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ABSTRACT

Context. There is abundant observational evidence of longitudinal waves in the plasma structures of the solar corona. These essentially
compressive waves are confidently interpreted as slow magnetoacoustic waves. The use of the slow waves in plasma diagnostics and
estimating their possible contribution to plasma heating and acceleration require detailed theoretical modelling.

Aims. We investigate the role of obliqueness and magnetic effects in the evolution of slow magnetoacoustic waves, also called tube
waves, in field-aligned plasma structures. Special attention is paid to the wave damping caused by nonlinear steepening.

Methods. We considered an untwisted straight axisymmetric field-aligned plasma cylinder and analysed the behaviour of the slow
magnetoacoustic waves that are guided by this plasma structure. We adopted a thin flux tube approximation. We took into account
dissipation caused by viscosity, resistivity and thermal conduction, and nonlinearity. Effects of stratification and dispersion caused by
the finite radius of the flux tube were neglected.

Results. We derive the Burgers-type evolutionary equation for tube waves in a uniform plasma cylinder. Compared with a plane
acoustic wave, the formation of shock fronts in tube waves is found to occur at a larger distance from the source. In addition, tube
waves experience stronger damping. These effects are most pronounced in plasmas with the parameter 3 at about or greater than unity.

In a low-g plasma, the evolution of tube waves can satisfactorily be described with the Burgers equation for plane acoustic waves.

Key words. magnetohydrodynamics (MHD) — Sun: corona — waves — methods: analytical

1. Introduction

The magnetised plasma of the solar atmosphere is an elastic and
compressible medium that can support propagation of magneto-
hydrodynamic (MHD) waves. Observational data collected dur-
ing the past two decades show that MHD waves exist everywhere
on the Sun. Investigating MHD wave behaviour in the solar at-
mosphere contributes to our understanding of the coronal heat-
ing and solar wind acceleration problems, and also provides us
with valuable seismological information about the solar plasma
parameters that are difficult or impossible to measure directly.
Of special interest are slow magnetoacoustic waves that
are observed in various plasma structures of the solar atmo-
sphere, such as coronal plumes and loops (see Nakariakov
2006; De Moortel 2009; Banerjee et al. 2011; De Moortel &
Nakariakov 2012, for reviews of recent findings). The observed
rapid damping of coronal slow waves has been the key prob-
lem for theoretical investigations since they first were discov-
ered observationally (see, e.g. Roberts 2006; De Moortel 2006).
The first interpretation of quasi-periodic propagating EUV in-
tensity disturbances observed in polar plumes and in coronal
plasma fans as slow magnetoacoustic waves was presented by
Ofman et al. (1999, 2000) and Nakariakov et al. (2000b). These
one-dimensional analytical models were based on plane acous-
tic waves and accounted for effects of weak nonlinearity, dissi-
pations and gravitational stratification of the solar corona. The
analytical studies presented in these papers demonstrated that
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for relative amplitude lower than several percent, nonlinear ef-
fects in the wave damping could be neglected. Therefore, fur-
ther modelling of propagating slow magnetoacoustic waves in
1 MK coronal loops by De Moortel & Hood (2003, 2004) and
De Moortel et al. (2004) focused attention on the linear regime
alone. It was concluded that thermal conduction was the domi-
nant dissipation mechanism determining the damping rate.

On the other hand, numerical modelling of SUMER/SOHO
observations of standing slow magnetoacoustic waves in hot
coronal loops with temperatures of up to 10 MK demonstrated
the importance of nonlinear effects (Nakariakov et al. 2004;
Tsiklauri et al. 2004, see also Wang 2011, for a comprehensive
review). Very recently, Ruderman (2013) studied a similar prob-
lem analytically and also found reduction of the damping time
owing to nonlinear steepening of the wave profile.

Apart from nonlinear effects, there are other factors that can
modify the damping rate of slow magnetoacoustic waves guided
by plasma non-uniformities. Such factors can also change
(strengthen or weaken) the influence of the nonlinearity on the
wave evolution. Most analytical studies and numerical simula-
tions of slow magnetoacoustic waves in the corona were fo-
cused on the degenerate case of the wave propagation strictly
along the magnetic field (e.g. Nakariakov et al. 2000b; Ofman &
Wang 2002; De Moortel & Hood 2003; Nakariakov et al. 2004;
Tsiklauri et al. 2004; De Moortel & Hood 2004; Ruderman
2013). In this case, the magnetic field is not perturbed and gives
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only the wave-guiding effect for propagating essentially acoustic
waves. However, for a finite-8 plasma and non-parallel propaga-
tion, the non-zero magnetic field fluctuations interact with the
density and velocity perturbations and therefore affect the wave
propagation speed as well as the wave evolution. Numerical full-
MHD simulations by Ofman et al. (2000), which incorporated
the two-dimensional (2D) plume structure, dissipation, nonlin-
earity, and the gravitational stratification, showed that 2D effects
may increase the damping rate. Verwichte et al. (2008) found
that SUMER oscillations have a clear tendency for larger am-
plitude disturbances to have shorter damping times, and stud-
ied numerically a nonlinear damping problem for standing slow
waves in a 2D model. It was demonstrated that the nonlinearity
considerably reduced the damping time due to the significant en-
ergy dissipation in the shock front. Recently, the importance of
the magnetic component for oblique slow-mode waves has been
demonstrated by Nakariakov & Zimovets (2011) and Gruszecki
& Nakariakov (2011) in numerical simulations of slow waves in
coronal plasma arcades.

Thus, modelling coronal slow magnetoacoustic waves re-
quires assessing whether it is important to take into account
the wave-guiding effect. In particular, coronal plumes and loops
are regions of the decreased Alfvén speed and act as wave-
guides for MHD waves. Recently, Vasheghani Farahani et al.
(2011, 2012) have found that the wave-guiding effect modifies
the nonlinear evolution of torsional Alfvén waves quite signifi-
cantly. Likewise, plasma structuring results in the transformation
of slow magnetoacoustic waves into the so-called tube mode.
This modification is essentially connected with the oblique na-
ture of the waves in the wave-guide (Roberts 2006). It leads to
the propagation of the slow magnetoacoustic disturbances along
plasma non-uniformities at the tube speed (Defouw 1976; Edwin
& Roberts 1983). The tube speed is subsonic and sub-Alfvénic
and depends on the magnetic field strength. Therefore, oblique
slow waves can be used for the seismological diagnostics of the
magnetic field (Roberts 2006; Wang et al. 2007, 2009). However,
the role of the slow wave obliqueness in its nonlinear damping
has not been revealed.

In this paper we develop the weakly nonlinear analyti-
cal model designed in Ofman et al. (2000), Nakariakov et al.
(2000b) and Tsiklauri & Nakariakov (2001) for propagating
slow magnetoacoustic waves in plasma non-uniformities, tak-
ing into account the oblique nature of the perturbations in ad-
dition to nonlinearity and dissipation. To simplify the problem,
we focus on the wave propagation in a straight plasma cylinder,
neglecting effects of the magnetic field curvature, the increase
in the flux tube cross-section, the solar wind, and gravitational
stratification. In addition, we consider waves with lengths much
greater than the diameter of the wave-guiding plasma cylinder.
This assumption allows using the thin flux tube approximation
(Roberts & Webb 1978; Zhugzhda 1996). This approximation
reduces the two-dimensional to a one-dimensional problem that
can be treated analytically. The paper is organised as follows:
In Sect. 2 we derive the evolutionary equation of Burgers type
for weakly nonlinear tube waves. In Sect. 3 we analyse the wave
evolution. Section 4 contains the discussion of results and con-
cluding remarks.

2. Burgers equation for tube waves

We consider symmetric (0/d¢ = 0) weakly nonlinear quasi-
longitudinal waves in an untwisted and non-rotating straight ax-
isymmetric thin magnetic flux tube in the cylindrical coordinates
(r, ¢, 7). We applied the traditional thin flux tube approximation,
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neglecting dispersive corrections (e.g. Roberts & Webb 1978,
see also Zhugzhda 1996), which formally corresponds to the
first order of the Taylor expansion of the MHD variables with
respect to the radial coordinate. The dispersion of waves in
thin flux tubes is due to the finite radius of the flux tube (e.g.
Zhugzhda 1996) and to the finite scale of the wave localisation
outside the flux tube (e.g. Roberts 1985; Molotovshchikov &
Ruderman 1987; Zhugzhda & Goossens 2001; Zhugzhda 2005).
More specifically, because the dispersion grows with decreasing
wavelength, we considered waves that are sufficiently long for
the dispersion to be negligible. The governing set of equations is
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where B is the longitudinal component of the magnetic field,
v is the radial derivative of the radial component of the plasma
velocity, u is the longitudinal component of the plasma veloc-
ity, p, p and s are the plasma density, pressure, and specific
entropy, respectively. The external total pressure pJ was as-
sumed to be constant and therefore we did not consider distur-
bances in the external medium, concentrating on waves inside
the flux tube. This assumption is justified if the tube speed in-
side the flux tube is lower than the propagation speeds of waves
in the external medium (see Roberts & Webb 1979; Zhugzhda
1996). Equations (1) are different from the equations that de-
scribe plane acoustic waves that were used in Nakariakov et al.
(2000b), Ofman & Wang (2002), De Moortel & Hood (2003),
Nakariakov et al. (2004), Tsiklauri et al. (2004), De Moortel &
Hood (2004) and Ruderman (2013), because they contain the
magnetic field. Moreover, Eqs. (1) account for the oblique ef-
fects (e.g. the radial derivative of the radial component of the
plasma flow velocity, v).

We took into account viscous dissipation, introducing the
first viscosity coefficient 7. According to the classical expres-
sions derived in Braginskii (1965), the solar coronal plasma
is a highly magnetised plasma with anisotropic transport co-
efficients. However, Braginskii (1965) pointed out that plasma
instabilities could significantly increase the magnitude of the
transport coefficients across the magnetic field as a result of
micro-turbulence. Thus, we assume 7 to be isotropic. The ther-
mal conductivity coefficient is known to appear in equations of
Burgers type as a part of the dissipation coefficient along with
viscosity (Rudenko & Soluyan 1977; Nakariakov et al. 2000b;
Ruderman 2013). Likewise, the finite resistivity that becomes
important when the wave contains magnetic field perturbations,
can also be included in this dissipation coefficient. Keeping this
in mind, we omitted the thermal conductivity term from the en-
tropy equation and the resistive term from the induction equa-
tion, for simplicity. Note also that the first equation in Eqs. (1)
contains the term depending on v since we analysed oblique mo-
tions in the flux tube, which is different from pure acoustic waves
that propagate strictly along the magnetic field. The last equation
in Egs. (1) is the equation of state.
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In the following analysis we assume that the effects of non-
linearity and dissipation are both weak and of the same order of
magnitude. A flux tube that is uniform in the z-direction (includ-
ing the temperature and entropy of the plasma) is considered.
Small but finite perturbations of the equilibrium (indicated by
the subscript 0) without steady flows (uy = 0) are introduced as
follows:

s=50+ 51,
Uu=u. )

P = po +pP1,
B =By+ By,

= po+p1,
v =y,

Perturbations of the azimuthal components of the plasma veloc-
ity and magnetic field are assigned to be zero since we did not
consider the torsional mode in this study. Note that the quantities
with the subscript 1 describe full perturbations and include both
linear and nonlinear contributions. We will omit this subscript
for the velocity components in the remainder of the paper.

By substituting Egs. (2) into Eqgs. (1) and restricting our at-
tention to quadratically nonlinear terms only, we obtain
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where CS = ypo/po is the equilibrium sound speed and vy is the
adiabatic index. In contrast with the plane acoustic wave case,
Eqgs. (3) account for the effects of the wave obliqueness, and
the described perturbations include the radial velocity and the
absolute value of the magnetic field. The first-order terms are
collected on the left-hand sides of the equations (except for the
equation of state) and the second-order terms are collected on
the right-hand side. Note that in the entropy equation we neglect
the nonlinear term u ds;/dz because the entropy perturbations
are due to dissipative processes in the plasma and therefore are
small in the problem considered. On the other hand, since we in-
vestigate quadratically nonlinear processes, we should take into
account the term of the order of p% in the equation of state.

Considering only the left-hand sides of Egs. (3), and there-
fore analysing the propagation of linear waves without dissi-
pation, we can obtain the classical wave equation for the tube
waves with the constant characteristic propagation speed
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where Vo = Bo/+/47pg is the equilibrium Alfvén speed. Note
that these waves are highly oblique because their longitudinal
wavelength is much greater than their transverse spatial scale
determined by the radius of the flux tube. It is the applicabil-
ity condition of the thin flux tube approximation. Accounting
for the obliqueness of the long-wavelength waves guided by the
magnetic flux tube causes the wave speed to depend on the abso-
lute value of the magnetic field. In the following, we refer to the

long-wavelength slow magnetoacoustic waves guided by field-
aligned plasma non-uniformities as tube waves.

Following the procedure described in detail in Ofman et al.
(2000) and Nakariakov et al. (2000b), we applied the method of
slowly varying amplitudes to derive the evolutionary equation
for weakly nonlinear tube waves. By passing to the frame of
reference moving at the tube speed ct, and transforming Egs. (3)
in terms of the independent variables ¢ = z — ¢t and x = &z,
where ¢ is a small parameter characterising the slow rate of wave
evolution, we obtain the Burgers equation for the perturbation of
the magnetic field By,
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A similar evolutionary equation can be written for the perturba-
tion of the longitudinal component u of the plasma velocity
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where we substituted linear relations for the wave perturbations
into the second-order terms to exclude other dependent vari-
ables from the equations. We also neglected the third-order terms
in the equations. Note that the nonlinear terms in the derived
equations agree exactly with those obtained by Roberts (1985)
and Zhugzhda & Nakariakov (1997). The perturbations of other
physical quantities in the linear approximation are linked with
the longitudinal velocity as

C
By = —Bo— p1 = poc—§u. ©)

V2 5
Equations (5) and (6) are Burgers equations that describe the
evolution of weakly nonlinear, weakly dissipative tube waves in
a thin magnetic flux tube. In the infinite magnetic field limit,
(Valcy — o0), the tube speed ct becomes equal to the sound
speed cg. In this case, plasma motions in tube waves become ex-
actly longitudinal, and the waves degenerate into pure acoustic
waves. Thus, in this limit the effect of the plasma structuring van-
ishes and Eq. (6) transforms to the well-known Burgers equation
for acoustic waves
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3. Tube wave evolution

Because our primary aim is to determine the role of the wave
obliqueness in the nonlinear wave evolution, we considered both
the Burgers equation for tube waves (Eq. (6)) and the Burgers
equation for plane acoustic waves (Eq. (8)), and compared their
solutions. For a uniform medium the Cole-Hopf substitution
can provide an exact analytical solution to the Burgers equa-
tion, reducing it to the linear diffusion equation (Rudenko &
Soluyan 1977). However, anticipating the more complex cases
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of non-uniform equilibria in follow-up investigations, we anal-
ysed Egs. (6) and (8) numerically. We used the NDSolve func-
tion of Wolfram Mathematica 8.0 that implements the method
of lines for solving initial value problems for partial differential
equations.

First of all, we set the initial and boundary conditions for the
equations. The solution is determined by the initial condition

u(0,8) = f(é), ©)

where f represents the initial, sufficiently smooth wave profile,
and by the boundary conditions

u(x,&1) = ¢1(x),  u(x,&) = da(x),

where ¢; and ¢, describe the evolution of the chosen edges of the
wave profile with x. According to EUV observational data (e.g.
Nakariakov 2006; De Moortel & Nakariakov 2012), slow mag-
netoacoustic disturbances in coronal plumes and plasma fans
are registered as trains of harmonic waves. The typical dura-
tion of the train is several wavelengths or periods. Accordingly,
we assign f(€) = u,, sin(k€), where u,, is the amplitude value,
k = 2nr/A is the wavenumber, 4 = crP is the wavelength, and
P is the wave period. We consider the wave train of two wave-
lengths long, &, = —¢; = A. In the moving frame of reference we
have ¢ = ¢, = 0.

Secondly, we have to assign plasma parameters inside the
tube as well as wave characteristics. Taking typical values from
observations of slow waves in polar plumes (e.g. Nakariakov
2006), we have P = 600 s, u,, = 20 km s~'. The latter value
corresponds roughly to the 10% perturbation of the background
density. The plasma temperature is assumed to be 1.4 x 10° K
and the number density 5.0 x 108 cm™3, ¥ = 5/3. The dissipa-
tion coefficient 7 is set to (0.04—2.12) g cm™! s7!. In particular,
the value = 0.25 g cm™! s™! corresponds to the kinematic vis-
cosity 2.4 x 10'* cm? s~! and can be calculated from the clas-
sical expressions by Braginskii (1965). Note that in the litera-
ture there are also different values for the kinematic viscosity,
for instance the so-called traditional value for the coronal vis-
cosity 4.0 x 10"® cm? s™! (Aschwanden 2006). We chose the
higher values for the effective viscosity because in our formal-
ism the dissipation coefficient also includes thermal conductivity
and viscosity, and also keeping in mind that the dissipative co-
efficient is enhanced by micro-turbulence (see the discussion in
Sect. 2). In the following, this combined dissipation coefficient
is referred to as effective viscosity. The magnetic field strength
is set to 0.5—10 G to analyse cases with various plasma 3 values.

Finally, for numerical simulations, we should normalise the
variables. Let the variables in Egs. (6) and (8) be of the form

(10)

x =LX,

n=nn,

u=u',

VA = C(/) VA,

cT = C(/)Z‘T,

E=¢¢,
where the tilded variables are the non-dimensional normalised
quantities, and u’, L, CE), &, 1, p’ are the normalising constants.
By setting relations for the scaling constants as Lu" = ¢,& and
7L = p(’)c(’)f’z, we obtain for the (tilded) normalised variables the
same equations as Egs. (6) and (8). In particular, for tube waves

in polar plumes, the normalising constants are #’ = 10° cm s~!,

¢y =10 cms,y =10" gem™ 57!, p/ = 107 g em™,
L =10° cm, and &= 108 cm.

In Figs. 1-3, we present results of numerical simulations of
the nonlinear tube wave evolution in a polar plume. Before we
discuss the results in detail, we briefly describe the nonlinear

wave evolution and formation of shock waves. Nonlinear waves

s
co = ¢4Cos

Po = PoPos
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Fig. 1. Evolution of the tube wave profile in a co-moving frame of ref-
erence, with the distance X along the plume. The dotted, dashed, dash-
dotted, dash-double-dotted, and solid lines correspond to the distances
% =0, 10,20, 30, and 40 from the initial position, respectively. The am-
plitude is normalised to the value ' = 10 km s™!. The effective viscosity
is 2.4 x 10" cm? s7!, the wave period is 600 s, V5 = 866 km s~!, and
co=175kms™.

are disturbances of a finite amplitude. In contrast with the linear
waves that, strictly speaking, have infinitely small amplitudes,
properties of nonlinear waves depend on the value of the am-
plitude. In nonlinear waves the energy is transferred to smaller
spatial scales — the effect of nonlinear cascade. A nonlinear cas-
cade causes a distortion (e.g. steepening) of the wave profile.
This in turn develops sharp gradients of various hydrodynamic
variables. In the spectral language the steepening corresponds to
the transfer of the energy towards larger wave numbers. On the
other hand, the efficiency of wave damping by viscosity, ther-
mal conduction, and resistivity is proportional to the wave num-
ber squared. Hence, in a nonlinear wave there is the continuous
transfer of the energy towards the spectral domain where the dis-
sipative processes are strongest. Thus, the nonlinearity (i.e. finite
amplitude of the wave) amplifies the wave damping by dissi-
pation. This effect is usually referred to as nonlinear damping
of waves, which is much more efficient than the dissipation of
linear waves. For a weak dissipation the nonlinear steepening
can lead to the formation of a shock wave. Its width is indepen-
dent of the dissipation and is determined by the balance between
the nonlinear cascade and dissipation. In particular, in Fig. 2 the
change in the gradient of the solid curve at x = 20 indicates the
formation of the shock and onset of nonlinear damping.

Figure 1 shows the distortion of the tube wave profile with
distance from the initial excitation (that is, with height). The
wave profile is shown in the co-moving frame of reference, i.e.
with respect to the running coordinate. Different curves denote
the wave profiles at different values of the spatial coordinate ¥
measured along the direction of the wave propagation along the
plume. The wave profile steepens and shock fronts form at its de-
scending parts. After the shock formation, the wave decays very
rapidly. For the parameters (By = 10 G and effective viscosity
7 =2.4x 10" cm? s7!), the shocks appear at ¥ ~ 20 normalised
units, or in the physical units at 200 Mm. This value does not
contradict the observed evolution of longitudinal waves in polar
plumes.

Figure 2 shows the evolution of the wave amplitude for dif-
ferent values of the magnetic field strength, that is, for differ-
ent values of plasma . The parameter S is here defined as the
squared ratio of the sound speed to the Alfvén speed, B = ¢*/V3.
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Fig. 2. Evolution of the tube wave amplitude with distance X along the
plume for different values of the magnetic field strength in the plume.
The dashed, dotted, dash-dotted, dash-double-dotted, and dash-triple-
dotted lines correspond to By = 10, 5.0, 1.5, 1.0, and 0.5 G, respectively.
The Alfvén speed is 866, 433, 130, 87, and 43 km s~!, respectively; the
sound speed is 175 km s~!. The solid line corresponds to plane sound
waves (or the infinitely strong magnetic field). The effective viscosity is
2.4 x 10" cm? s7!, the wave period is 600 s.
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Fig. 3. Evolution of the tube wave amplitude with the distance % along
the plume for different values of the effective viscosity (thick lines). The
dotted, solid, dashed, and dash-dotted lines correspond to the viscosity
of 4.0x10'3,2.4x 10",7.0x 10", and 2.0 x 10" cm? 57!, respectively.
Here V4 = 130 km s7!, ¢y = 175 km s7!, and the wave period is 600 s.
The thin lines correspond to plane sound waves.

Note that this definition of S is slightly different from the tra-
ditional one. In our definition it is exactly equal to the ratio of
the characteristic speeds, which determines the behaviour of the
solutions. According to Fig. 2, with the growth of plasma g for
a fixed value of the sound speed, the time interval required for
the formation of shock fronts increases. This effect is strongly
pronounced in a 8 > 1 plasma and is suppressed in a low-88
plasma. On the other hand, damping of the tube wave due to dis-
sipation in a plasma also demonstrates its dependence on 3. The
amplitude decrease occurring before the shock front has formed
increases with the increase in the plasma . For 8 > 1, the en-
hanced dissipation caused by the wave obliqueness can result in
very rapid wave damping, so that the shock front does not form.

Figure 3 demonstrates the evolution of the tube wave ampli-
tude for different values of the effective viscosity. For the clas-
sical values of viscosity, the wave damping is less intense for
magnetic (tube) waves than for sound waves, which is due to

the delayed formation of shock fronts in the wave. However, it
should be noted that the effect of the enhanced dissipation on
tube waves in a 8 ~ 1 plasma can cause significant damping for
higher values of viscosity. In this case, the overall decrease in
amplitude is more rapid for tube waves, but as seen in the figure,
nonlinear effects become negligible.

The results obtained in simulations can be verified by
analysing Eq. (6). We rewrite Eq. (6) in terms of the plasma S,

ou, 1B (3 v+1)u@_ n GEHFu
0x 26‘0(ﬁ+1)3/2 B o€ Bl 6p0c0 W@fz

For B <« 1, we have the ordinary Burgers equation for plane
acoustic waves, Eq. (8). For § > 1, the nonlinear term in
Eq. (11) drops to zero as

-0 (for 8 — o0), (12)

3
2¢o VB

which results in the delay in the formation of shock fronts at
the tube wave profile. The high-8 case formally corresponds to
the incompressible limit. In this limit y — oo and hence ¢y —
oo, and for a finite Alfvén speed 8 — oo. In the incompressible
limit the restoring force for slow-mode waves has a magnetic
nature, and they propagate essentially as Alfvén waves. Thus, the
quadratically nonlinear term disappears from the equation, and
cubic nonlinear effects have to be considered (cf. Nakariakov
et al. 2000a). In turn, the dissipative term in Eq. (11) grows as

n
— 0
2poco VB

(for B — ), (13)
which explains the enhanced dissipation of tube waves.

It is also useful to investigate the dependence of solutions to
Eq. (6) on the wave parameters. Figure 4 shows the evolution of
the wave amplitude for different values of the wave period. The
shorter the wave is, the more rapidly the nonlinear steepening
of its profile occurs. Indeed, this property is common for non-
linear waves. In addition, shorter tube waves are seen to decay
faster, even before the shock fronts have formed. We also anal-
ysed the tube wave propagation for different initial amplitudes.
The effect of nonlinear damping increases with the nonlinearity,
that is, with the wave amplitude. According to this expectation,
the nonlinear distortion of the wave profile is seen to be more
pronounced for waves with higher amplitudes.

4. Discussion and conclusions

We have studied the propagation of weakly-nonlinear long wave-
length slow magnetoacoustic waves in magnetic flux tubes. Our
study was based on the thin flux tube approximation. The waves
were considered to be sufficiently long to neglect the wave dis-
persion. Another assumption made was the small magnitude of
the wave nonlinearity and dissipation in the plasma. Indeed, it is
known from observations that density perturbations, for exam-
ple in coronal plumes and magnetic fans, which are identified as
slow-mode MHD waves, can be as strong as 10% of the back-
ground density. These disturbances are satisfactorily described
with the weakly nonlinear approach. Formally, the low dissipa-
tion condition requires < cépoP, where P is the wave period
(see, e.g. Rudenko & Soluyan 1977), and the relation between
the nonlinear and dissipative terms in the final equation can be
arbitrary. However, in practice, the best criterion is that the de-
formation of the wave profile due to dissipation and nonlinearity
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Fig. 4. Evolution of the tube wave amplitude with distance X along
the plume for different values of the wave period. The dotted, dashed,
solid, and dash-dotted lines correspond to periods of 400, 500, 600,
and 700 s, respectively. The effective viscosity is 2.4 x 10'* cm? s7!,
Va = 130 kms™', ¢y = 175 kms™!, the magnetic field is By = 1.5 G,
and the initial wave amplitude (longitudinal velocity u) is 20 km s~!.

has to be small on one wavelength scale. In our modelling, the
used values of viscosity were appropriate and satisfied this crite-
rion or, at least, were within the margin of the approach scope.

The simplifications described above have allowed us to de-
rive the Burgers-type evolutionary equation, Eq. (6), for tube
waves, in which we have combined i) nonlinear wave evolu-
tion similar to that described by the Riemann simple-wave so-
lution; ii) wave damping due to dissipation caused by viscosity
and also thermal conduction and resistivity; and iii) the wave
obliqueness and hence the effects of the finite magnetic field.
Because the effects of stratification and magnetic flux tube di-
vergence were neglected, our study may be considered as a local
approximation.

The analysis of the evolutionary equation has shown that in
comparison with the acoustic case, the formation of shock fronts
in tube waves occurs at larger distances from the wave source.
Mathematically, this effect is associated with the reduction of the
coefficient in the nonlinear term in the equation. Indeed, Egs. (8)
and (11) taken in the case of dissipationless media allow one to
determine the characteristic shock formation distances as

2
cOP

2rt sty

dl S

s (14)
where u,, is the initial amplitude of the waves, the subscripts
t and s show the parameters corresponding to tube and sound
waves, and

1 1
H ) =1 (15)

_1_ B
at_Z(lB+1)3/2(3+ ﬁ 3

In the dissipationless limit, the shock formation distance is de-
termined as the distance at which the wave develops an infinite
gradient. The ratio ds/d; starting with unity at 8 — 0 monoton-
ically decreases to zero with the growth of plasma S. Thus, in
the finite-3 regime, accounting for the obliqueness increases the
shock formation distance and hence postpones the onset of con-
siderable nonlinear damping, and must not be ignored in coronal
wave modelling.

The dissipation coefficient increases with the increase in the
parameter 3, causing additional damping before the shock front
has formed. Note that nonlinear damping that occurs after the
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shock formation is unaffected by g because it is independent of
the dissipation coefficient provided it is small (see, e.g. Rudenko
& Soluyan 1977).

The obtained delay in the shock formation and enhanced
wave damping before the onset of nonlinear damping are consid-
erable for § > 1, while in a low-$ plasma, the evolution of tube
waves differs very slightly from that of plane acoustic waves.
This finding justifies the applicability of the results previously
obtained for propagating longitudinal waves in magnetic fans
filled in with the plasma of a moderate temperature (e.g. about
1 MK, see Nakariakov et al. 2000b) and in the lower parts of
polar plumes (Ofman et al. 2000). On the other hand, the effects
connected with the wave obliqueness appear in the dynamics of
longitudinal waves in finite-3 plasma wave-guides, such as hot
flaring loops (e.g. Shibasaki 2001), magnetic fans filled in with
dense hot plasma (Sakao et al. 2007), and in the higher corona
(Ofman & Wang 2002). Because in the hot plasma structures of
the corona the density scale height is large, effects of stratifica-
tion can be neglected and the theory developed in this paper can
be applied directly. Moreover, the suppression of the nonlinear
effects on the longitudinal wave propagation in a finite-3 plasma
allows focusing on linear effects alone. But, in this case, the ef-
fects of obliqueness should be taken into account. The oblique-
ness effects may also be important for longitudinal waves de-
tected in chromospheric waveguides. Future analysis of waves
in these structures requires accounting for the effects of stratifi-
cation, radiation, and partial ionisation, and is beyond the scope
of this paper.
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