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ABSTRACT

Context. Frequent observations of quasi-periodic rapidly-propagating wave trains in coronal structures have been made in the last
decade. The dispersive evolution of fast magnetohydrodynamic waves propagating in coronal waveguides can provide a physical
interpretation for many of these observations.
Aims. Previous studies have considered the generation of fast wave trains by impulsive drivers which deposit energy instantaneously.
The signatures of dispersively formed wave trains must depend on the temporal nature of the driver. We investigate the effect of
varying the temporal width of the driving perturbation.
Methods. 2D magnetohydrodynamic numerical simulations of impulsively generated wave trains in a guiding field-aligned density
enhancement were performed with the novel addition of a time-dependant driver.
Results. The final spatial and spectral signatures of the guided wave trains are found to depend strongly on the temporal duration of
the initial perturbation. In particular, the wavelength (or frequency) of highest spectral amplitude is found to increase (decrease) with
increasing temporal duration, whereas the spectral width decreases. Additionally, the efficiency of generation of fast wave trains is
found to decrease strongly with increasing temporal width of the driver, with a cut-off at twice the internal Alfvén crossing time.
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1. Introduction

Active regions in the solar corona are comprised of highly
inhomogeneous plasma, containing a range of structures with
enhanced (or reduced) density compared to the surrounding
plasma. Impulsive energy releases can excite different magne-
tohydrodynamic (MHD) wave modes within these structures.
One such example are rapidly-propagating quasi-periodic wave
trains, first detected during eclipses using white-light corono-
graphs (Williams et al. 2001, 2002; Katsiyannis et al. 2003),
qualitatively similar time series from radio band data were
shown in Roberts et al. (1983).

The spatial and temporal resolution provided by the Solar
Dynamics Observatory (SDO) Atmospheric Imaging Assembly
(AIA) allows the detection of these propagating quasi-periodic
waves in extreme ultraviolet (EUV) images (e.g., Liu et al. 2011;
Nisticò et al. 2014), with several recent studies focussing on the
apparent initiation mechanism (e.g., Li et al. 2018a; Shen et al.
2018).

These disturbances are interpreted as a series of fast magne-
toacoustic waves of the m = 0 azimuthal symmetry (i.e. sausage
waves) (e.g., Cooper et al. 2003; Ofman et al. 2011). These are
known to be highly dispersive in coronal waveguides if their
wavelength is comparable to the waveguide width. Therefore an
impulsive broadband driver can result in a quasi-periodic series
of fast waves (simply “wave train”, hereafter) if measured a suf-
ficient distance from the perturbation, due to different spectral
harmonics propagating at different speeds (Roberts et al. 1983,
1984).

The dispersive formation of these wave trains has been
the subject of numerous MHD numerical simulations, the
first being Murawski & Roberts (1994). Nakariakov et al. (2004)
demonstrated the similarity of the obtained wave signatures to
observations, and used wavelet transforms to analyse their time-
dependent power spectrum, resulting in a characteristic “crazy
tadpole” signature, i.e. a broadband “head” and narrowband
“tail”. Since then wavelet analysis has been frequently used to
visualise the obtained wave train signatures in both observational
and numerical studies. Further theoretical studies have focused
on different perpendicular density profiles of the waveguide
(e.g., Yu et al. 2017; Li et al. 2018b), wave train formation in
current sheets (e.g., Jelínek & Karlický 2012; Mészárosová et al.
2014), accounting for 2D and cylindrical effects (Pascoe et al.
2013; Shestov et al. 2015), amplitudes entering the non-linear
regime (Pascoe et al. 2017), and analytical estimations (e.g.,
Oliver et al. 2015).

Fast magnetoacoustic wave trains in coronal structures are
well resolved, temporally and spatially, in modern observations.
However, exact details of their excitation, evolution and damp-
ing remain unknown, as such their seismological potential has
yet to be exploited. Further motivation for the study such wave
trains comes from recent advances in the use of radio-band
data for their study (Goddard et al. 2016; Kumar et al. 2017;
Kolotkov et al. 2018; Kaneda et al. 2018), and their potential
role in the modulation of flaring emission for solar and stellar
flares (e.g., Van Doorsselaere et al. 2016).

These observed wave trains may be excited in coronal struc-
tures by some kind of impulsive driver. Candidates include
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Fig. 1. Top panel: transverse density profile of the waveguide. Overplot-
ted in blue is the spatial profile of the vx velocity pulse in arbitrary units.
Bottom panel: temporal profile of the driver amplitude for three differ-
ent driver durations, [0.29, 1.47, 2.94] τAi. The centre of the driving
pulse, t0, is indicated by the vertical dashed line.

energy deposition during flares and reconnection and mechan-
ical displacement via plasma motions such as jets and coronal
mass ejections. These processes all have some characteristic
time scale over which they should operate, however to date
almost all studies of dispersively formed fast magnetoacoustic
wave trains use an instantaneous driver. A harmonic driver was
used in Ofman & Liu (2018), however the effect of this on the
final wave train signature was not explored. The effect of time-
dependent drivers on MHD waves and oscillations have been
studied in various other contexts for closed systems; for exam-
ple driven kink oscillations of coronal loops (e.g., Pascoe et al.
2015; Guo et al. 2019) and the driving of MHD waves in the
magnetosphere (e.g., Elsden & Wright 2018).

The aim of this Letter is to study the effect of varying
the temporal duration of the driver on the resulting disper-
sively formed fast wave train, which has yet to be investi-
gated in any capacity. The numerical model is described in
Sect. 2 and the results are presented in Sect. 3. Conclusions
and discussion of the implications of the results are presented
in Sect. 4.

Fig. 2. Top panel: perturbation to the equilibrium density at t = 110
from a driver with δt = 0.58 τAi. The slow wave can be seen at z ∼ 10
and the fast wave train between z ∼ 40 and z ∼ 100, both propagating
to the right. The waveguide width is indicated by 2w, and the magnetic
field direction by B. Bottom panel: pertubation to the equilibrium den-
sity measured along the centre of the waveguide (x = 0) from the above
simulation output. The region between the dashed vertical lines denotes
the section of the signal used for analysis of the fast wave train.

2. Model

The numerical setup is similar to previous studies which
have used the 2D slab geometry (e.g., Nakariakov et al. 2004;
Pascoe et al. 2017). The magnetic field is straight and uniform
in the z-direction, with strength B0. An MHD waveguide is mod-
elled with a field-aligned plasma density enhancement. The den-
sity structure transverse to the field (x-direction) is modelled as
the generalised symmetric Epstein profile

ρ = ( ρi − ρe) sech2
( y
w

)p
+ ρe, (1)

where ρi is the density at the waveguide centre, ρe is the density
outside the waveguide, p determines the density profile steep-
ness, and w is the waveguide half-width. The parameters chosen
for this study are ρi/ρe = 4, p = 8 and w = 0.5 (in normalised
units). The effect of varying these parameters has been the sub-
ject of previous studies, and so they remain constant here.

The plasma is set in equilibrium by defining the internal
energy density ε as

ε =
pgas

ρ0 (γ − 1)
, (2)

to counter act the density enhancement, where pgas is the (con-
stant) gas pressure and γ = 5/3. The gas pressure is set to give
a plasma beta of β = pgas/pmag = 0.01, where pmag = B2

0/2µ0,
which is a typical value assumed for solar coronal structures.

The time-dependent driver is a localised compressive veloc-
ity perturbation of the sausage symmetry applied at the boundary
(z = 0), about the centre of the density enhancement (x = 0 =
x0). It takes the form

vx = xAt exp
[
−

( x − x0

δx

)2
]
, (3)
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Fig. 3. Left panel: pertubation to the equilibrium density measured along the centre of the waveguide (x = 0) at t = 110. Three different driver
durations were used, δt = [0.29, 1.12, 1.77]τAi, top to bottom. Right panel: corresponding wavelet spectra plotted as the spectral amplitude and the
global wavelet spectrum (GWS) of the normalised spectral amplitude.

where δx defines the spatial width of the driver, taken to be equal
to the waveguide half-width to efficiently excite the fundamental
mode of the waveguide. At defines the temporal evolution of the
applied perturbation, and takes the form

At = A0 exp

− (
t − t0
σt

)2 , (4)

where A0 is the maximum applied amplitude, taken to be 0.1 for
all simulations and σt controls the temporal duration of the per-
turbation, which is centred on t0. Additionally, we define δt as
the full-width at half-maximum (FWHM) of the temporal pro-
file. Examples of the transverse density profile and the spatial
and temporal profiles of the driver are shown in Fig. 1.

The MHD code Lare2d (Arber et al. 2001) is used to
perform the simulations in the ideal MHD regime. The 2.5D
approximation in this code gives ∂/∂y = 0, however due to the
equilibrium and driver used vy and By remain zero and the model
is essentially 2D.

The resolution used in all simulations was 1200× 7500 (x, z)
grid points, and convergence tests at a resolution of 2400 ×

15000 (x, z) grid points show no notable differences. In nor-
malised units the domain size is 110, or 220 w, in the z direc-
tion. In normalised “unstretched” units the domain size is 4 in x
direction. Open boundary conditions are used for all boundaries
except the driven lower z boundary, which has zero-gradient and
zero-velocity conditions for all parameters except vx, which is
prescribed by the driving Eq. (3). Due to imperfect open bound-
aries reflected waves occur at the upper and lower x bound-
aries. To ensure they do not interact with the waveguide the
grid spacing in the x direction is severely stretched beyond
−1 < x < 1, any deviation in this region is not important as
only the guided waves, measured at x = 0, are considered in this
study. The simulation domain can be seen in the top panel of
Fig. 2.

The length scales (X, Z), time scales (T ), and speeds (V)
in physical units are related to the dimensionless variables via
X = x (2w), T = t t0, and V = v v0, where w, t0, and v0 are
the chosen normalisation constants and v0 = 2w/t0. The choice
of normalisation should naturally be consistent with the MHD
approximations. For further details see Arber et al. (2001).
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Fig. 4. Left panel: amplitude ratio of the fast wave train and slow wave measured at t = 110 plotted against the driver duration in units of the Alfvén
transit time across the waveguide. The cutoff above which the fast wave train is no longer considered to be efficiently excited is shown by the
vertical dashed line. Middle panel: wavelength of peak spectral amplitude (in units of the waveguide width) of the fast wave train plotted against
the driver duration. Right panel: spectral width of the fast wave train signal plotted against the driver duration.

3. Results

Numerical simulations are performed for several values of driver
duration in the range 0.29 > δt > 2.94 τAi, relative to the inter-
nal Alfvén transit time, τAi = (2w)/CAi (here CAi = 0.5 due
to the normalisation). All other parameters remain as defined in
Sect. 2. The simulations are run until t = 110, allowing the fast
wave train to undergo sufficient dispersive evolution. The den-
sity perturbation, ρ − ρi, at t = 110 is then extracted along the z
axis at x = 0, as opposed to recording the time evolution at a
fixed point in space. An example wave train signature is shown
in Fig. 2, showing the fast wave train as well as the broadband
slow magnetoacoustic wave which is also excited, from a driver
with δt = 0.58 τAi. The vertical dashed lines in the bottom panel
denote the section of the signal used for further analysis.

In Fig. 3 the density perturbations from the wave
trains are shown for three different driver durations, δt =
[0.29, 1.12, 1.77]τAi, top to bottom. On the right are the corre-
sponding wavelet spectra (Torrence & Compo 1998), plotted as
the spectral amplitude. Each also includes a plot of the global
wavelet spectrum (GWS) of the spectral amplitude. A clear dif-
ference between the wave train signatures can be seen, as the
longer wavelengths (lower frequencies) become more dominant
for longer driver durations. The wave train amplitude can also be
seen to decrease, despite the total energy of the driver increasing
for higher values of δt.

We can define a maximum threshold of δt above which
the fast wave train is no longer efficiently excited. To do this
we form the ratio of maximum density perturbation of the fast
wave train and slow wave, Awt/AS. Since the peak amplitude
of the driver remains constant the total energy applied by the
driver is increased with higher values of δt, hence this ratio of
wave mode amplitudes is used rather than just the amplitude of
the wave train. Awt/AS is plotted against δt, in units of τAi, in
the first panel of Fig. 4. A strong negative relationship between
the two is observed. We define the cut-off to occur at δt = 2 τAi.
At this point the wave train amplitude is 3 orders of magnitude
lower than the slow wave amplitude, and so would be practically
impossible to detect observationally.

To quantify the effect of driver duration, for δt < 2 τAi, we
plot the wavelength of peak spectral amplitude (λp, in units of the
waveguide width), and the FWHM of the spectral amplitude dis-
tribution against the driver duration. These are shown in middle
and right panels of Fig. 4. The spectral properties are obtained by
fitting a Gaussian to the GWS. As noted above, a shift to longer
wavelengths can clearly be seen with increasing δt, and con-

versely the width of the spectral distribution decreases. For data
taken in the time domain the period and spectral width would
also vary in the same way, however a direct conversion cannot
be made due to the presence of dispersion. This result is similar
to the effect of increasing the spatial width of the driver (making
it spectrally narrower), which results in a more monochromatic
wave train (see Nakariakov et al. 2005). Here, a driver of greater
temporal width is also spectrally narrower, resulting in a more
monochromatic wave train signature. Over the range of driver
durations considered in Fig. 4 the peak wavelength and spec-
tral width vary by 20% and 45% respectively, compared to their
minimum values.

It is not currently possible to make analytical approxima-
tions for comparison to these numerical simulations, however the
results can be understood by considering how the spectral pro-
file of the driver is changing. The spectral amplitude increases
with δt, whereas the spectral width decreases, i.e. there are more
monotonic and lower frequencies within the driver spectrum for
larger δt. Increasing δt therefore deposits more energy into the
waveguide, but less into higher frequencies. Above a certain
value the driver spectrum is such that the natural frequencies of
the fast waves in the waveguide are no longer efficiently excited,
whereas the amplitude of the slow waves is still increasing with
the spectral amplitude. For very large values of δt the slow wave
amplitude would also begin to decrease.

4. Conclusions

The effect of a time-dependant driver on dispersively formed fast
magnetoacoustic wave trains in coronal waveguides has been
investigated. A strong dependence of the wave train character-
istics on the driver duration was found. Additionally it has been
shown that a fast wave train is no longer excited for driver dura-
tions δt & 2τAi.

This dependence on the driver duration is extremely important
in attempts to unlock the seismological potential of these waves.
Varying other parameters such as the spatial scale of the driver,
and the transverse density profile of the waveguide can have simi-
lar effects on the final wave train signature (e.g., Nakariakov et al.
2005; Pascoe et al. 2013, 2017; Yu et al. 2017). Therefore an effort
to clearly distinguish these factors in both theoretical and observa-
tional studies should be made. Furthermore, future numerical or
analytical studies of fast wave trains in the corona should consider
the effect of a time dependent driver.

More realistic temporal driver profiles could be considered
in future work. For example, an observationaly justified flare
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profile could be used (Gryciuk et al. 2017), assuming the energy
deposition could follow the same temporal behaviour. However,
without clear evidence of the exact nature of the driving mecha-
nism in several observations this is not yet required. In principle,
the weakly-evolving slow wave pulse could bring us information
about the temporal or spatial shape of the driver. However, such
a study is not possible until more routine detections of the slow
pulse in observations (see Zhang et al. 2015).

The findings of this work add further intricacy to the already
highly complicated prospect of using these wave train signatures
to perform seismology. We have shown that, other parameters
remaining constant, the variation of the driver duration produces
detectable differences in the spectral properties of the wave
trains. Over the range of driver durations considered the peak
wavelength and spectral width vary by 20% and 45% respec-
tively, compared to their minimum values.
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