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ABSTRACT

Context. Fast magneto-acoustic waves are highly dispersive in waveguides, so they can generate quasi-periodic wave trains if a
localised, impulsive driver is applied. Such wave trains have been observed in the solar corona and may be of use as a seismological
tool since they depend upon the plasma structuring perpendicular to the direction of propagation.
Aims. We extend existing models of magnetoacoustic waveguides to consider the effects of an expanding magnetic field. The funnel
geometry employed includes a field-aligned density structure.
Methods. We performed 2D numerical simulations of impulsively generated fast magneto-acoustic perturbations. The effects of the
density contrast ratio, density stratification, and spectral profile of the driver upon the excited wave trains were investigated.
Results. The density structure acts as a dispersive waveguide for fast magneto-acoustic waves and generates a quasi-periodic wave
train similar to previous models. The funnel geometry leads to generating additional wave trains that propagate outside the density
structure. These newly discovered wave trains are formed by the leakage of transverse perturbations, but they propagate upwards
owing to the refraction caused by the magnetic funnel.
Conclusions. The results of our funnel model may be applicable to wave trains observed propagating in the solar corona. They
demonstrate similar properties to those found in our simulations.

Key words. magnetohydrodynamics (MHD) – Sun: atmosphere – Sun: corona – Sun: magnetic fields – Sun: oscillations – waves

1. Introduction

Fast magnetoacoustic waves are easily guided by plasma
non-uniformities stretched along the magnetic field (see, e.g.
Van Doorsselaere et al. 2008). The guided waves, also called
“modes” of the waveguiding plasma structures, are dispersive;
i.e., their phase and group speeds depend on the frequency and
the wavelength. This kind of dispersion is known as geomet-
rical, since it is prescribed by the presence of a characteris-
tic spatial scale in the system, the width of the waveguiding
non-uniformity (Roberts et al. 1983, 1984). More specifically,
in the low-β plasma of coronal active regions, the phase speed
of all fast magneto-acoustic modes decreases with the decrease
in the wavelength. Fast waves of longer periods propagate at
higher phase speeds. Waves of all azimuthal symmetry: sausage
(m = 0), kink (m = 1), and fluting (m > 1), where m is the
integer azimuthal wave number, have this property. The depen-
dence of the group speed on the period is more complicated.
If the profile of the plasma non-uniformity is steep enough, it
has a minimum at a certain wavelength (Nakariakov & Roberts
1995). This dispersive feature motivated Roberts et al. (1984)
to propose that a development of a broadband initial excitation
in a fast magneto-acoustic waveguide would result in the for-
mation of a quasi-periodic fast wave train. Indeed, as different
spectral components propagate at different speeds, they arrive at
a sufficiently remote observational point at different instants of
time. Moreover, Roberts et al. (1984) have argued that the typical

characteristic signature of such a wave train would have three
distinct phases. This result was consistent with the variations in
the radio emission observed in solar flares (Roberts et al. 1983).
This first encouraging result stimulated a number of follow-up
theoretical and observational studies.

In the series of early numerical experiments on the initial
stage of the dispersive evolution of guided fast wave trains
confirmed the formation of a quasi-periodic wave pattern in
both linear (Murawski & Roberts 1993a,b, 1994) and nonlin-
ear (Murawski & Roberts 1993c,d) regimes. More advanced
numerical simulations of the developed stage of the evolution
have shown that a more adequate description of the formed
quasi-periodic wave pattern could be obtained with the use
of wavelet analysis (Nakariakov et al. 2004). It was shown
that a very robust feature of such a wave train is the “crazy
tadpole” wavelet spectrum, with a quasi-monochromatic low-
amplitude, low-frequency “tail” preceding the relatively broad-
band, shorter-frequency larger amplitude “head”. Moreover,
this observational feature was found in the propagating fast
wave trains detected with the Solar Eclipse Coronal Imaging
System (SECIS) (Katsiyannis et al. 2003; Cooper et al. 2003).
Development of that study revealed that, for the perturbations
of the sausage symmetry, an important factor is also the broad-
ness of the initial spectrum in comparison with the cut-offwave-
length (Nakariakov et al. 2005) and that in some cases the
wavelet spectrum of the resulting wave train could be almost
monochromatic.
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Similar tadpole wavelet features were detected in a num-
ber of flare-associated radio bursts observed in the decimetric
band (Mészárosová et al. 2009a,b,a, 2011; Karlický et al. 2011;
Mészárosová et al. 2013). In particular, observations with the
spatial resolution revealed the appearance of signals with the tad-
pole wavelet signatures in a fan structure above a coronal mag-
netic null point (Mészárosová et al. 2013). Recently, fibre-burst
spectral features observed in the radio band were interpreted in
terms of propagating fast sausage magneto-acoustic wave trains
(Karlický et al. 2013). Detailed numerical studies have demon-
strated the formation of very characteristic wave trains also in
current sheets (Jelínek & Karlický 2012). This effect was found
to be robust, and was confirmed to occur in vertical, gravitation-
ally stratified current sheets typical of the standard model of a
solar flare (Jelínek et al. 2012; Karlický et al. 2013).

High time resolution and sensitivity of the Solar Dynamics
Observatory/Atmospheric Imaging Assembly (AIA) instrument
allowed for detection of propagating fast wave trains in the ex-
treme UV (EUV) band. Liu et al. (2011) detected disturbances
of EUV emission that emanated near the flare kernel and prop-
agated outwards up to about 400 Mm along a funnel of coro-
nal loops at the phase velocity of about 2000 km s−1, with the
main period of about 3 min. Ofman et al. (2011) interprets these
propagating disturbances as fast magnetoacoustic waves driven
quasi-periodically at the base of the flaring region. The model
included the dipole magnetic field and gravitationally stratified
density at coronal temperature. At the coronal base, the fast
magneto-acoustic wave was excited by periodic velocity pulsa-
tions in the horizontal plane confined to a funnel of magnetic
field lines, associated with quasi-periodic energy releases with
the same 3-min period. Similar fast waves were seen in sev-
eral other events. In particular, Shen & Liu (2012) observed
fast waves of the EUV intensity with several periodicities rang-
ing from 25 s to 134 s. The periodicity was linked with quasi-
periodic variations of the soft X-ray intensity in the solar flare
that was believed to be the driver of the waves. Liu et al. (2012)
detected fast waves with the dominating periodicity of 2 min,
also associated with quasi-periodic pulsations in the accompa-
nying flare. However, there was also another class of observed
waves with the shorter periods of about 47 s.

In a uniform medium, fast magnetoacoustic waves do not
propagate along the magnetic field. But, because the fast waves
are observed to propagate along the magnetic field, they should
be guided by transverse structuring of the fast speed: locally the
waves are oblique and travel along the field because of refrac-
tion or reflection (e.g. Van Doorsselaere et al. 2008). If the fast
waves are generated by impulsive energy releases and guided
by plasma non-uniformities, they should be subject to dispersive
evolution. In this paper, we aim to study the effect of dispersive
evolution on magnetic funnels of the solar corona.

2. Model setup

In this work we restrict ourselves to a simple 2D equilibrium that
allows us to emphasise the main features of the wave propaga-
tion and perform a controlled parametric study. The equilibrium
magnetic configuration is a potential magnetic field

B = B0 sin
( x + π

l

)
exp

(
− z

l

)
ēx

+B0 cos
( x + π

l

)
exp

(
− z

l

)
ēz, (1)

where B0 and l are constant, controlling the size of the field and
the characteristic spatial scale, respectively. In the following, we

Fig. 1. Magnetic field lines for our equilibrium. The magnetic field de-
scribes an expanding funnel at the centre of the numerical domain. The
contour represents the magnitude of the magnetic field, which varies
exponentially with height.

consider x and z as the horizontal and vertical coordinates, re-
spectively. Using the components of the field vector given by
Eq. (1), one can readily obtain the equation of the field lines,

z = log
∣∣∣∣∣sin

( x + π
l

)∣∣∣∣∣ + C (2)

where C is a constant determining the individual field lines.
Figure 1 shows the geometry of the field. The absolute value
of the field is

B = B0 exp(−z/l), (3)

thus it is constant in the horizontal direction, as demonstrated
by the contour plot of Fig. 1. Since our equilibrium is strongly
related to trigonometric functions and it is convenient for us to
consider a domain of width 2π, we continue to use dimensionless
units throughout this paper. Results may be converted to physi-
cal units by choosing appropriate normalisation constants; e.g.,
dimensionless length scales (x̃), time scales (t̃ ), and speeds (ṽ)
can be converted to physical ones (x, t, and v) using x = x̃ l0,
t = t̃ t0, and v = ṽ v0, where l0, t0, and v0 are the chosen nor-
malisation constants for length scales, times, and speeds, respec-
tively, and v0 = l0/t0 (see example in Sect. 4).

The equilibrium plasma density is taken as a modified sym-
metric Epstein profile. At each horizontal level, the density in
the funnel is given by an Epstein profile (see, e.g. Nakariakov &
Roberts 1995; Pascoe et al. 2007), with the characteristic width
of the profile growing with height such that the profile remains
aligned with the magnetic field lines. Also, the density is taken to
be hydrostatically stratified, with the effective scale height Λeff .
The value of Λeff = Λ cos α is greater than the density scale
heightΛ ≈ 50T , where T is the plasma temperature measured in
MK, the scale height is measured in Mm, and α is the angle of
the funnel axis from the vertical direction. Thus, the equilibrium
density is given by the expression

ρ0 = exp

(
− z + π
Λeff

)

×
[
(ρF − ρ∞) sech2

(
x/l

arccos exp(z/l) − π/2
)p

+ ρ∞,
]

(4)

where ρ∞ is the density far from the funnel, taken as constant for
simplicity, and ρF is the departure of the density in the centre of
the funnel at the height z = −π from the background density ρ∞.
The value of ρF can be either positive or negative, with |ρF| < ρ∞.
The index p allows one to control the steepness of the trans-
verse profile of the density. The internal density ρF can be either
greater or lower than the external density ρ∞. For p → ∞ the
profile degenerates into a step function. Figure 2 shows the den-
sity profile for a funnel with density contrast ρF/ρ∞ = 3, p = 8,
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Fig. 2. Density profile for a funnel with density contrast ρF/ρ∞ = 3,
p = 8, and no stratification Λeff → ∞. The profile follows the magnetic
field lines of Fig. 1.

Fig. 3. Dependence of the half width a of the funnel upon height z for
the equilibrium shown in Figs. 1 and 2.

l = 1, and we first consider the case of no density stratification
Λeff → ∞. Figure 3 shows the dependence of the half width a of
the funnel upon height z. The funnel has a ≈ 0.1 at the location
of the initial perturbation (z = −3π/4), and a ≈ 0.2 at z = −π/2
where wave train signals will be measured (see Sect. 3).

Figure 4 shows the “local” dispersion curves for trapped
sausage perturbations of the transverse density profile used in
Eq. (4) and Fig. 2 at a certain fixed height z. The phase (top) and
group (bottom) speeds are shown as a function of the wave num-
ber k = 2π/λ normalised to the half width of the density profile a
(see Fig. 3). The upper and lower dashed lines represent the ex-
ternal and internal Alfvén speeds, respectively. The excitation of
oscillations over a range of wave numbers by a localised, impul-
sive perturbation results in two kinds of wave motions: trapped
modes guided along the axis of the funnel and leaky waves go-
ing away from the funnel. The trapped modes appear from the
spectral energy with the wave numbers greater than the cut-off
value that corresponds to the phase speed being equal to the ex-
ternal Alfvén speed (the leftmost value of the dispersive curve in
Fig. 4). The leaky waves are excited by the part of the spectrum
with the wave numbers smaller than the cut-off value. In contrast
to the trapped waves that are confined to the waveguiding plasma
non-uniformity, leaky waves propagate away from the waveg-
uiding non-uniformity (Cally 1986; Nakariakov et al. 2012). In
this case the non-uniformity acts as a fast magneto-acoustic an-
tenna. Physically, the difference between trapped and leaky com-
ponents is determined by the local incidence angle of the wave
to the boundary of the non-uniformity in comparison with the
angle of total internal reflection. The spectral components with

Fig. 4. Dependence of the phase (top) and group (bottom) speeds on
the normalised wave number ka for the transverse density profile used
in Fig. 2. The upper and lower dashed lines represent the external and
internal Alfvén speeds, respectively.

longitudinal wave numbers smaller than the cut-off value, hence
with an incidence angle closer to normal than the total internal
reflection angle, become leaky: a part of their energy escapes to
the external medium during each act of reflection. Propagation of
these different spectral components of the guided modes at dif-
ferent speeds leads to formation of a quasi-periodic wave train
(Nakariakov et al. 2004). The particular signal measured de-
pends upon the details of the driver, the waveguide, and the dis-
tance of the point of measurement from the initial perturbation
(Nakariakov et al. 2005). The group speed possesses a minimum,
which is the case for all p > 1 (Nakariakov & Roberts 1995), and
the chosen density profile steepness of p = 8 is large enough
that the results differ from those of the step profile (p → ∞)
by only ∼1%. On the other hand, the profile is smooth enough
to be resolved well in our simulations (e.g. Fig. 2), so we avoid
introducing discontinuities.

The applied density structure is defined to be in equilibrium
by defining the internal energy density as

ε =
Pg

ρ0 (γ − 1)
(5)

where Pg is a constant gas pressure and γ = 5/3 is the ratio
of specific heat capacities. Since the magnetic field strength de-
creases as a function of height z and the gas pressure is constant,
plasma β increases with height. We choose to consider a low
β plasma, with β < 6 × 10−4 throughout the numerical domain.

The equilibrium given by Eqs. (1), (4), (5) is perturbed in the
transverse direction by a spatially localised function

Vx = A
x
l

exp

⎡⎢⎢⎢⎢⎢⎣−
(

x/l
Δx

)2⎤⎥⎥⎥⎥⎥⎦ exp

⎡⎢⎢⎢⎢⎢⎣−
(
z/l + 3π/4
Δz

)2⎤⎥⎥⎥⎥⎥⎦ , (6)
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where A is the initial amplitude, taken to be small enough to
avoid nonlinear effects, and the parameters Δx and Δz are the
width of the initial pulse in the horizontal and vertical directions,
respectively. Expression (6) is an odd function with respect to the
horizontal coordinate x, so it describes the excitation of sausage
perturbations. We begin by considering Δx = 0.05 and Δz =
0.05. This choice of Δx sets the width of the initial excitation to
be similar to the width of the funnel at this height. The effect of
varying Δz is considered in Sect. 3.1.

Our typical resolution is 4000 × 2000 grid points for a nu-
merical domain of size 2π × π. The results of a convergence
test at a resolution of 8000 × 4000 grid points produced re-
sults that differed by less than 0.2%. Line-tied boundary con-
ditions were used, with damping layers near the edges of the nu-
merical domain to avoid perturbations reflecting back inwards.
Simulations were preformed using the 2.5D MHD code Lare2d
(Arber et al. 2001), which operates by taking a Lagrangian
predictor-corrector time step, after which variables are conser-
vatively remapped back onto the original Eulerian grid using
van Leer gradient limiters. The governing equations simulated
by the code are the (normalised) ideal MHD equations with an
adiabatic equation of state. In our simulations, the 2.5D approx-
imation corresponds to having no variations in the y-direction
i.e. ∂/∂y = 0.

3. Results

The fast wave train is generated by applying a perturbation given
by Eq. (6) near the bottom of the numerical domain. The density
enhancement (Eq. (4)) defines a local minimum in the Alfvén
speed, so it acts as a waveguide for the fast sausage perturba-
tions. Wave trains propagate upwards and downwards along the
density structure. We focus on the behaviour of the upwards-
propagating wave trains. The downwards-propagating waves are
also damped as they approach the lower boundary. Since the
plasma β is very small but finite and our perturbation compres-
sive, we also generate a slow wave, but this propagates an in-
significant distance during our simulation, so we are not con-
cerned with its behaviour in this paper.

The transverse size of the perturbation Δx was chosen to be
similar to the transverse size of the funnel where the perturbation
is applied. The generated fast sausage wave train therefore un-
dergoes dispersive evolution, similar to previous studies, owing
to the presence of this characteristic transverse length scale pro-
vided by the waveguide. However, as the wave train propagates
to higher z, the density structure expands as the funnel follows
the magnetic field lines (Eq. (1)). This increase in the character-
istic transverse length scale leads to the wave train undergoing
less dispersive evolution as it propagates. (In the limit of a→ ∞,
the medium is uniform and dispersionless.)

In the other limit, as ka → 0, we must take another property
of sausage modes into account; the existence of a cut-off wave
number which leads to leakage. The effect of the cut-off wave
number in the case of a uniform slab is discussed in Sect. 2.
Likewise, in the case of a funnel, for an initial perturbation with a
sufficiently large longitudinal extent, some fraction of the spatial
spectrum of the perturbation will correspond to wavelengths that
are longer than the cut-off wavelength. Perturbations with larger
longitudinal scales have narrower spatial spectra and so more of
the energy is localised at wave numbers smaller than the cut-off
wave number (Nakariakov et al. 2005).

For our applied perturbation, we therefore have a compo-
nent of the wave train that falls below the sausage mode cut-off
and leaks out of the waveguide. The wavelength of the longest

Fig. 5. Snapshot of velocity |u| (top) and density (bottom) perturbations
at t̃ = 5 for the equilibrium shown in Figs. 1 and 2 (ρF/ρ∞ = 3, p = 8,
Λeff → ∞). The line contours outline the equilibrium density profile.

trapped component of the wave train depends upon the density
contrast ratio and the width of the waveguide. For our chosen
density structure in this paper, the density contrast remains con-
stant with height. The increase in the width of the waveguide
with height suggests that the funnel becomes less leaky with
height. The components of the wave train that are trapped and
propagate along the axis of the waveguide continue to remain
trapped at greater heights. Most of the leakage therefore occurs
at the start of the simulation when the wave trains are generated.

Just after the initial perturbation, we therefore have the sep-
aration of the fast sausage wave train into two distinct parts: the
trapped part that propagates along the waveguide axis, and the
leaky part that propagates away from the waveguide. In previ-
ous work (e.g. Pascoe et al. 2007) when a straight waveguide is
considered, the leaky components propagate perpendicular to the
waveguide and out of the system. In our current model, however,
the magnetic field strength varies as a function of height as given
by Eq. (3). The wave train propagation speed therefore decreases
with increasing z, so the leaky wave train undergoes refraction
and also propagates upwards in our model. These leaky wave
trains are generated both to the left and right of the funnel, so we
denote them as “wing” wave trains to distinguish them from the
usual wave train that propagates along the waveguide.

A snapshot of simulation variables at t̃ = 5 is shown in Fig. 5.
The upper panel shows the perturbations in the absolute value of
the velocity, with the line contours outlining the boundary of the
density profile. The trapped wave train can be seen within the
funnel density structure at z ≈ −1, while the wing wave trains are
outside and on either side of the density structure, and they have
propagated further in the z-direction. Within the funnel the wave
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Fig. 6. Density signals measured inside (top) and outside (bottom) the
funnel density structure.

train is formed by perturbations to the transverse velocity vx, and
perturbations vanish along the funnel axis, in accordance with
the anti-symmetric nature of the sausage-mode transverse veloc-
ity profile. The bottom panel of Fig. 5 shows the corresponding
density perturbations. For the trapped wave train, these are great-
est along the funnel axis, where the sausage mode velocity has
a node. In comparison, the wing wave train mainly comprises
vertical velocity perturbations vz, propagating in phase with den-
sity perturbations. Consistent with fast wave behaviour, the wave
fronts propagate both across and along (in the guided regime)
field lines. The wave front may continue to expand, though in
these simulations it is restricted by the boundaries of the numer-
ical domain (and the damping layers located there). For clarity
in Fig. 5 the numerical domain has been cropped to focus on
the wave trains. The horizontal and vertical scales are unequal,
which exaggerates the propagation angle of the wing wavefront,
which is around ten degrees from vertical by this stage.

Figure 6 shows the density perturbation signals as a func-
tion of time measured at two points: one along the funnel axis
x = 0, and the other outside the funnel at x = −π/2, where the
wing wave train passes. The signals are taken at the same height
of z = −π/2 (with the initial perturbation at z = −3π/4). Figure 7
shows the wavelets corresponding to the signals in Fig. 6. Both
the trapped and the wing wave trains are quasi-periodic. The per-
turbations are much smaller than the equilibrium density values
(here, 3 at the funnel axis and 1 far from the axis), in accordance
with the small amplitude used in Eq. (6). Since the wing wave
trains are formed from the leaky components of the initial per-
turbation, it typically comprises periods that are longer than the
trapped wave train. However, in Fig. 7, the wavelet spectrum for
the wing wave train shows it is in fact composed of comparable
(and even shorter) periods than the one in the waveguide. This
discrepancy can be understood as due to the variation in the mag-
netic field strength and Alfvén speed, with a height that causes
the wavelengths of the wave trains to shorten as they propagate
upwards.

In Fig. 7 (and later wavelet figures) the colour panel repre-
sents the wavelet (Morlet) power spectrum of the signal. The
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Fig. 7. Wavelets for the density signals shown in Fig. 6. Periods are
measured in units of t0.
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Fig. 8. Spatial cuts for the axis (top) and wing (bottom).

four colour contours correspond to levels of wavelet power
higher than 0.2, 0.4, 0.6, and 0.8 times the maximum value.
The solid contour shows the 99% significance level, estimated
according to Torrence & Compo (1998). To aid visualisation,
the normalised time profile of the signal is superimposed on the
wavelet spectrum as a thick solid line. The cross-hatched regions
on either end of the wavelet spectrum indicate the cone of in-
fluence. The panel on the right of the wavelet spectrum repre-
sents the global wavelet power spectrum (WPS) of the signal.
The dashed line on this plot defines the 99% significance level.

Figure 8 shows the spatial profile of the trapped and wing
wave trains at t̃ = 5. By this time, the wing wave train has prop-
agated higher than the trapped wave train due to the external
Alfvén speed being larger than the internal Alfvén speed (and
both decreasing with height in accordance with Eq. (3)). The
wavelet spectra shown in Fig. 9 demonstrate that the signals at
this time have similar wavelengths λ ∼ 0.1.

Figure 10 shows the wing wave train plotted at times t̃ = 5,
2.5, and 1.75. As the wave train propagates upwards, the Alfvén
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Fig. 9. Wavelets for the density signals shown in Fig. 8.

Fig. 10. Evolution of wing wave train with distance. The signal is plot-
ted at times t̃ = 5 (solid), 2.5 (dashed), and 1.75 (dotted).

speed decreases, so the wavelengths of the quasi-periodic sig-
nal decrease. The amplitude of the perturbations increases with
distance travelled.

Figure 11 shows the evolution of the trapped wave train
as it propagates. In the top panel, the signals at times t̃ = 5
and 2.5 are normalised to a common maximum and shifted in
height to lie on top of each other. The wavelet spectra for t̃ = 5
and t̃ = 2.5 are shown in the middle and bottom panels, respec-
tively, and demonstrate the decrease in wavelength at the later
time. Figure 12 shows the same analysis for the wing wave train,
for which the shift in wavelengths is greater, in accordance with
the larger (vertical) distance travelled due to the higher Alfvén
speed.

3.1. Effect of driver profile on “wing” wave train

Nakariakov et al. (2005) demonstrates how the spectral profile
of the wave trains depends upon the longitidunal wavelength
of the initial pulse. Pulses with larger longitudinal sizes Δz are
composed of a narrower range of wave numbers and so produce
wave trains that are more monochromatic. In Fig. 13 we show
the wing signals generated by pulses with different values of Δz.
For higher values of Δz, the signal becomes less quasi-periodic
and appears more like a single pulse, consistent with the more
monochromatic spatial spectra of their source.
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Fig. 11. Evolution of the trapped wave train. The signals at times t̃ = 5
(solid) and 2.5 (dashed) are normalised and shifted in height (top panel).
The wavelet spectra for t̃ = 5 and t̃ = 2.5 are shown in the middle and
bottom panels, respectively.
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Fig. 12. Same as Fig. 11 but for the wing wave train (see also Fig. 10).
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Fig. 13. Wing density signals for Δz of 0.02 (top), 0.1 (middle), and 0.5
(bottom).

3.2. Density contrast ratio

Figure 14 shows the density profile for a funnel with a higher
density contrast ratio of ρF/ρ∞ = 10, with all other parameters
remaining the same as in previous sections. For higher density
contrasts, the difference between the internal and external Alfvén
speeds increases, and so a wider range of periodicities is sup-
ported by the structure. Figure 15 shows the wavelet signatures
for the simulation with the higher density. The typical periods in
the wave trains are longer in comparison with the lower density
simulation (Fig. 7).

3.3. Effect of stratification

Next we consider the effect of vertical density stratification,
which is determined in our equilibrium by the parameter Λeff .
Figure 16 shows the density profile for a funnel withΛeff = 0.02,
with the external medium also having the same vertical stratifi-
cation such that the density contrast ratio remains constant with
height. The density signals and their wavelets for this structure
are shown in Fig. 17. By comparing to Fig. 7 we see that the

Fig. 14. Density profile for a funnel with density contrast ρF/ρ∞ = 10,
p = 8, and no stratification.
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Fig. 15. Density signals and wavelets measured inside (top) and outside
(bottom) the funnel density structure for ρF/ρ∞ = 10.

density stratification does not dramatically alter the wave trains,
though there is a shift in wavelet power to smaller periodici-
ties. The effect of the magnetic geometry (with intrinsic mag-
netic stratification) is the dominant feature of the funnel.

4. Discussion

In this paper we have presented the first results of studying the
behaviour of impulsively generated fast magnetoacoustic waves
in a funnel geometry. The funnel comprises a density enhance-
ment that is field-aligned and that expands with height. This
structure acts as a waveguide, so when we apply our compressive
driver we generate fast sausage waves that propagate along the
funnel. Their dispersive nature leads to the formation of a quasi-
periodic wave train, similar to wave trains generated in previ-
ously considered geometries such as straight slabs and cylinders.

Owing to the existence of a cut-off wave number for the
sausage mode and to the localised nature of our driver, some
of the fast wave energy leaks out of the waveguide. In our fun-
nel model, these waves undergo refraction due to the variation
in the magnetic field strength with height, so they also propagate
upwards. We therefore obtain the result of quasi-periodic “wing”
fast magnetoacoustic wave trains propagating outside of the fun-
nel density structure, but having properties that depend upon the
details of the structure and the driver.

The existence of these additional wave trains might account
for certain wave behaviour observed in the solar corona after
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Fig. 16. Density (top) and Alfvén speed (bottom) profiles for a funnel
with density contrast ρF/ρ∞ = 3, p = 8 and stratification with Λeff = 2.
The background density has the same vertical stratification, such that
the density contrast ratio remains constant with height.
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Fig. 17. Density signals and wavelets measured inside (top) and outside
(bottom) the stratified funnel shown in Fig. 16.

impulsive energy release, such as flares. Yuan et al. (2013) re-
port the observation of a series of quasi-periodic propagating
fast wave trains associated with bursts in radio emission due
to flaring energy releases. The wave front was resolved using
SDO/AIA and was seen to expand as the wave train propagates.
Measurements of the amplitude of the wave trains reveal that it
increased and then decreased again. This may be understood in
terms of competition between amplification of the wave due to
stratification as it propagates, and attenuation of the wave front
due to expansion.

These properties are consistent with the features of the wing
wave trains we obtain in our simulations. Figure 10 shows the

increase in the amplitude of the wave train as it propagates up-
wards in the magnetically stratified medium, similar to the open
corona. Our simulations are performed in a 2D geometry so the
expansion of the wave front that causes the decay of the ampli-
tude is likely to be more pronounced in 3D. The wave fronts are
observed in AIA intensity perturbations that are in-phase per-
pendicular to the direction of travel, similar to the perturbations
shown in Fig. 5. The observed wave trains were also seen to de-
celerate, again consistent with our model.

If we consider the wave trains observed by Yuan et al. (2013)
in more detail, they report (for Train-2) a period of 40 ± 0.5 s,
λ = 24.4 ± 0.1 Mm, and so a corresponding phase speed ω/k =
λ/P = 0.61 Mm/s. If we consider the numerical simulations pre-
sented in Figs. 6−9, we have (in dimensionless units) P̃ ≈ 0.4
and λ̃ ≈ 0.12, with λ̃/P̃ ≈ 0.3. We may therefore compare
our numerical results to the observations of Yuan et al. (2013)
by choosing normalisation constants l0 = 200 Mm and v0 =
2 Mm/s, which give P ≈ 40 s, λ ≈ 24 Mm, and ω/k ≈ 0.6 Mm/s.
This choice of normalisation also implies that the wave train in
our simulation would have travelled ≈150 Mm, which is consis-
tent with Fig. 1c of Yuan et al. (2013), and the funnel would have
a half width a ≈ 20 Mm near the point of excitation.
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