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ABSTRACT

Aims. We developed an analytical model of the global transverse oscillations and mechanical stability of a quiescent prominence in
the magnetised environment with a magnetic field dip that accounts for the mirror current effect.
Methods. The model is based on the interaction of line currents through the Lorentz force. Within this concept the prominence is
treated as a straight current-carrying wire, and the magnetic dip is provided by two photospheric current sources.
Results. Properties of both vertical and horizontal oscillations are determined by the value of the prominence current, its density and
height above the photosphere, and the parameters of the magnetic dip. The prominence can be stable in both horizontal and vertical
directions simultaneously when the prominence current dominates in the system and its height is less than the half-distance between
the photospheric sources.
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1. Introduction

Coronal mass ejections (CMEs) are known to be the most pow-
erful and geoeffective phenomena occurring in the solar atmo-
sphere. An important role in their initiation is assigned to the
evolution of prominences, cold and dense plasma filaments lev-
itating in the magnetised environment of the solar corona. An
important feature in the evolution of prominences is their oscil-
lations. Global collective oscillations of prominences are seen to
have periods ranging from a few tens of minutes to several hours
(e.g. Mashnich & Bashkirtsev 1990; Bashkirtsev & Mashnich
1993; Oliver & Ballester 2002; Arregui et al. 2012). Both ver-
tically (e.g. Bocchialini et al. 2011; Kim et al. 2014) and hor-
izontally polarised (e.g. Kleczek & Kuperus 1969; Molowny-
Horas et al. 1997; Tripathi et al. 2009) motions of prominences
have been observed. In some cases the oscillations occur before
prominence eruptions (e.g. Isobe & Tripathi 2006), or are ex-
cited by an Extreme Ultraviolet (EUV) wave (e.g. Hershaw et al.
2011; Asai et al. 2012; Shen et al. 2014a,b).

Vertical transverse oscillations of prominences have been
modelled based on natural magnetohydrodynamic (MHD) oscil-
lations of the current-carrying toroidal magnetic ropes (Cargill
et al. 1994; Vršnak 2008). Theoretical aspects of non-radial mo-
tions of an eruptive filament also modelled as toroidal currents
are discussed by Filippov et al. (2001). In addition, comparison
of the modelling and observational results showed that the equi-
librium state is most likely supported by the potential magnetic
field structures with a magnetic dip (see e.g. Filippov 2016, for
recent results). This Kippenhahn-Schlüter type equilibrium of
prominences (Kippenhahn & Schlüter 1957) was used in theo-
retical models treating the prominence as a plasma slab embed-
ded in a magnetic dip created by some sources at the surface of
the Sun. In particular, MHD eigen modes of such a prominence

structure, i.e. the fast and slow magnetoacoustic and Alfvén
modes, with and without accounting for the gravity force, were
investigated in Oliver et al. (1993) and Joarder & Roberts (1993),
respectively. Global oscillations of prominences also modelled
as a plasma slab in a magnetic dip with straight magnetic field
lines anchored in vertical rigid boundaries (not connected to
the solar surface) are considered in Anzer (2009). Properties of
MHD oscillations as perturbations of a two-dimensional magne-
tostatic model of a prominence, taking into account the effects of
gravity, were determined numerically in Terradas et al. (2013).
Large-amplitude longitudinal oscillations in prominences were
modelled in terms of a so-called pendulum model by Luna &
Karpen (2012) and Luna et al. (2016). That model has been suc-
cessfully adapted for a dipped magnetic field line configuration,
and treats the gravity projected along the magnetic field lines as
the restoring force.

Another essentially different approach describing quiescent
prominence oscillations, based on the interaction of line currents
through the electromagnetic Lorentz force, was suggested by
Kuperus & Raadu (1974, the KR model). In this mechanism the
prominence is modelled as a straight current-carrying wire lo-
cated at a height above the conductive photosphere. Interaction
of the prominence current with the conductive surface is de-
scribed by the introduction of a virtual mirror current (known
as the mirror effect) located below the photosphere, strictly
symmetric with respect to the prominence. The KR model al-
lows for the vertical oscillations of the prominence, and does
not describe horizontally polarised oscillations. Indeed, even
a small displacement of the prominence current in the hori-
zontal direction automatically causes a corresponding identi-
cal displacement of the mirror current, and thus the horizon-
tal restoring force is always absent from that model. Moreover,
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the KR model neglects the interaction of the prominence with
external sources of the magnetic field. In particular, the promi-
nence may be embedded in a magnetic dip, e.g. a Kippenhahn–
Schlüter type magnetic configuration. In this case there could be
restoring forces responsible for horizontal oscillations. Effects of
the delayed response between the photosphere and the filament
were also investigated within the concept of line current models
in van den Oord et al. (1998). In particular, it was shown that
the Kippenhahn–Schlüter type equilibrium of a prominence can
never be stable in the horizontal and vertical directions simul-
taneously, i.e. the prominence position is always unstable if the
effect of the mirror current is neglected in the model.

In this paper we developed an analytical model for oscilla-
tory dynamics of a prominence in a magnetic environment ac-
counting for both the magnetic dip and mirror current effects.
The dip is provided by two photospheric current sources (Fig. 1).
We considered vertically and horizontally polarised oscillations
of the prominence in such a magnetic topology, analytically de-
riving equations of motion and determining the oscillation pe-
riods. We also analysed the stability of this configuration. In
particular, we showed that in contrast to the results obtained
in van den Oord et al. (1998), the prominence can be stable
in both the horizontal and vertical directions simultaneously if
the effect of the mirror force is accounted for in the model.
Possible seismological applications of the developed model are
also discussed.

2. Model, forces, and equilibrium

The magnetic field topology with a magnetic dip (Fig. 1) is con-
figured by two co-aligned spatially separated photospheric cur-
rents (with d being the half-distance between the currents) of the
same magnitude I. The prominence itself is modelled as a mas-
sive straight wire representing a magnetic rope with a current i
which is located at a height h above the photosphere. In turn,
it causes a so-called mirror current (see the KR model) due to
conductive properties of the photosphere. By its definition, the
mirror current is oppositely directed with respect to the promi-
nence current i, has the same magnitude, and is located at the
distance 2 h strictly below the prominence current (see Fig. 1).
In this model the prominence can interact with the coronal sur-
roundings through the corresponding mutual interaction of the
magnetic fields produced by the prominence i and photospheric
I currents.

The equilibrium of a prominence in such a magnetic envi-
ronment is provided by the Lorentz and gravity forces balance

F1 + F2 + Fm + Fg = 0, (1)

where F1 = F2 = k1/(d2 + h2)1/2 are the Lorentz forces per
unit length acting between the photospheric currents I and the
prominence current i, with k1 = µ0Ii/2π; Fm = k2/2 h is the mir-
ror force between the prominence and the mirror current, with
k2 = µ0i2/2π; and Fg = ρg is the gravity force which is assumed
to be constant in the model, with ρ being a linear mass density of
the prominence (its volume mass density multiplied by the cross-
sectional area), measured in kg m−1. According to the definition
of the mirror current, we note that the mirror force Fm acting on
the prominence is always directed upwards and strictly along the
vertical axis and cannot contribute to the horizontal dynamics of
the prominence.

The system is completely defined by the geometrical pa-
rameters h and d, and magnetic constants k1 and k2 (written in
terms of I and i), while the appropriate mass density ρ of the

Fig. 1. Massive prominence with a line current i located at the height
h above the photosphere in the magnetic dip configured by two photo-
spheric currents I, with d being the half-distance between the currents.
The mirror current i generated by the conductive properties of the pho-
tosphere is located strictly below the prominence. The field lines of the
total magnetic field produced by the photospheric, mirror, and promi-
nence sources are shown for h = 0.5 d and i = 0.5 I.

prominence necessary for its vertical equilibrium, is determined
by the following condition (2). However, for seismological pur-
poses it is also useful to re-write this condition through the pa-
rameters h and ρ, assuming a priori that they are available from
observations:

FL ≡
2k1h

d2 + h2 +
k2

2h
= ρg, and d2 =

4k1h2

2ρgh − k2
− h2. (2)

The horizontal equilibrium of the prominence in turn is not af-
fected by the essentially vertical forces Fm and Fg, and is pro-
vided automatically by the balance between the horizontal com-
ponents of F1 and F2 because of the horizontal symmetry of the
model. Equations (2) put the first constraint on the parameters of
the model. Indeed, for a given distance d to have a real value in
the equilibrium condition, the parameters need to be related as

k2 < 2ρgh < 4k1 + k2. (3)

Inequality (3) describes a condition necessary for the equilib-
rium of the prominence to exist, between its gravitational energy
and the total magnetic energy (written in terms of k1 and k2),
generated by the prominence and photospheric currents, i and I,
respectively. Thus, when 2ρgh > 4k1 + k2, the magnetic back-
ground cannot sustain the prominence and it falls to the surface.
In the other case, when 2ρgh < k2, the prominence’s magnetic
energy exceeds the gravitational energy and the prominence lifts
off.

According to Eq. (2), the vertical component of the total
Lorentz force acting on an unperturbed prominence, FL grad-
ually decreases with height for all values of the photospheric
currents I being lower than or equal to the prominence current i,
and may have both negative and positive gradients for I > i.
Consequently, for I < i the system is able to have only a single
equilibrium determined by the FL = ρg balance, while for I > i
there are at most three possibilities to satisfy the force balance
condition, and hence, up to three equilibria of the system at dif-
ferent heights may exist. Corresponding examples are shown in
Fig. 2 for different values of the I/i ratio.

For the case when the prominence is obliquely perturbed by
a small displacement with corresponding x and z components,
the equation of motion of the prominence can be written in a
vector form as

ρ
[
ẍ ex + z̈ ez

]
= Fx ex + Fz ez, (4)
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Fig. 2. Magnetic force FL (2) acting upwards on the unperturbed promi-
nence for different values of the prominence i and photospheric I cur-
rents. The horizontal dotted line shows a constant gravity force ρg
needed to satisfy equilibrium condition (2). This example shows that
the system may have up to three different equilibria (blue asterisks) de-
pending upon the values of the parameters of the model.

where ex and ez are unit vectors in the positive x- and
z-directions, and

Fx =
2k1x[(h + z)2 + x2 − d2]

(d2 − x2)2 + 2(d2 + x2)(h + z)2 + (h + z)4

≈
2k1(h2 − d2)
(d2 + h2)2 x, (5)

Fz =
2k1(h + z)[d2 + x2 + (h + z)2]

(d2 − x2)2 + 2(d2 + x2)(h + z)2 + (h + z)4 +
k2

2h + z
− ρg

≈

[
2k1(d2 − h2)
(d2 + h2)2 −

k2

4h2

]
z (6)

are the projections of the total force given in Eq. (1) on the x-axis
(horizontal) and z-axis (vertical), expanded up to the first order
of the small perturbations, x and z. We note that the first-order
Taylor expansion in Eq. (6) was derived taking into account con-
dition (2) for the vertical equilibrium of the prominence. Because
we restrict our attention to linear perturbations only, both forces
Fx (5) and Fz (6) lose their dependence on z and x, respectively,
and horizontally and vertically polarised oscillations are inde-
pendent of each other and hence can be considered separately.

3. Vertically polarised oscillations

We consider the case when the initial displacement of the promi-
nence is directed strictly along the vertical z-axis, i.e. we assume
x = 0 and z , 0 in Eq. (4). In this case, the vertical compo-
nent (6) of the total force acting on the prominence has the form

Fz =
2k1(h + z)

d2 + (h + z)2 +
k2

2h + z
− ρg, (7)

where the first term on the right-hand side corresponds to the
Lorentz force acting on the perturbed prominence from two pho-
tospheric currents, the second term is the corresponding mirror
force, and the last term is the constant gravity force.

Fig. 3. Left: period Pz (9) of vertical oscillations of a prominence vs.
the currents ratio I/i for different values of the dimensionless parameter
a = 2ρgh/k2. We note that the case a = 1 corresponds to the KR limit
(Kuperus & Raadu 1974) when the effect of the photospheric currents
is negligibly small. Right: period Px (13) of horizontal oscillations de-
pending upon the same parameters I/i and a as shown in the left panel.
Dashed lines in both panels show a threshold values of I/i where pe-
riods (9) and (13) become imaginary, and corresponding instabilities
develop.

With the use of the first-order Taylor expansion of the per-
turbed vertical force Fz written in Eq. (6), the equation of motion
of the prominence along the vertical axis is

z̈ + (2π/Pz)2 z = 0. (8)

Equation (8) is a harmonic oscillator equation and describes
small-amplitude vertically polarised oscillations of the promi-
nence with the period (expressed either in terms of h and d or
via ρ and h):

Pz = PKR

[
1 + 8

k1

k2

h2(h2 − d2)
(d2 + h2)2

]−1/2

=
PKR

√
k1k2[

(2ρgh − k2)2 − 2k2(2ρgh − k2) + k1k2
]1/2 , (9)

where d2 in form (2) has been substituted, and PKR =

2π
√

4ρh2/k2 is the period of prominence oscillations in the ab-
sence of the photospheric current effect (i.e. the limiting case
corresponding to the KR model). In fact, neither k1 nor k2 (i.e.
the currents I and i) can have zero values in our model. However,
the period (9) can be reduced to the KR limit when the half-
distance d between the external currents tends to infinity. This
limiting case can be achieved when 2ρgh = k2 (see Eq. (2)). In
other cases, period (9) has a non-trivial dependence upon the cur-
rents I and i, height h, and mass density ρ. Its dependence upon
the currents ratio I/i (i.e. k1/k2) for different values of 2ρgh/k2
(also including the KR limit 2ρgh = k2) is shown in Fig. 3.

General dependence of the vertical dynamics of the promi-
nence described by Eq. (8) on the parameters of the model can
also be derived analytically. More specifically, when the promi-
nence current dominates in the system, i.e. 0 < k1/k2 < 1, Eq. (8)
shows solutions that are always stable for the vertical displace-
ment. The particular case when the prominence i and photo-
spheric I currents are of the same magnitude, i.e. k1 = k2 ≡ k,
also corresponds to the always stable state of the prominence
oscillating harmonically around the equilibrium position with a
period P = PKR|(d2 + h2)/(3h2 − d2)|. In both of these cases,
only conditions (2) and (3), which provide the existence of an
initial equilibrium of the system, should be satisfied for h and d.
In contrast, for the photospheric currents domination (k1/k2 > 1)
there is a parametric region of a vertical instability (see Fig. 4)
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Fig. 4. Parametric regions of the prominence instability, determined by
equilibrium condition (3), (10) (vertical instability), (14) (horizontal in-
stability). Left and right panels show the corresponding regions deter-
mined via ρ and h, and h and d, respectively.

determined by condition (3) and the following relations (written
either in terms of h and d or via ρ and h):

d
√

k2[
4k1−k2+4

√
k2

1 − k1k2

]1/2 < h <
d
√

k2[
4k1−k2−4

√
k2

1 − k1k2

]1/2 ,

or k1 + k2 −

√
k2

1 − k1k2 < 2ρgh < k1 + k2 +

√
k2

1 − k1k2. (10)

4. Horizontally polarised oscillations

We now consider the case when z = 0, i.e. the initial displace-
ment of the prominence is directed strictly along the horizontal
x-axis. In this case the force Fx (5) acting on the prominence
along the horizontal axis reduces to

Fx =
2k1x[h2 − d2 + x2]

(d2 − x2)2 + 2(d2 + x2)h2 + h4 · (11)

Using the Taylor expansion of the force Fx up to the first order
of the small perturbations (x and z) given in (5), the equation of
motion describing small-amplitude dynamics of the prominence
along the horizontal axis is

ẍ + (2π/Px)2 x = 0. (12)

Similar to the vertically polarised oscillatory modes described in
the previous section, Eq. (12) shows harmonic oscillations of the
prominence around the equilibrium position (x = 0 and z = 0),
with the period Px,

Px = PKR

√
k2

8k1

(d2 + h2)2

h2(d2 − h2)

=
PKR

√
k1k2[

2k1(2ρgh − k2) − (2ρgh − k2)2]1/2 · (13)

In the KR limit that can be achieved when 2ρgh = k2 (see
Eq. (2)), we note that the value of Px tends to infinity. Behaviour
of the period (13) for various other values of ratios 2ρgh/k2 and
I/i is shown in Fig. 3.

The regions on the parametric plane where the period Px has
imaginary values (i.e. the condition of the horizontal instability
of the prominence) when accounting for conditions (2) and (3),
are shown in Fig. 4, and are expressed as

h > d, or 2k1 + k2 < 2ρgh < 4k1 + k2. (14)

5. Discussion and conclusions

The developed model provides a simple, analytical treatment of
global transverse oscillations and mechanical stability of quies-
cent prominences. In this paper, the term “global” denotes the
collective nature of the considered oscillation, when the promi-
nence oscillates as a whole, in contrast to the oscillations of in-
dividual threads. The term is connected with the observational
manifestation of the considered oscillation, rather than a specific
interpretation, for example a fundamental longitudinal harmonic
of a kink or sausage oscillation. Properties of the oscillations are
determined by the value of the electric current in the prominence,
its density and height above the photosphere, and the parame-
ters of the magnetic dip caused by external magnetic sources. As
mentioned above, in the linear regime considered in this study,
the vertically and horizontally polarised oscillations are essen-
tially decoupled, and the obliquely or elliptically polarised os-
cillations can be represented as a linear superposition of separate
vertical and horizontal modes. Furthermore, the stability condi-
tions in both the z- and x-directions given in Eqs. (10) and (14)
do not interfere with each other, and the oscillation periods given
by expressions (9) and (13) in both directions are independent.

For the prominence current domination in the considered
magnetic system (I/i < 1), the prominence displacements in
both vertical and horizontal directions are found to be stable (cf.
van den Oord et al. 1998) when the prominence’s height h above
the photosphere is less than the half-distance d between the pho-
tospheric current sources configuring the dip (see Fig. 4). In the
case when the external currents dominate (I/i > 1), the promi-
nence is stable only in the narrow regions of parameters, de-
termined by conditions (10) and (14). These analytical findings
agree with numerous observational results describing the promi-
nence instability occurring when its height h reaches a critical
value (see e.g. Vršnak 2008).

Exact analytical dependences of the periods of the promi-
nence oscillations upon the parameters of the system derived in
Eqs. (9) and (13) allow for seismological diagnostics of the cur-
rent in the prominence. For example, taking a typical value of
PKR ≈ 20 min (Kuperus & Raadu 1974) and fixing h = 0.6 d,
for the observed periods of the vertical transverse oscillations,
Pz ≈ 80 min (Bocchialini et al. 2011), the prominence current i
with respect to the photospheric current I, according to Eq. (9),
can be estimated as I ≈ 0.94 i. Using the ratio I/i and the geo-
metrical parameters h and d of the model, it is possible to esti-
mate the coronal magnetic field at the prominence’s equilibrium
position, which is caused by the external photospheric sources,
I as B/B0 = (I/i) 2h/

√
d2 + h2, where B0 is the magnetic field

caused by the interaction of the prominence current i with the
conductive photosphere used in the KR model in the absence
of external magnetic sources. In addition, the developed model
can also be used for the numerical modelling of the excitation of
prominence oscillations (e.g. Takahashi et al. 2015).

The proposed model developed within the line currents con-
cept also has a number of shortcomings. In fact, we neglect the
effects of the magnetic field curvature and the finite wave num-
ber of the perturbations in the direction along the current, which
are important, for example, for kink oscillations of coronal loops
and prominence threads (e.g. Edwin & Roberts 1983; Joarder
et al. 1997). They add the additional restoring force that may de-
crease the oscillation period. We also do not consider thermody-
namical effects affecting the prominence development itself (e.g.
Kuin & Martens 1982). In addition, in our model the electric cur-
rents are considered to be linear, i.e. wire-like. However, there
may be important effects connected with the spatial distribution
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of the current in the plane of the oscillation. For example, in
a more general model, a prominence could possibly be consid-
ered as a vertical current sheet. In that case the parameters of the
modes of oscillations may become dependent on height, which
may be relevant to the interpretation of some of the observa-
tional findings (e.g. Hershaw et al. 2011). However, a further
discussion of this issue would be beyond the scope of this paper.
Another important limitation of this study is that we consider
only small-amplitude oscillations and do not account for the ef-
fects of large amplitudes that are observed (see e.g. Tripathi et al.
2009). Accounting for these effects will be the aim of a future
study.
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