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ABSTRACT

Fast magnetoacoustic waves guided along the magnetic field by plasma non-uniformities, in particular coronal
loops, fibrils, and plumes, are known to be highly dispersive, which lead to the formation of quasi-periodic wave
trains excited by a broadband impulsive driver, e.g., a solar flare. We investigated the effects of cylindrical
geometry on the fast sausage wave train formation. We performed magnetohydrodynamic numerical simulations of
fast magnetoacoustic perturbations of a sausage symmetry, propagating from a localized impulsive source along a
field-aligned plasma cylinder with a smooth radial profile of the fast speed. The wave trains are found to have
pronounced period modulation, with the longer instant period seen in the beginning of the wave train. The wave
trains also have a pronounced amplitude modulation. Wavelet spectra of the wave trains have characteristic tadpole
features, with the broadband large-amplitude heads preceding low-amplitude quasi-monochromatic tails. The mean
period of the wave train is about the transverse fast magnetoacoustic transit time across the cylinder. The mean
parallel wavelength is about the diameter of the wave-guiding plasma cylinder. Instant periods are longer than the
sausage wave cutoff period. The wave train characteristics depend on the fast magnetoacoustic speed in both the
internal and external media, the smoothness of the transverse profile of the equilibrium quantities, and also the
spatial size of the initial perturbation. If the initial perturbation is localized at the axis of the cylinder, the wave
trains contain higher radial harmonics that have shorter periods.
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1. INTRODUCTION

Magnetohydrodynamic (MHD) waves with periods from
several seconds to several minutes are ubiquitous in the corona
of the Sun, and are intensively studied in the contexts of
heating and seismology of the coronal plasma (see, e.g.,
De Moortel & Nakariakov 2012; Liu & Ofman 2014 for
comprehensive recent reviews). Properties of MHD waves are
strongly affected by field-aligned structuring of the plasma,
intrinsic to the corona (e.g., Van Doorsselaere et al. 2008).
Filamentation of the coronal density along the field leads to the
appearance of waveguides for magnetoacoustic waves (e.g.,
Zajtsev & Stepanov 1975; Edwin & Roberts 1983; Roberts
et al. 1984). In the waveguides fast magnetoacoustic waves
become dispersive, i.e., their phase and group speeds become
dependent on the frequency and wavelength. If the waves are
excited by a broadband, spatially localized driver, e.g., a flare
or another impulsive release of energy, induced fast magne-
toacoustic perturbations develop into a quasi-periodic wave
train with pronounced amplitude and frequency modulation
(Roberts et al. 1984; Nakariakov et al. 2004).

The possible manifestation of fast magnetoacoustic wave
trains in solar observations was first pointed out in quasi-
periodic pulsations in solar radio bursts detected at 303 and
343MHz (Roberts et al. 1983, 1984). Later on, analysis of
high-cadence imaging observations of the green-line coronal
emission recorded during a solar eclipse revealed the presence
of similar wave trains (Williams et al. 2002; Katsiyannis
et al. 2003) with the mean period of about 6 s. More recently,
quasi-periodic wave trains with the periods of several tens of
minutes were detected in the decametric solar emission (see
Mészárosová et al. 2009, 2013; Karlický et al. 2011). Recently

discovered quasi-periodic rapidly propagating wave trains of
EUV intensity, with periods from about one to a few minutes
(Liu et al. 2011), are possibly associated with this phenomenon,
too (Yuan et al. 2013; Nisticò et al. 2014).
Identification of the physical mechanism for the formation

and evolution of coronal quasi-periodic wave trains requires
advanced theoretical modeling. The initial stage of the
evolution of a broadband fast magnetoacoustic perturbation
in a quasi-periodic wave train was numerically simulated by
Murawski & Roberts (1993, 1994). The mean period of the
wave train was found to be of the order of the fast wave travel
time across the waveguide, which was consistent with
qualitative estimations by Roberts et al. (1983).
Nakariakov et al. (2004) modeled the developed stage of the

broadband fast wave evolution in a plasma slab and found that
the resultant wave train has a characteristic signature in the
Morlet wavelet spectrum, the “crazy tadpole” with an
narrowband extended tail followed by a broadband “head.”
Similar wavelet spectral signatures have been detected in
observations (Mészárosová et al. 2009; Karlický et al. 2011;
Yuan et al. 2013). These characteristic wavelet spectra appear
in fast wave trains guided by plasma slabs with the transverse
profiles of the fast speed of different steepnesses. However, it
was demonstrated that the specific width of the wavelet spectral
peak and its time modulation are determined by the spectrum of
the initial perturbation and the cutoff wavenumber (Nakariakov
et al. 2005). In particular, in some cases the effect of dispersive
evolution can lead to the formation of quasi-monochromatic
fast wave trains, without noticeable variation of the period. A
similar behavior was established for fast wave trains guided by
plane current sheets (Jelínek & Karlický 2012; Mészárosová
et al. 2014). Obvious similarities of theoretical and
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observational properties of coronal fast wave trains provide us
with a tool for diagnostics of the wave-guiding plasma non-
uniformities.

In addition, it was recently proposed that another common
feature of broadband solar radio emission, fiber bursts, could
also be associated with guided fast wave trains (Karlický
et al. 2013). Furthermore, it was demonstrated that modulations
of broadband radio emission produced in pulsars could also be
interpreted in terms of fast magnetoacoustic wave trains
(Karlický 2013).

More advanced models, while still in the plane geometry,
accounting for the curvature and longitudinal non-uniformity of
the waveguide (or anti-waveguide) showed that the formation
of a quasi-periodic fast wave train is a robust feature (Pascoe
et al. 2013, 2014) that is well-consistent with observations
(Nisticò et al. 2014). Initial perturbations of both sausage and
kink symmetries were found to result in quasi-periodic wave
trains with the periods prescribed by the fast magnetoacoustic
transverse transit time in the vicinity of the initial perturbation.
Recent analytical modeling of the evolution of broadband fast
waves in a cylindrical waveguide with a step-function
transverse profile, which represent, e.g., coronal loops or
prominence fibrils, demonstrated the formation of wave trains,
too (Oliver et al. 2014, 2015).

The aim of this paper is to study the formation of fast wave
trains in a cylindrical waveguide with a smooth transverse
profile, investigating the effect of the cylindrical geometry and
the waveguide steepness on the wavelet spectral signatures of
the wave trains. Our paper is structured as follows: Section 2
describes the numerical setup, and Section 3 presents the
simulation results and their discussion. Finally, Section 4 gives
the conclusions.

2. NUMERICAL SETUP AND INITIAL CONDITIONS

The simulations were performed using the numerical code
Lare3D (Arber et al. 2001). This code solves resistive MHD
equations in the normalized Lagrangian form:
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where ρ, ò, P, v, B, and j are the mass density, specific internal
energy, thermal pressure, velocity, magnetic field, and electric
current density, respectively; η is the electrical resistivity.
Thermodynamical quantities are linked with each other by the
state equation r g= -P 1( ), where γ is the ratio of specific
heats. As in this study we are not interested in the dissipative
processes, we take g = 5 3. The physical quantities were
normalized with the use of the following constants: lengths are
normalized to =L 10 Mm, magnetic fields to =B 200 G, and
densities to r = ´ -1.67 1000

12 kg cm−3. The mass density
normalization corresponds to the electron concentration

=n 10e0
9 cm−3. The normalizing speed was calculated as

m r= =v B 13800 0 0 00 km s−1, which is the Alfvén speed
corresponding to the values B0 and r .00
The simulations were performed in a 1603-grid box, which

corresponded to the physical volume of 4× 4× 20Mm. The
resolution was uniform along the Cartesian axes, but different
in the directions along and across the magnetic field, allowing
us to resolve fine scales in the transverse direction.
Boundary conditions were set to be open (BC_OPEN in

Lare3D), which is implemented via far-field Riemann char-
acteristics. The Lare3D authors stressed that the artificial
reflection is typically a few percent but can be as large as 10%
in extreme cases. In any case, this reflection does not influence
the results of our simulations, as our full attention is on the
development of the pulse that freely propagates along the
cylinder, before it reaches the cylinder’s end. In the
accompanying movie this perturbation propagates to the left.
Hence, this pulse does not experience reflection. In order to test
the undesirable effect of the wave reflection from the open
x- and y-boundaries we carried out test runs in a computational
box with double the resolution, 240× 240× 160, and also
increasing the computational box in the transverse directions,
6× 6× 20Mm. The correlation coefficient between the signals
corresponding to the developed wave trains amounted to
99.5%, hence justifying the robustness of the results obtained.
The equilibrium plasma configuration was a plasma cylinder

directed along the straight magnetic field, along the z-axis. The
cylindrical plasma non-uniformity was implemented by the
radial profiles of the physical quantities B r ,z ( ) n r ,e ( ) T r .( )
We considered cases of steep and smooth boundaries of the
cylinder. The case with the step-function profiles (setup1) was
implemented with the following plasma parameters: Bz=
19.5 G, = ´n 3.3 10e

9 cm−3, = ´T 9 105 K for r R ;0
and Bz=20.0 G, = ´n 6.6 10e

8 cm−3, = ´T 2 105 K for
>r R ,0 where =R 10 Mm is the cylinder radius.
The cases with smooth profiles (referred to as setup2, setup3,

setup4, and setup5) were implemented as follows: the
temperature T was constant throughout the whole volume,
n re ( ) was given by the generalized symmetric Epstein function
(Nakariakov & Roberts 1995; Cooper et al. 2003), and Bz(r)
was set to equalize the total pressure everywhere in the
computational domain,
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where = ´T 2 105 K, =¥B 20 G, = ´¥n 6.6 108 cm−3,
= ´n 3.3 100

9 cm−3, kB is the Boltzmann constant, and p is
the parameter controlling the boundary steepness. The specific
values of the parameter p and other parameters of the equilibria,
corresponding to different numerical setups, are shown in
Table 1. The radial profiles of the electron density n re ( ) and
magnetic field Bz(r) are depicted in Figure 1. We would like to
point out that in all the setups the relative variation of the
magnetic field is small, and that the plasma β is much less than
unity everywhere.
Dynamics of MHD waves is determined by the Alfvén,

m r=v r B r r ,zA 0( ) ( ) ( ) and sound, g r=C r P r rS ( ) ( ) ( ) ,
speeds, where the mass density r r( ) is prescribed by the
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electron concentration n r ,e ( ) and the gas pressure P(r) is
determined by the mass density and the temperature using the
state equation. In our simulations, the Alfvén speed was

=¥v 1550A km s−1 outside the cylinder, and
=v 690A0 km s−1 at the cylinder axis. In setups2–5 the sound

speed was =C 67.6S km s−1 everywhere in the computational
domain. In setup1 the sound speed had the same value at the
axis of the cylinder, and was =C 143.4S km s−1 outside the
cylinder. We would like to stress that in the low-β plasma that
is typical for coronal active regions, the specific value of the
sound speed does not affect the parameters of fast magnetoa-
coustic waves, as their dynamics is controlled by the Alfvén
speed.

In all initial setups the fast magnetoacoustic speed

determined as +v r C rA
2

S
2( ) ( ) had a minimum at the axis of

the cylinder. Thus, the plasma cylinder was a refractive
waveguide for fast magnetoacoustic waves.

The initial perturbation was set up as a perturbation of the
transverse velocity of sausage symmetry,
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where s = 0.9r Mm for setup 1, setup2, setup3, and setup4, and
s = 0.2r Mm for setup5 (c.f. with the unperturbed radius of the
cylinder, =R 10 Mm), and s = 0.2z Mm and =A v0.1 0 for all
the setups. The latter condition ensures that nonlinear effects
are negligible. The pulse is axisymmetric and hence generates
sausage mode perturbations. We placed the pulse near one of
the boundaries in the z-direction in order to give more space for
the wave train to evolve when it propagates toward the opposite
end of the cylinder.

3. RESULTS AND DISCUSSION

Figure 2 shows the shows evolution of a compressive pulse
in the plasma cylinder. The initial perturbation develops in a
compressive wave that initially propagates radially and
obliquely to the axis of the cylinder (see the top central panel),
gets partially reflected on gradients of the equilibrium physical
parameters, and returns back to the axis of the cylinder (see the
top right panel). Then the perturbation overshoots the axis, gets
reflected from the opposite boundary, and this scenario repeats
again and again (see the bottom panels). Thus, the fast
magnetoacoustic perturbation is guided along the axis of the
field-aligned plasma cylinder. This phenomenon has been well-
known in the solar literature since the pioneering works of
Zajtsev & Stepanov (1975) and Edwin & Roberts (1983). For
more details the formation of the wave train can be watched in
the accompanying movie. The basic physics of this phenom-
enon is connected with the geometrical dispersion: waves with
different wavelengths propagate at different phase and group
speeds. Thus, for the same time after the excitation at the same
point in the waveguide, different spectral components of the
initial excitation travel different distances, and the perturbation
becomes “diffused” along the waveguide. Hence, after some
time an initially broadband perturbation develops in a quasi-
periodic wave train with frequency and amplitude modulation
(see, e.g., Nakariakov et al. 2004).
The geometrical dispersion caused by the presence of a

characteristic spatial scale in the system, the diameter of the
cylinder, leads to the formation of two quasi-periodic fast wave
trains propagating in the opposite directions along the axis of
the waveguide. This finding is consistent with the analytical
results of Oliver et al. (2014, 2015). In the trains, the
characteristic parallel wavelengths are comparable by an order
of magnitude to the diameter of the waveguide. In the Cartesian
coordinates used in the figure, the transverse plasma flows
induced by the perturbations are odd functions with respect to
the transverse coordinate with the origin at the cylinder’s axis.
The same structure of the transverse flows is seen in any plane
including the axis of the cylinder. In other words the
perturbations are independent of the azimuthal angle in the
cylindrical coordinates, with the axis coinciding with the axis
of the cylinder. The transverse flows vanish to zero at the axis
of the cylinder. Thus the excited perturbations are of sausage
symmetry, prescribed by the symmetry of the initial
perturbation.
The characteristic time signatures of the developed fast

magnetoacoustic wave train formed in the waveguides with
different equilibrium profiles setup1, setup4, and setup5 are
shown in Figure 3. In this study we considered only the
“direct” wave trains which propagated along the cylinder
before they reached its end and experienced reflection (in

Table 1
Equilibrium Conditions

Title Profile ¥B B0 (G) ¥n n0 (́ 109 cm−3) ¥T T0 (́ 105 K) ¥v vA A0 (km s−1) sr (Mm)

setup1 step-function, = ¥p 20.0/19.5 0.66/3.3 9.0/2.0 1550 680 0.9
setup2 smooth-profile, p=12 20.0/19.9 0.66/3.3 2.0/2.0 1550 690 0.9
setup3 smooth-profile, p=4 20.0/19.9 0.66/3.3 2.0/2.0 1550 690 0.9
setup4 smooth-profile, p=1 20.0/19.9 0.66/3.3 2.0/2.0 1550 690 0.9
setup5 smooth-profile, p=4 20.0/19.9 0.66/3.3 2.0/2.0 1550 690 0.2

Note. Parameters of the initial equilibrium in different numerical runs.

Figure 1. Radial profiles of the electron concentration n re ( ) and magnetic field
Bz(r) in the simulated plasma cylinder. At the central axis the plasma
concentration ne has a factor of 5 enhancement.
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Figure 2 and the accompanying movie, it is the wave train
propagating to the left). The upper panels show the time
evolution of the density measured at the axis at the distance
h=7.5 Mm from the initial perturbation location (z0). The
lower panels show the Morlet wavelet spectra of the signals.
All signals are seen to have similar features typical for guided
fast wave trains: frequency and amplitude modulations,
characteristic and cutoff periods, the arrival time determined
by vA∞ and the “average” speed determined by ~v ,A0
dependence of their temporal characteristics on the radial
profile of the wave-guiding plasma non-uniformity, and the
spatial size of the initial perturbation. All the temporal

characteristics of the wave trains formed in setup2 and setup3,
with p=12 and p=4, respectively, are similar to those of
setup1 (the step-function profile) and are not shown here.
The fast wave trains are seen to have a characteristic period

of 2–3 s, which is in agreement with the estimate provided by
Roberts et al. (1984):

p r
r

» - »¥P
R

j v

2
1 3.4 s, 7prop

0

0 A0 0

( )

where »j 2.400 is the first zero of the Bessel function J x .0 ( )

Figure 2. Initial perturbation (upper panels), and the development (lower panels) of fast magnetoacoustic wave trains of sausage symmetry in the magnetic tube,
corresponding to setup5. The snapshots correspond to the times =t 0, 2.18, 3.09, 5.98, 7.42, 9.18 s elapsed after the initial excitation. The horizontal slice, parallel to
the cylinder axis along the field, in the z-direction, denotes the transverse flow; the perpendicular slice denotes the equilibrium density profile.

(An animation of this figure is available.)

Figure 3. Numerical simulation of an impulsively generated fast magnetoacoustic wave train propagating along a field-aligned plasma cylinder for different numerical
setups: left—a sharp (step-function) density profile with = ¥p (setup1), middle—smooth density profile with p=1 (setup4), and right—smooth density profile with
p=4 but with narrower initial perturbation radial size s = 0.2r (setup5). Upper panels: the time evolution of the perturbation of density r r-t 0( ) at the
observational point situated at the magnetic tube axis at h=7.5 Mm from the location of the initial perturbation. The vertical lines show the pulse arrival time if the
density was uniform: the dotted line corresponds to the fast travel time calculated using the external density r¥, and the dashed line was obtained with the use of the
internal density r .0 Lower panels: Morlet wavelet transform of the density variation signal at the observational point, demonstrating the characteristic “tadpole”
wavelet signature.
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Sausage modes of a low-β plasma cylinder experience a
long-wavelength cutoff (Edwin & Roberts 1983). The spectral
components with wavelengths longer than the cutoff value (or
with periods longer than the cutoff period) are not trapped in
the cylinder and leak out (see, e.g., Cally 1986; Nakariakov
et al. 2012; Pascoe et al. 2013). Thus, these spectral
components are not present in the spectrum of the guided
wave trains. In the case of the step-function profile the cutoff
period is

p r
r

= - »¥P
R

v

2
1 5.7 s, 8cutoff

0

A0 0

( )

(e.g., Edwin & Roberts 1983). According to the wavelet
analysis (Figure 3) the observed maximum period is about
3.5 s, which is roughly consistent with the estimate. The small
discrepancy between the theoretical estimate and the numerical
result can be attributed to the wave train nature of the signal.
Indeed, in the signal the longest period seen in the very
beginning of the train lasts for about one cycle of the oscillation
only, which leads to effective broadening of the spectrum.

Numerical simulations of the discussed phenomenon,
performed for a plasma slab (Nakariakov et al. 2004) and a
plane current sheet (Jelínek & Karlický 2012) showed that the
wavelet spectra of a developed wave train have a characteristic
“crazy tadpole” shape: a long, almost monochromatic tail of
low amplitude is followed by a broadband and high-amplitude
head (as the tadpole goes tail-first, it was referred to as
“crazy”). Another characteristic feature of fast wave trains that
formed in waveguides is a pronounced period modulation: the
instant period decreases in time. According to the reasoning
provided by Roberts et al. (1984) this effect is connected with
the geometrical dispersion: longer-wavelength (long period)
spectral components propagate at a higher speed, about vA∞,
and hence reach the observational point earlier. In contrast,
shorter-wavelength (shorter period) components excited simul-
taneously and at the same initial location propagate at lower
speeds that gradually decrease from the value vA0 with the
decrease in the wavelength (period) and hence reach the
observational point later.

Likewise, the wavelet spectra obtained for cylindrical
waveguides, shown in Figure 3 demonstrate the period
modulation with the decrease in the instant period with time.
The modulation is even better seen in the time signals. As for
plane waveguides, wavelet spectra of fast wave trains guided
by cylinders have tadpole features too. However, the spectral
features eitherhave almost-symmetrical head–tail shapes, or
shapes with a broadband “head” occurring at the beginning of
the tadpole. Indeed, the time signals of the wave trains show
that in the considered case the highest amplitude is reached not
near the end of the train, as it is in the slab case, but near its
beginning. Thus, one can say that in this case the tadpole goes
“head-first,” so they are not “crazy.” The head of the wave train
is seen to propagate at the speed about or slower than the
Alfvén speed at the axis of the waveguide, in agreement with
the prediction made in Roberts et al. (1984). Thus, we obtain
that the characteristic wavelet spectral shapes of fast wave
trains are different in the cases of slab and cylinder waveguides.
In both geometries the instant period decreases with time, while
the amplitude modulation of the trains is different in these two
cases. It provides us with a potential tool for the observational

discrimination between these two plasma non-uniformities in
the frames of MHD seismology.
Fast wave trains formed in plasma cylinders with smooth

radial profiles (with < ¥p , setups 2–5) are seen to have
similar characteristic modulations of the instant amplitude and
period. It confirms the robustness of this effect, as it is not very
sensitive to the specific shape of the radial profile. Unfortu-
nately, in the cylindrical case we are not aware of the existence
of an exact analytical solution of the eigenvalue problem for
trapped fast magnetoacoustic waves, similar to the solution
described in Nakariakov & Roberts (1995) and Cooper et al.
(2003) for the symmetric Epstein transverse profile.
Another interesting feature of the modeling is the appearance

of “fins” in the tadpole spectral features (see left panel in
Figure 3; similar features are also present in setup2 and setup3,
not shown here). The fins are associated with the excitation of
the higher radial harmonics. Indeed, it is more pronounced in
the case of setup5, when the initial pulse has a short size in the
radial direction in comparison with the cylinder’s radius,
s = = R0.2 1.z 0 Thus, in this case the spatial radial
spectrum of the initial perturbation is broader and less close
to the fundamental radial harmonic, leading to the effective
excitation of the higher radial harmonics (Nakariakov &
Roberts 1995; Mészárosová et al. 2014). The appearance of the
“fins” can be readily understood from the dispersion plot (see,
e.g., Edwin & Roberts 1983): for the same arrival time, and
hence the same group speeds, higher radial harmonics have
shorter wavelengths (shorter periods) than the fundamental
radial harmonics. This feature is robust and is not qualitatively
modified in the case of a smooth radial profile.

4. CONCLUSIONS

We summarize our findings as follows:

1. Dispersive evolution of impulsively generated fast
magnetoacoustic waves of sausage symmetry, guided
by a plasma cylinder representing, e.g., a coronal loop, a
filament fibril, a polar plume, etc., leads to the
development of quasi-periodic wave trains. The trains
are similar to those found in the plane geometry and also
analytically. The wave trains have a pronounced period
modulation, with the longer instant period seen in the
beginning of the wave train. The wave trains also have a
pronounced amplitude modulation. The main character-
istics of the wave trains that developed conform mainly
with the theoretical and numerical predictions. The
wavelet spectra of the wave trains have characteristic
tadpole features, with the “heads” preceding the “tails.”
Similar features have been found in the plane case,
although the tadpoles typically go “tail-first” there.

2. The mean period of the wave train is about the transverse
fast magnetoacoustic transit time across the cylinder.

3. The mean parallel wavelength is about the diameter of the
wave-guiding plasma cylinder.

4. Instant periods are longer than the cutoff period.
5. The wave train characteristics depend on the fast

magnetoacoustic speed in both the internal and external
media, the smoothness of the transverse profile of the
equilibrium quantities, and also the spatial size of the
initial perturbation.

6. In the case of the initial perturbation localized at the axis
of the cylinder, the wave trains contain not only the
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fundamental radial harmonics, but also higher radial
harmonics that have shorter periods, but arrive at the
remote observational point simultaneously with the
fundamental radial harmonic.

We conclude that fast magnetoacoustic wave trains observed
in the solar corona in the radio, optical, and EUV bands are a
good potential tool for the diagnostics of the wave-guiding
plasma structures. The main problem in the implementation of
this technique is the need for the information about the initial
excitation, which possibly could be excluded when observing
the wave train at different locations. This problem is under
investigation and will be published elsewhere.
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