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ABSTRACT

Context. Magnetohydrodynamic waveguides such as dense coronal loops can support standing modes. The ratios of the periods of os-
cillations for different longitudinal harmonics depend on the dispersive nature of the waveguide and so may be used as a seismological
tool to determine coronal parameters.
Aims. We extend models of standing sausage modes in low β coronal loops to include the effects of loop curvature. The behaviour of
standing sausage modes in this geometry is used to explain the properties of observed oscillations that cannot be accounted for using
straight loop models.
Methods. We perform 2D numerical simulations of an oscillating coronal loop, modelled as a dense slab embedded in a potential
magnetic field. The loop is field-aligned and so experiences expansion with height in addition to being curved. Standing sausage
modes are excited by compressive perturbations of the loop and their properties are studied.
Results. The spatial profiles of standing sausage modes are found to be modified by the expanding loop geometry typical for flaring
loops and modelled by a potential magnetic field in our simulations. Longitudinal harmonics of order n > 1 have anti-nodes that are
shifted towards the loop apex and the amplitude of anti-nodes near the loop apex is smaller than those near the loop footpoints.
Conclusions. We find that the observation of standing sausage modes by the Nobeyama Radioheliograph in a flaring coronal loop on
12 January 2000 is consistent with interpretation in terms of the global mode (n = 1) and third harmonic (n = 3). This interpretation
accounts for the period ratio and spatial structure of the observed oscillations.
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1. Introduction

Fast magnetohydrodynamic (MHD) waves are highly disper-
sive in waveguides such as coronal loops. For propagating
modes generated by an impulsive driver, dispersion leads to
the generation of quasi-periodic wave trains. This process was
described by Roberts et al. (1983, 1984), Murawski & Roberts
(1994), Nakariakov & Roberts (1995) and later observed with
instruments such as the Solar Eclipse Coronal Imaging System
(SECIS; Katsiyannis et al. 2003; Cooper et al. 2003) and the At-
mospheric Imaging Assembly (AIA) on board the Solar Dynam-
ics Observatory (SDO; e.g. Shen & Liu 2012; Liu et al. 2012;
Yuan et al. 2013). The dispersion arises owing to the presence
of a characteristic transverse length scale and occurs for both
sausage (m = 0) and kink (m = 1) fast modes. For exam-
ple, Oliver et al. (2014) recently studied the dispersive evolu-
tion of propagating kink waves in coronal loops. The disper-
sion of propagating fast MHD waves has also been considered
for current sheets (Edwin et al. 1986; Jelínek & Karlický 2012;
Jelínek et al. 2012), coronal holes (Pascoe et al. 2014), and flar-
ing active regions (Nisticò et al. 2014; see also recent review by
Pascoe 2014).

For standing modes, the effect of dispersion is apparent in the
ratio of periods for different longitudinal harmonics. For a stand-
ing mode of wavelength λ in a loop of length L the footpoints are
nodes for the oscillation and so the longitudinal wavenumber k
must be an integer multiple of π/L, i.e.

kn =
nπ
L
, (1)

where n is the order of the harmonic. The global or fundamen-
tal standing mode is n = 1, while the n = 2 mode is the first
overtone, or second harmonic, and so on for higher order modes.
The period of oscillation for each mode may be denoted as Pn.
Andries et al. (2009) point out in their review of coronal seis-
mology using kink overtones that the term “harmonic” should
strictly be used in the dispersionless case of overtone frequencies
being exact multiples of the fundamental frequency. For clar-
ity we refer to the different standing modes using their order n,
which corresponds to the number of anti-nodes in the longitu-
dinal spatial profile of the mode. The “nth harmonic” therefore
more generally refers to the oscillation with n anti-nodes.

Owing to dispersion, the period ratio P1/2P2 is less than
unity for fast MHD waves. Andries et al. (2005) considered the
case of kink waves in long loops, for which the thin tube ap-
proximation removes the effect of dispersion. The period ra-
tio was calculated to again be P1/2P2 < 1 when longitudinal
density structuring was introduced, enabling simultaneous ob-
servations of the multiple harmonics (e.g. Verwichte et al. 2004)
to be used as a seismological tool for determining the density
scale height. McEwan et al. (2006) demonstrated that longitudi-
nal structuring has the dominant effect on the period ratio and
calculated the density scale height of two of the loops reported
in Verwichte et al. (2004). McEwan et al. (2008) derived an an-
alytical expression for the dependence of the period ratio on
the density scale height, which was previously solved numeri-
cally by Donnelly et al. (2006) and Díaz et al. (2007) for loops,
and by Donnelly et al. (2007) for a magnetic arcade. A spatially
resolved observation of the fundamental and second harmonic
standing kink modes in a coronal loop was recently reported by
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Pascoe et al. (2016), with a period ratio P1/2P2 = 1.15 ± 0.22.
The ratio being greater than unity suggests a negative scale
height, which was also considered by Andries et al. (2005) for
coronal loops and Lomineishvili et al. (2014) for prominence
threads.

For straight models of coronal loops (without longitudi-
nal variations of parameters along z), standing modes are de-
scribed using sinusoidal profiles of the form sin (knz). For
these types of profiles the nodes and anti-nodes are equidis-
tant. This is no longer true when additional effects such as
longitudinal stratification or divergence are included. In these
cases, the longitudinal wavenumber kn represents an average
value and the positions of the nodes and anti-nodes are shifted
in space in comparison with sinusoids. Observations of these
shifts could potentially be used for spatial magneto-seismology
since they depend on, for example, the density stratification
(Erdélyi & Verth 2007; Verth et al. 2007), and longitudinal in-
homogeneities (Verth & Erdélyi 2008) for transversal coronal
loop oscillations. These types of shifts have also been investi-
gated for torsional Alfvén waves (Verth et al. 2010) and spicules
(Verth et al. 2011).

In contrast with the standing kink modes commonly ob-
served in long coronal loops (e.g. Aschwanden et al. 1999;
Nakariakov et al. 1999), standing sausage modes are expected to
be found only in short, dense loops, of which there are fewer ex-
amples (Aschwanden et al. 2004). This is due to the existence
of a cut-off wavelength (e.g. Roberts et al. 1983) which lim-
its the minimum aspect ratio a/L and density contrast ρ0/ρe
for the fundamental standing sausage mode to be supported
as a trapped mode (Nakariakov et al. 2003). When these con-
straints are not satisfied, the sausage mode is leaky and can
quickly decay (e.g. Cally 1986; Pascoe et al. 2007b), with a pe-
riod and damping rate that has recently been analytically derived
by Vasheghani Farahani et al. (2014).

Pascoe et al. (2009b) performed numerical simulations of
sausage oscillations in loops with a non-uniform cross-section
as a model for flaring loops that expand near the apex owing
to heating. The period of the global sausage mode (P1) and
the third harmonic (P3) were considered and were found to be
most strongly determined by the minimum loop width. Strong
divergence was also found to lead to the coupling of the lon-
gitudinal harmonics. The period ratio has also been shown to
depend on loop expansion for the case of standing slow modes
(Luna-Cardozo et al. 2012).

The effect of flows on the behaviour of standing sausage
modes has been investigated by Li et al. (2013, 2014) who found
that they increase the minimum aspect ratio required for trapped
standing sausage modes to exist. However, the flows typically
only reduced the period ratio P1/2P2 by less than about 5%.

The effect of curvature on coronal loop oscillations has been
previously investigated by a number of authors (see review by
van Doorsselaere et al. 2009). Studies have demonstrated that
curved loops require a non-uniform equilibrium magnetic field
and consequently may introduce an additional damping mech-
anism for oscillations in the form of lateral wave leakage by
tunnelling of wave energy (e.g. Smith et al. 1997; Brady et al.
2006; Verwichte et al. 2006b). We note however that in our
model (Sect. 3) this mechanism is prohibited by our choice of
Alfvén speed profile (and the loop is sufficiently dense and thick
to be in the trapped regime).

Goossens et al. (2009) discuss how damping owing to reso-
nant absorption dominates over that by leakage for kink waves
in straight loops with a finite inhomogeneous layer (see also
Goossens & Hollweg 1993). Terradas et al. (2006) performed

simulations of curved coronal loops and found that the effect of
resonant absorption remains stronger than lateral leakage. Cur-
vature is found to be unimportant for standing kink modes be-
cause of their small aspect ratio L � a. However curvature might
be more important for sausage modes due to the condition that
they require sufficiently thick and dense loops to exist as trapped
modes.

Nakariakov et al. (2003) interpret the observation of quasi-
periodic pulsations by the Nobeyama Radioheliograph (NoRH)
in terms of standing sausage modes. The oscillations were mea-
sured in a flaring coronal loop on 12 January 2000. The spa-
tial resolution of the observations allows two periodicities with
different spatial profiles to be identified. It was proposed that
these correspond to the global standing mode and the second har-
monic. However, this interpretation implies a large period ratio
P1/2P2 ≈ 0.8 which has not been accounted for. Melnikov et al.
(2005) considered the same observation and proposed a number
of alternative candidates for the shorter period mode, including
the third longitudinal harmonic of the sausage mode. Observa-
tions of multiple sausage oscillations in a cool post-flare loop
have also been reported by Srivastava et al. (2008).

In this paper we consider the effect of curvature and loop
expansion on the behaviour of standing sausage modes using
2D numerical simulations of dense slabs embedded in a po-
tential magnetic field. In particular, we consider the effect on
the period ratios and spatial profiles of the modes because of
their potential seismological application. In Sect. 2 we first re-
view effects of coronal loop parameters on the period ratio in
the case of straight coronal loops. We note, however, that these
effects alone are insufficient to account for the observations by
Nakariakov et al. (2003). In Sect. 3 we then present our results of
numerical simulations of standing sausage modes in curved and
expanding coronal slabs. Discussion of our results with regards
to the observations of Nakariakov et al. (2003) and concluding
remarks are presented in Sect. 4.

2. Parametric study of period ratios

Here we discuss several parameters which are known to have
an effect on the period ratio of standing modes in coronal loops
modelled as straight waveguides.

2.1. Loop geometry and aspect ratio

Figure 1 shows the phase speed ω/k of trapped modes as a func-
tion of normalised wavenumber ka. The solid lines corresponds
to the slab geometry (Edwin & Roberts 1982) and the dashed
lines to the cylindrical geometry (Edwin & Roberts 1983). The
sausage mode is weakly dependent on the choice of geometry in
comparison to the kink mode in the case of loops modelled as
straight slabs or cylinders. For both cylindrical and slab geome-
tries the trapped sausage mode phase speed is limited by CA0
at ka → ∞ and increases to CAe at kca where kc is the cut-off
wavenumber. In the long wavelength limit the kink mode also
has a phase speed CAe for the slab geometry, but for the cylindri-
cal geometry tends to the kink speed Ck (middle dotted line).

The existence of the sausage mode cut-off in the long wave-
length limit means observations with a large Q-factor (i.e. a
large number of oscillation cycles) require sufficiently thick and
dense coronal loops so that standing modes fall into the trapped
regime. The density contrast of ρ0/ρe = 50 used in Fig. 1
(and subsequent figures) satisfies this condition, and is taken
from Nakariakov et al. (2003) who use this estimate for their
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Fig. 1. Phase speed ω/k as a function of normalised wavenumber ka
for the trapped sausage (top) and kink (bottom) modes in a loop with
density contrast ρ0/ρe = 50 (and plasma β = 0). The solid lines are for
the slab geometry and the dashed lines are for the cylindrical geome-
try. The lower and upper dotted lines correspond to the internal Alfvén
speed CA0 and external Alfvén speed CAe, respectively. In the lower
panel the middle dotted line corresponds to the kink speed Ck.

interpretation of NoRH observations. The effect of varying the
density contrast is considered in Sect. 2.2. The requirement of
a sufficiently large loop aspect ratio a/L for trapped sausage
modes also introduces the effect of geometrical dispersion so
that the period ratios of the standing modes depend on the loop
parameters and may therefore be used for seismological pur-
poses. Figure 2 shows the period ratios P1/2P2 and P1/3P3 as
a function of the loop aspect ratio for sausage modes in slab
and cylinder geometries. The effect of dispersion is stronger for
wavenumbers closer to the cut-off.

Macnamara & Roberts (2011) produced analytical expres-
sions for the period ratio P1/2P2 of the sausage and kink modes
in a magnetic slab. For the transverse density structure they
considered an Epstein profile (Eq. (7) with p = 1). They give
the square of the wave speed for the sausage mode in their
Eq. (32) as

c2 =
C2

A0

2C2
Aek2a2

(
2C2

Aek2a2 + 4C2
Ae − 9C2

A0

+ 3
√

9C4
A0 − 4C2

A0C2
Aek2a2 − 8C2

A0C2
Ae + 4C4

Aek2a2

)
. (2)

This can be used to calculate the period ratio.
Macnamara & Roberts (2011) define the loop length to be

Fig. 2. Period ratio P1/2P2 for slab (solid) and cylinder (dashed) ge-
ometries and P1/3P3 for slab (dotted) and cylinder (dot-dashed).

2L whereas we use L, so our equivalent of their Eq. (33) is(
P1

2P2

)2

=

(
c2

c1

)2

=
1
4

4 + 8ε − 9χ + 3
√

9χ2 − 16χε − 8χ + 16ε

4 + 2ε − 9χ + 3
√

9χ2 − 4χε − 8χ + 4ε

 , (3)

where ε = (πa/L)2 and χ = (CA0/CAe)2. If we consider the limit
of high density contrast we have χ→ 0 and the approximation

P1

2P2
=

(
1 + 2ε + 3

√
ε

4 + 2ε + 6
√
ε

)1/2

· (4)

Since this approximation excludes the effects of a finite density
contrast it no longer describes the sausage mode cut-off. In the
limit of the aspect ratio a/L → 0 the effect of geometrical dis-
persion is also removed and the period ratio P1/2P2 → 1/2 as
in Macnamara & Roberts (2011). Similarly, for the ratio P1/3P3
we obtain(

P1

3P3

)2

=
1
4

4 + 18ε − 9χ + 3
√

9χ2 − 36χε − 8χ + 36ε

4 + 2ε − 9χ + 3
√

9χ2 − 4χε − 8χ + 4ε

 , (5)

and for χ→ 0 the approximation

P1

3P3
=

(
4/9 + 2ε + 2

√
ε

4 + 2ε + 6
√
ε

)1/2

, (6)

which tends to 1/3 in the limit a/L→ 0.
Figure 3 shows period ratios as a function of aspect ratio

for sausage modes in a slab geometry with an Epstein density
profile. The behaviour is similar to that for the slab with the
step function profile (Fig. 2). The symbols represent ratios calcu-
lated from the periods of the relevant harmonics, while the lines
represent the derived expressions and approximations discussed
above.

2.2. Density profile steepness and contrast ratio

In the previous section the density profile was taken to be ei-
ther a step function, switching discontinuously from its internal
value ρ0 to its external value ρe at the loop radius x = a, or the
Epstein profile considered by Macnamara & Roberts (2011). It
has recently been established that the transverse profile steep-
ness affects the period of sausage modes quite significantly
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Fig. 3. Period ratios P1/2P2 (triangles) and P1/3P3 (squares) as a func-
tion of the aspect ratio a/L. The symbols represent numerical calcula-
tions. The solid lines correspond to the analytical expressions for the
ratios given by Eqs. (3) and (5), while the dashed lines represent ap-
proximations for a high density contrast given by Eqs. (4) and (6).

Fig. 4. Density profiles for a loop with contrast ratio ρ0/ρe = 50 and
different steepness parameters p. The solid line is the Epstein profile
(p = 1). The dashed line corresponds to p = 2, while the dotted line is
a step function profile (p→ ∞).

(Nakariakov et al. 2012). Here we consider the effect of vari-
ous smooth density profiles in more detail. A convenient density
profile for this study is the generalised symmetric Epstein profile
(e.g. Nakariakov & Roberts 1995)

ρ (x) = (ρ0 − ρe) sech2
[
|x|
a

]p

+ ρe, (7)

where ρ0 is the density at the loop axis, ρe is the external density
at x → ∞, the width of the loop is 2a, and p is the steepness
parameter. As a result of this profile, the Alfvén speed increases
from a local minimum of CA0 at the centre to CAe at infinity, and
so forms a waveguide for fast MHD waves. Our monolithic slab
model ignores the effect of fine structuring of the loop which
may be present. NoRH observes flaring, hot loops for which
multi-threaded structuring is not detected. Pascoe et al. (2007a)
demonstrate that the period of oscillation for standing sausage
modes is not affected by very fine structuring of the slab density
profile.

Figure 4 shows examples of density profiles given by Eq. (7)
for a loop with contrast ratio ρ0/ρe = 50. The solid line is the
Epstein profile with steepness parameter p = 1 (e.g. Fig. 3). The
dashed line corresponds to p = 2, while the dotted line is a step
function profile obtained for p → ∞. Analytical solutions for

Fig. 5. Period of oscillation as a function of the density profile steepness
parameter. P1, P2 and P3 are represented by plus signs, triangles and
crosses, respectively. The symbols represent numerical calculations.
The dotted and dashed lines correspond to the analytical expressions
for the Epstein and step profiles, respectively.

Fig. 6. Period ratios P1/2P2 (triangles) and P1/3P3 (squares) as a func-
tion of the density profile steepness parameter. The symbols represent
numerical calculations. The dotted and dashed lines correspond to the
analytical expressions for the Epstein and step profiles, respectively.

the dispersion relation are known for the step profile and for the
Epstein profile with β = 0. For all other p the solutions must be
calculated numerically. As in Pascoe et al. (2007a) we solve the
sausage mode dispersion relation by the shooting method (based
on a fourth-order Runge–Kutta technique).

Figure 5 shows the dependence of the period of oscillation
for n = 1, 2, and 3 as a function of the density profile steepness
parameter p. A loop length of L = 25 Mm and density contrast
ρ0/ρe = 50 have been assumed. For increasing p, each period
starts at the value for the Epstein profile and then tends, from be-
low, to the value for a step profile. Figure 6 shows that the period
ratios P1/2P2 and P1/3P3 tend to the value for the step profile
more quickly than the individual periods do. The step function
period ratios are therefore good approximations for profiles with
steepness parameter p & 3.

Next we consider the effect of varying the loop density con-
trast ratio ρ0/ρe. Figure 7 shows the period ratios P1/2P2 and
P1/3P3 as a function of density contrast for p = 1 (diamonds),
p = 2 (squares), and a step function density profile (crosses).
The solid and dashed lines represent the analytical solutions
for the Epstein and step function density profiles, respectively.
In all cases the period ratios saturate to a constant value for
ρ0/ρe & 50.
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Fig. 7. Period ratios P1/2P2 and P1/3P3 as a function of the density
contrast ρ0/ρe for p = 1 (diamonds), p = 2 (squares) and a step func-
tion density profile (crosses). The solid and dashed lines represent the
analytical solutions for the Epstein and step function density profiles,
respectively.

Fig. 8. Period ratios P1/2P2 and P1/3P3 as a function of the internal
plasma beta β0 for p = 1 (diamonds), p = 2 (squares), and a step func-
tion density profile (crosses). The dashed lines represent the analytical
solutions for the step function density profile.

2.3. Plasma beta

A common approximation when studying fast MHD waves in the
corona is a cold plasma, i.e. β = 0. Here we consider the effect of
a finite plasma beta which is particularly relevant for oscillations
in hot flaring loops. The effect of finite plasma beta on the period
of sausage modes was investigated by Inglis et al. (2009) who
found that the period of the global sausage mode (P1) varied by
less than 5% for 0 < β < 1. An expression for the dependence
of the cut-off wavenumber kc on β was derived for a magnetic
slab with a step function profile, and this was also found to ex-
hibit weak dependency for coronal loops having low values of
external plasma beta.

Figure 8 shows the period ratios P1/2P2 and P1/3P3 as a
function of the internal plasma beta β0 for p = 1 (diamonds),
p = 2 (squares) and a step function density profile (crosses).
The dashed lines represent the analytical solutions for the step
function density profile (the analytical solution for the Epstein
profile is known for β = 0 only). The period ratios are weakly
dependent on the internal plasma beta which is consistent with
the study by Inglis et al. (2009).

3. Numerical simulations of standing sausage
modes in a curved slab

In this section we present results of 2D numerical simulations
of standing sausage modes in curved and expanding coronal
slabs. Simulations were performed using Lare2d (Arber et al.
2001) to solve the ideal MHD equations. The numerical do-
main is composed of 2000 × 1000 grid points. Results were
checked by convergence tests using resolutions of 4000 × 2000
and 8000×4000, with no significant changes (e.g. periods of os-
cillation varying by less than 1%). The boundary conditions are
line-tied to allow reflections at the base of the corona. Reflec-
tions from other boundaries were removed using damping lay-
ers. In normalised units, the numerical domain has a size 2π × π
and the runtime is t̃ = 500. The conversion of results to physical
units is discussed in Sect. 3.1.

The magnetic field used in our model is a potential field (see
also Nisticò et al. 2014) given by

B = B0 exp (−y/l0)
[
cos (x/l0) ēx − sin (x/l0) ēy

]
, (8)

where B0 is a constant determining the magnitude of the field
and l0 is the normalisation factor for the spatial size. The density
profile for the field-aligned coronal loop is based on the gener-
alised symmetric Epstein profile (Eq. (7)) with additional mod-
ifications to take into account the loop curvature and expansion
(the increase in width at the apex). The density profile is also
stratified in the vertical direction with a scale height Λ;

ρ =

[
(ρ0 − ρe) sech2

(
r

a (s)

)p

+ ρe

]
exp

(
−
y + π

Λ

)
, (9)

where r is the distance from the loop axis (along the local
equipotential line) and a (s) is the local loop semi-width which
is a function of the distance along the loop axis s = [0, L].

The behaviour of MHD waves in a potential arcade model
has also been considered by previous authors. For the case
of an arcade with a constant Alfvén speed and a spatially
periodic perturbation the analytic solution for fast waves
was derived by Cadez et al. (1996). Smith et al. (1997) exam-
ined the effect of curvature on fast MHD waves and found
that it caused leakage. Terradas et al. (1999) studied the in-
fluence of the vertical Alfvén speed profile and the non-
potentiality of the field on the behaviour of fast modes. In
the case of the Alfvén speed decreasing with height, fast en-
ergy was again found to leak upwards which was also inves-
tigated by Smith et al. (1997), Verwichte et al. (2006a,b), and
Brady et al. (2006). Verwichte et al. (2006c) used this model to
develop a seismological tool to determine the transverse density
structuring from observations of vertically polarised kink modes
damped by lateral leakage. Oliver et al. (1998) performed nu-
merical simulations of impulsively excited linear and non-linear
fast MHD waves in a coronal arcade. Arregui et al. (2004) in-
vestigated the effect of mode coupling which is introduced when
the arcade is sheared. The impulsive excitation of vertical kink
oscillations of a dense loop in a potential arcade was modelled
by Gruszecki & Murawski (2008) while Gruszecki et al. (2008)
simulated the influence of a photospheric layer with finite den-
sity rather than assuming line-tied boundary conditions. The
damping rate of vertical kink oscillations was found to increase
by this additional route for energy leakage.

The particular loop parameters we choose are based on the
observations by Nakariakov et al. (2003) and so the density con-
trast ratio is taken to be ρ0/ρe = 50 and aspect ratio a/L = 0.12 at
the loop apex (decreasing to a/L = 0.066 at the loop footpoints).
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Fig. 9. Equilibrium used in our numerical simulations of standing
sausage modes in curved coronal slabs. The line contours show the mag-
netic field lines. Top: the colour contours show the (logarithm of) den-
sity, which has an enhancement describing a curved field-aligned loop
with density contrast ratio ρ0/ρe = 50 and an aspect ratio of a/L = 0.12
at its apex. Bottom: the colour contours show the Alfvén speed which is
constant inside and outside the loop.

The density steepness parameter is taken to be p = 8, which is
a good approximation for the slab profile but remains numeri-
cally well-resolved. The plasma beta in the numerical simula-
tions is taken to be small β < 10−3. However, the plasma beta
itself is known to have a small effect of the period of oscilla-
tion (see Sect. 2.3). Our loop geometry may therefore be con-
sidered to represent models in which high beta plasma at the
loop apex causes expansion of the magnetic field there (e.g.
Zaitsev & Stepanov 1982). The equilibrium magnetic field and
density profiles are shown in Fig. 9. The line contours show the
magnetic field lines while the colour contours show the density
(top panel) and Alfvén speed (bottom panel). The coronal loop is
defined as a field-aligned density enhancement with ρ0/ρe = 50.
The density varies with height in accordance with Eq. (9) and
for simplicity we choose Λ = 0.5 which ensures that the loop
structure provides the only variation in Alfvén speed, i.e. the
Alfvén speed is constant inside and outside the loop, only vary-
ing in the thin transition layer between the loop and the en-
vironment. This makes comparison of our loop model with an
equivalent straight slab (Edwin & Roberts 1982) easier and also
removes the effect of leakage due to tunnelling present when the
external Alfvén speed varies with height.

Standing sausage modes are excited by applying velocity
perturbations which approximate the eigenmode, based on mod-
ifying the solutions for a straight coronal loop (e.g. Cooper et al.
2003). In the r-direction perpendicular to the loop axis, the trans-
verse velocity vr is anti-symmetrical about the loop axis to excite
(compressive) sausage waves. In the longitudinal direction s, the
perturbation has a sinusoidal profile with a wavenumber corre-
sponding to the harmonic we choose to generate. The radial ve-
locity perturbation is decomposed into its Cartesian components

Fig. 10. Spectral power of sausage oscillations in a curved coronal loop,
excited by drivers with n = 1 (solid line), 2 (blue dotted line), and 3 (red
dashed line). The vertical dotted lines correspond to the frequencies for
n = 1–5 calculated for a straight loop (Table 1).

Table 1. Period of oscillation (in seconds) of standing sausage modes
from numerical simulations of curved coronal loops and the analytical
calculation for a straight loop.

Curved Straight
P1 15.0 15.0
P2 12.3 12.9
P3 10.6 11.4
P4 9.5 10.1
P5 8.5 9.1

P1/2P2 0.61 0.58
P1/3P3 0.47 0.44
P1/4P4 0.40 0.37
P1/5P5 0.35 0.33

for use in Lare2d;

vr = A
sinh (r/a)

coshν (r/a)
sgn (x) sin (nπs/L) ,

vx = vr sin (x/l0) ,
vy = vr cos (x/l0) , (10)

where the amplitude A = 0.001 is chosen to be small to approx-
imate the linear regime. The parameter ν determines the radial
scale of the perturbation. In the case of a straight loop an exact
solution can be calculated by solving the dispersion relation to
obtain the phase speed. In our simulations we do not have such
a solution for our geometry and instead choose ν = 2 which pro-
vides a perturbation of the appropriate spatial scale to efficiently
excite oscillations. We note the velocity perturbation is only de-
fined within the range −π/2 < x/l0 < π/2 consistent with the
loop location (see Fig. 9).

3.1. Period ratios

Numerical simulations were performed for velocity perturba-
tions with n = 1, 2, and 3. In each case the density perturbation
was recorded at several points inside the coronal loop and anal-
ysed using a periodogram to obtain the period/s of oscillation
present. The results of the numerical simulations are summarised
in Fig. 10 and Table 1.

The conversion of dimensionless numerical results to phys-
ical units is done by choosing appropriate normalisation
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constants for speed (v0), time (t0), and length (l0 = v0t0). Our
normalisation is based on the observations of Nakariakov et al.
(2003). The loop is estimated as L = 25 Mm (taken to be the
length along its axis) which defines our normalising length scale
(l0 = 8.79 Mm). For the observation, the external Alfvén speed
was estimated in the range 4.5−5.3 Mm/s. For convenience, we
choose a normalising speed of 4.36 Mm/s which is slightly lower
but gives a period of oscillation for the global mode P1 that is
equal to the analytical solution for a straight slab (with the same
density contrast and aspect ratio at the apex). We note that the
choice of normalising constant has no effect on the calculated
period ratios. It is then apparent from Table 1 that our curved
and expanding loop geometry has the effect of modifying the
periods of oscillation such that the period ratios are greater than
the case of a straight loop. For each period ratio the modification
is &5%.

Figure 10 shows the spectral power of oscillations excited by
drivers with different values of n (see Eq. (10)). The lines have
been normalised for visibility. The driver with n = 1 (solid line)
excites the global mode alone. The n = 3 driver (red dashed
line) excites the global and n = 5 modes in addition to n = 3.
The driver for n = 2 does not excite any odd modes but also
weakly excites n = 4. We note that the frequency of the global
mode is the same whether excited by a driver with n = 1 or 3, as
expected. The vertical dotted lines correspond to the frequencies
for harmonics n = 1–5 calculated for a straight loop, which are
equal for n = 1 by our choice of normalisation constants.

3.2. Spatial structure

Next we consider the spatial profiles of the standing modes. For
our curved loop we have a variation in parameters in the longi-
tudinal direction, and so can expect the modes to be modified
accordingly. In Figs. 11 and 12, the crosses show the oscillation
amplitude along the loop axis for the different longitudinal har-
monics in Table 1. For each harmonic, a periodogram routine
was used to calculate the spectral power at the particular (fixed)
frequency. When calculating the spectral amplitude as the square
root of the power, the sign is added by hand for comparison with
the dashed sinusoidal profiles corresponding to the solutions for
a straight loop. The effect of the curved and expanding loop ge-
ometry causes a shift of anti-nodes towards the loop apex. For
n > 2 there is also a decrease in the amplitude of anti-nodes near
the loop apex compared with those near the loop footpoints.

3.3. Dependence on stratification height

The modification of the spatial profiles and increase in period
ratio is qualitatively similar to that seen by Pascoe et al. (2009b)
in their model of a straight loop with an expanding cross-section
(in particular the n = 1 and n = 3 modes also considered by
those authors). In the model presented in this paper the poten-
tial magnetic field links the curvature and expansion of the loop.
The expansion at the apex being common to both these studies
suggests this feature may be more important than the curvature.
The model of Pascoe et al. (2009b) also includes the longitudi-
nal variation of the internal Alfvén speed, in contrast to the con-
stant internal Alfvén speed in the current model. To investigate
this effect, Fig. 13 shows the effect of varying the vertical strat-
ification paramater Λ (see Eq. (9)). Increasing the value of Λ
above 0.5 causes the Alfvén speed to vary along the loop axis,
becoming smaller at the loop apex than at the loop footpoints, as
shown in the top panel of Fig. 13. The effect of a lower average

Fig. 11. Oscillation amplitude along the axis of a curved coronal loop
for the n = 1 (top), 2 (middle), and 3 (bottom) sausage modes. The
dashed lines show the sinusoidal profiles corresponding to the solutions
for a straight loop.

Alfvén speed causes the periods of the harmonics to increase
(middle panel) although the period ratios remain roughly con-
stant (bottom panel).

4. Discussion and conclusions

The spatial profile of the standing modes is modified by the
curved and expanding loop geometry. In particular we see that
the n = 3 longitudinal harmonic has an anti-node at the loop
apex which is smaller in amplitude and spatial extent than the
sinusoidal profile for a straight loop. On the other hand the spa-
tial extent of the anti-nodes at the loop legs is larger than for a
straight loop. This suggests the possibility that observations with
a low spatial resolution could more easily confuse the n = 2 and
n = 3 standing modes in curved (and expanding) coronal loops.
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Fig. 12. Same as Fig. 11 but for modes n = 4 (top) and n = 5 (bottom).

In particular, we reconsider the observations of Nakariakov et al.
(2003) who report the observation of sausage modes at three
spatial locations. Their interpretation is in terms of the n = 1
and n = 2 harmonics. The global (n = 1) mode is identified as
having a larger spectral amplitude near the loop apex than near
the loop footpoints. This spatial distribution is reproduced by
any three observations points along the loop so long as the cen-
tral observation point is indeed the one closest to the loop apex.
The n = 2 mode is identified by having a lower spectral ampli-
tude near the loop apex than near the loop footpoints. We have
demonstrated with our results that this spatial dependence may
also be satisfied by an n = 3 mode in a curved an expanding
coronal loop.

To further illustrate this point Fig. 14 shows the amplitudes
of the n = 1 and n = 3 modes from our numerical simulations
(see Fig. 11) as solid lines (here we ignore the sign for n = 3).
The vertical dashed lines correspond to observation points which
would reproduce qualitatively the spatial dependence of the two
periodicities reported by Nakariakov et al. (2003). For the ob-
servations at “Foot 1”, “Loop top” and “Foot 2” the longer pe-
riod mode has a ratio of spectral amplitudes of approximately
0.8:1:0.6, while the shorter period mode has a ratio of 1:0.5:0.8.
Taking the vertical dashed lines to be the location of these
three observation points gives ratios of spectral amplitudes of
0.6:1:0.3 for n = 1 and 1:0.5:0.9 for n = 3. As proposed by
Melnikov et al. (2005), we therefore consider the possibility of
the shorter period mode being the n = 3 standing mode rather
than n = 2, having demonstrated with our numerical simula-
tions that we can qualitatively reproduce the spatial dependence
of the observed oscillations. A more precise account of the spa-
tial dependence would require a full 3D simulation with forward-
modelled radio emission.

Fig. 13. Dependence of loop parameters as a function of the density
stratification parameter Λ. Top: ratio of Alfvén speed at the loop apex
and loop footpoint. Middle: period of oscillation; P1, P2, and P3 are
represented by plus signs, triangles and crosses, respectively. Bottom:
period ratios P1/2P2 (triangles) and P1/3P3 (squares).

Nakariakov et al. (2003) report P1 of 14–17 s and P2
of 8−11 s and so the period ratio P1/2P2 is approximately
0.64−1.06 with an average of 0.8. In comparison the numeri-
cal simulations and straight loop estimates give 0.61 and 0.58,
respectively, for P1/2P2 (Table 1). If instead we consider the
shorter period mode to be n = 3 then we can calculate the obser-
vational period ratio P1/3P3 of approximately 0.42−0.71 with
an average of 0.53. This compares more favourably with 0.47
for our numerical simulations and 0.44 for the straight loop an-
alytical estimate. The interpretation using n = 3 therefore more
readily accounts for the large ratio of the two observed periodic-
ities. For comparison, to account for such a period ratio without
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Fig. 14. Spatial dependence (solid lines) of the n = 1 and n = 3 stand-
ing sausage modes in a curved coronal loop (see Fig. 11). The vertical
dashed lines represent three points of constant separation which qual-
itatively reproduce the spatial dependence of the oscillations observed
by Nakariakov et al. (2003).

introducing curvature we can consider the dependence on the
loop aspect ratio calculated by Macnamara & Roberts (2011)
and described in Sect. 2.1. Figure 3 shows that P1/3P3 ≈ 0.53
requires a/L ≈ 0.2, which is approximately twice that which is
observed by Nakariakov et al. (2003).

We have shown that the effect of our curved and expand-
ing loop acts to increase the period ratios in comparison with
those for a straight loop. In the case of a straight loop a 3D
(cylindrical) rather than 2D (slab) geometry causes a decrease
in the period ratios (e.g. Fig. 2). We might expect a similar de-
crease for the period ratios of 3D curved coronal loops compared
with our 2D simulations. On the other hand, the effect of expan-
sion on the standing mode would also be greater in 3D than in
2D and this effect might prove to be stronger, causing the pe-
riod ratios to increase further rather than decrease. Additionally,
for straight loops the sausage mode is weakly dependent on the
choice of slab or cylindrical geometry (e.g. Edwin & Roberts
1982, 1983). However, this does not necessarily remain once
curvature is introduced, which has the effect of breaking the az-
imuthal symmetry.

An additional factor that might favour the interpretation us-
ing n = 3 concerns the symmetry of the initial perturbation and
the selectivity of the different standing modes. The n = 1 and
n = 3 are both excited in the case of a perturbation with odd
symmetry such as one localised near the loop apex (e.g. Fig. 10).
This perturbation would only weakly excite the n = 2 and other
even harmonics. Since we assume in any case the n = 1 mode
is excited, it is reasonable that the n = 3 mode should also
be excited to some extent. This is particularly true in the case
of expanding loops increases the coupling between harmonics
(Pascoe et al. 2009b). For the n = 1 and n = 2 modes to be exited
simultaneously requires a driver that excites both odd and even
modes (with standing modes n > 2 apparently being too weak to
be observed) such as one which is significantly offset from the
loop apex (e.g. Pascoe et al. 2009a, for the case of standing kink
modes).

In addition to the event discussed in detail in this
paper, another multi-periodic observation was reported by
Inglis & Nakariakov (2009). NoRH observations of a solar flare
on 3 July 2002 revealed oscillations with periods of approxi-
mately 28 ± 2, 18 ± 1, and 12 ± 1 s. The observations were
not resolved spatially, although the two longest periods were
also observed in RHESSI data. Taking these periods to be P1,

P2, and P3, respectively, gives the ratios P1/2P2 ≈ 0.78 and
P1/3P3 ≈ 0.78. These ratios are larger than would be expected
even taking into account the effects discussed in this paper.
Inglis & Nakariakov (2009) proposed an interpretation of the
observations in terms of magnetic reconnection being periodi-
cally triggered by kink mode oscillations. We may again recon-
sider these periods in terms of higher order (odd) harmonics. If
the periods correspond to P1, P3, and P5 the ratios (Table 1)
would be expected to be P1/3P3 ≈ 0.47 and P1/5P5 ≈ 0.35. If
we take into account the errors reported by Inglis & Nakariakov
(2009) on the observed periods, the equivalent observational ra-
tios could be as low as 0.46 and 0.40, respectively. The ratio for
the shortest period oscillation therefore still remains significantly
higher than expected for P1/5P5.
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