A&A, 399, L15

Zhugzhda, Y. D. 1996, Phys. Plasmas, 3, 10

A127, page 5 of 5



	Introduction
	Self-interaction of torsional waves by compressive perturbations
	Nonlinear cascade in torsional and shear Alfvén waves
	Conclusions
	References

