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Abstract. Short period fast magnetoacoustic waves propagating along solar coronal loops, perturbing the loop boundary along
the line of sight (LOS), may be observed by imaging telescopes. The relationship between the difference in emission intensity,
the angle between the LOS and the direction of propagation and the wave amplitude and wavelength, is explored for kink and
sausage fast waves. It is shown that the compressibility of the plasma in the loop significantly affects the observability of the
waves. For both wave types there is an optimal observation angle which is determined by the ratio of the wave length and the
loop radius. The change of the observational conditions because of the loop curvature predicts a significant, up to an order of
magnitude, change in the observed wave amplitude. This prediction is confirmed by the analysis of the evolution of the fast
wave train amplitude, observed with the SECIS instrument. The wave train amplitude experiences a sharp increase and then a
decrease along the loop. The observational results are in a good agreement with the theory.
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1. Introduction

Fast magnetoacoustic waves may be guided by field-aligned re-
gions of enhanced plasma density corresponding to regions of
decreased Alfv´en speed (Edwin & Roberts 1982, 1983, 1988).
It was found that the waves are highly dispersive in the long
wavelength part of the spectrum and that all modes except the
kink, have a lower cut-offwave number. The high dispersion of
the waves may lead to formation of a characteristic signature
of the signal observed in a coronal loop, this was applied to
interpretation of coronal radio-pulsations (Roberts et al. 1983,
1984). Later on, Nakariakov & Roberts (1995) established that
the qualitative dispersive properties depend weakly upon the
specific profile of the density. However, one important excep-
tion was found: there is a certain critical steepness of the den-
sity profile which separates two distinct scenarios of the wave
evolution. If the density profile is steep enough, the deriva-
tive of the wave group speed with respect to the frequency
changes its sign, and consequently the group speed has a min-
imum at a certain value of the wave number. The presence
of such a minimum is responsible for the formation of the
characteristic signature of the waves. If the density profile is
smoother than that critical value, the group speed decreases
gradually with the wave number. The group speed dependence
on the wave number also has important implications for non-
linear phenomena, in particular, the modulational instability
(Nakariakov et al. 1997). These days the actual steepness of
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density profiles in the loops is a subject of an intensive dis-
cussion in connection with interpretation of the quick decay of
coronal loop kink oscillations (Nakariakov et al. 1999; Ofman
& Aschwanden 2002; Goossens et al. 2002). Unfortunately,
the presently available resolution of coronal telescopes (about
1 Mm or worse) can be about the radius of the loop or even
larger, which makes impossible the direct determination of the
density profile.

Fast magnetoacoustic waves propagating along coronal
loops may provide us with a tool for the determination of phys-
ical parameters of the loops. In particular, dispersive evolution
of the waves with wavelengths comparable with the loop tube
radius contains information about the steepness of the den-
sity profile. It may be possible to estimate the density profile
through temporal characteristics of the wave. The presently
achievable temporal resolution (less then a second) is much
higher than the spatial resolution, from the point of view of
detection of fast waves. Indeed, a fast wave of a 1 s period and
of an estimated speed of about 1 Mm s−1 has a wavelength of
about 1 Mm, so it can be resolved in time but not in space.
Observationally, there is overwhelming evidence of short pe-
riod coronal pulsations detected in the radio band, associated
with fast magnetoacoustic waves (e.g. Roberts et al. 1983,
1984; Aschwanden 1987). Very recently, quasi-periodic distur-
bances propagating along a coronal loop were observed in vis-
ible light using the imaging SECIS instrument (Phillips et al.
2000) during the 1999 August 11th solar eclipse (Williams
et al. 2001, 2002). The detected mean period was about 6 s
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Fig. 1. The symmetric Epstein profile representing the plasma density
across the loop, normalized to the loop width parameterw and the
maximum plasma densityρmax.

and the speed was estimated as 2.1 Mm s−1, suggesting the in-
terpretation in terms of fast magnetoacoustic waves.

The lack of the resolution required complicates the direct
application of well-developed MHD wave theory to interpreta-
tion of observed phenomena. Thus, adaptation of MHD wave
theory to the reality of coronal observations becomes an impor-
tant task. Such studies have been performed on observability of
various types of coronal waves withspectralinstruments (e.g.
Erdelyi et al. 1998; Sakauri et al. 2002; Zaqarashvili 2003).
As wavelengths of coronal propagating disturbances, with fre-
quencies of the order of a second, are of the same order as
the loop cross-section diameter, the short wavelength effects
on the wave observability should be investigated. Recently,
Cooper et al. (2003) (Paper I) found theoretically that almost
incompressible short wavelength kink magnetoacoustic modes
of cylindrical plasma structures can be detected withimaging
telescopes as propagating disturbances of emission intensity.
This effect is connected with modulations of the observed col-
umn depth of the loop by the kink perturbation. An important
characteristic of the effect is that the intensity variation de-
tected is dependent upon the angle between the direction of
wave propagation and the line-of-sight (LOS). In Paper I, the
loop cross-section was modeled by a step density profile. It is
interesting if the same effect arises in the case of a loop with a
smooth density profile and if it may provide us with a diagnos-
tic tool for determination of the width of this profile.

The aim of this paper is to generalize the study performed
in Paper I, taking into account effects of plasma compressibil-
ity, and demonstrate the applicability and importance of these
results to the interpretation of short period coronal waves, in
particular, to SECIS project results.

2. The model

We model a coronal loop as a magnetic slab with asmooth
density profile, given by the profile function

ρ0 = ρmaxsech2
( x
w

)
+ ρ∞, (1)

whereρmax, ρ∞ andw are constant. Here, the parameterρmax

is the density at the center of the inhomogeneity,ρ∞ is the

density atx = ∞ and w is a parameter governing the in-
homogeneity width. This inhomogeneity, plotted in Fig. 1, is
called thesymmetric Epstein profile(see, e.g. Adams 1981;
Nakariakov & Roberts 1995). The plasma is inhomogeneous
acrossthe straight and uniform magnetic fieldB0 = B0ẑ. In the
zero-β limit considered, the equilibrium total pressure balance
is fulfilled identically.

According to Nakariakov & Roberts (1995), linear
perturbations of the transversal plasma velocityVx =

U (x) exp(iωt − ikz) are described by the equation

d2U
dx2
+

 ω
2

C2
A∞
− k2 +

ω2

C2
Amax

sech2
( x
w

)U = 0, (2)

where CA∞ is the Alfvén speed asx → ∞ and CAmax =

B0/
√

4π (ρ0 − ρ∞) is an Alfvén speed based upon the differ-
ence in density between that atx = 0 and asx → ∞. As the
corresponding profile of the Alfv´en speed has a minimum at
the center of the slab, the slab is arefractive waveguidefor
fast magnetoacoustic waves (see Edwin & Roberts 1988 for
discussion).

The eigenvalue problem stated by Eq. (2) supplemented by
the boundary conditionsU(x→ ±∞) → 0 can be solved ana-
lytically, (see, e.g., Landau & Lifshitz 1958; Adams 1981). The
eigenfunctions describing kink and sausage modes are respec-
tively given by

U = sechν (x/w) , ν =
|k|w
CA∞

√
C2

A∞ − a2 (3)

and

U =
sinh(x/w)

coshλ (x/w)
, λ =

|k|w
CA∞

√
C2

A∞ − a2 + 1, (4)

wherea = ω/k is the phase speed. The phase speed is deter-
mined by the dispersion relations√

C2
A∞ − a2 = |k|wCA∞

C2
A0

(
a2 −C2

A0

)
(5)

and
|k|w
C2

A0

(
a2 −C2

A0

)
− 2
|k|w =

3
CA∞

√
C2

A∞ − a2, (6)

for the kink and the sausage modes, respectfully. HereCA0 =

CA∞CAmax/
(
C2

A∞ +C2
Amax

)1/2
is the Alfvén velocity at the cen-

ter of the profile,x = 0. These solutions are well-known in
quantum mechanics (e.g. Landau & Lifshitz 1958) and in the
theory of optical fibrils (Adams 1981). In the coronal context,
profile (1) and the kink mode solution given by Eqs. (3) and (5)
have been introduced by Nakariakov & Roberts (1995). The
sausage mode solution given by Eqs. (4) and (3) has not been
used in the coronal context yet.

For the purposes of this study, solutions (3) and (4) have
one important advantage: the same function describes the per-
turbation of the plasma inside and outside the slab. The knowl-
edge of the transverse component of the velocity allows us to
determine the density perturbation. From the continuity equa-
tion we get

ρ̃ = −
∫ ∂ (ρ0Ṽx

)
∂x

d t (7)
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Fig. 2. Loop segment plasma velocity profiles for kink (left) and
sausage (right) modes. Light indicates velocity in the positivex di-
rection, dark indicates velocity in the negativex direction and grey
indicates zero velocity.
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Fig. 3. Loop segment density perturbation profiles for kink, (left) and
sausage (right) modes. Light indicates positive density perturbations,
dark indicates negative density perturbations i.e. a decrease of the un-
perturbed loop density. Grey indicates low or little perturbation.

whereρ0 is the equilibrium according to Eq. (1) and the tilde
represents a small perturbation. We then have expressions for
the total density across the loop, including the perturbations.
These are plotted in Fig. 3.

3. Observability of MHD modes with imaging
telescopes

Both kink and sausage modes produce modulation of the inten-
sity of emission generated in the plasma and, consequently, can
be observed with imaging telescopes. The intensity of emission
generated in the optically thin coronal plasma is proportional to
the line integral of the electron number density squared, along
the LOS,

I ∝
∫

(LOS)

[
ρ0(l) + ρ̃(l)

]2 d l. (8)

Herel is the coordinatealongthe LOS.
Following Paper I, we consider a straight segment of a coro-

nal loop, parallel to thez-axis and having an angleθ with the
LOS. In the plane (xz) formed by the loop segment and the
direction of the inhomogeneity, the equation of the LOS is
given by

z= xcotθ + p/ sin θ, (9)

wherep represents the coordinateacrossthe LOS and conse-
quently along the image. Equation (9) states the path of the
integration in Eq. (8).
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Fig. 4. Example intensitiesI as a function of image distance, normal-
ized to the unperturbed intensity and loop width for kink (left) and
sausage (right) perturbations. The solid lines are given by the parame-
ters, amplitudea = 0.05, wave numberk = 1, angle between the loop
axis and the LOSθ = 45◦, the dashed bya = 0.1, k = 1, θ = 75◦ and
the dotted bya = 0.02,k = 2, θ = 45◦.
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Fig. 5. Dependence of the observed amplitude of emission intensity
variation along a straight segment of a coronal loop in the presence of
a harmonic kink (left) and sausage (right) perturbation upon the angle
between the loop axis and the LOS,θ. Here the wave numberk = 0.2,
dashed, 0.9, solid and 2, dotted with the amplitudesa = 0.1, top,
0.05, middle and 0.02, bottom curves. The straight line in the kink
case indicates if the wave amplitude appears larger, above or smaller,
below than the actual perturbation amplitude. Only a small region is
amplified in the sausage case so no lines are drawn.

We evaluate integral (8) numerically for the background
density given by Eq. (1) and the perturbations by Eqs. (3)
and (4) for kink and sausage modes, respectively. Examples
of the snapshots of the observed intensity are shown in Fig. 4,
where the wave numberk is normalized to the reciprocal of the
width parameter 1/w, defined in Eq. (1) and Fig. 1. The ob-
served intensity depends upon several parameters: the ratio of
the perturbation wavelength to the characteristic width of the
loopw, the LOS angleθ and the relative amplitude of the dis-
placement of the loop effective boundary. Parametric studies of
the observed emission intensity are shown in Figs. 4–7. (There
the intensity variation amplitude is determined as the difference
between the maximum and minimum of each intensity curve.)

From each graph in Fig. 5 it is clear that there is an op-
timal angleθmax for the observation of both kink and sausage
modes. This optimal angle is plotted againstk in Fig. 7. The
results for kink modes are not qualitatively different from the
incompressible case studied in Paper I. The left panel of Fig. 5
shows that the kink modes can be observed with an imaging
telescope only if the LOS angle is somewhere between, but not
at, zero and ninety degrees. The perturbation amplitude does
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Fig. 6. Dependence of the observed amplitude of emission intensity
variation along a straight segment of a coronal loop in the presence of
a harmonic kink (left) and sausage (right) perturbation upon the wave
numberk. Here the angle between the loop axis and the LOSθ = 45◦

and the amplitudea = 0.1, dashed, 0.05, solid and 0.02, dotted.

not seem to affect significantly the position of the maximum.
(However, higher amplitudes can actually change the position
of the maximum because of nonlinear effects which are not ac-
counted here). The observed intensity amplitude grows with the
wave number to a maximum and then decreases (the left panel
of Fig. 6). The optimal angle also grows with the normalized
wave number for 0.1 < k < 2 (Fig. 7).

In a loop with a smooth profile, the sausage mode has an
optimal observation angleθ < 90◦ which may be much less
then the incompressible sausage mode optimal angle, 90◦. The
physical reason for this qualitative discrepancy is connected
with the fact that in the case of a smooth plasma density pro-
file, the sausage modes are essentially compressible. Indeed,
the right panel of Fig. 3 demonstrates that the density pertur-
bation is in anti-phase with respect to the internal and external
parts of the profile. Obviously, the optimal angle of observation
corresponds to the case when the LOS passes either through the
external and internal maxima or minima in the density pertur-
bation (e.g., about 45◦ for the right panel of Fig. 3), giving the
maximum intensity contrast. In the incompressible case consid-
ered in Paper I, the optimal angle for the sausage mode was 90◦
exactly. The right panel of Fig. 5 shows that the sausage mode
optimal observation angle is somewhere between, but not at,
zero and ninety degrees. However, in contrast to the case of
kink modes which are difficult to observe when the LOS is
perpendicular to the loop segment axis, sausage waves can be
seen. As in the case of the kink mode, the optimal angle is not
significantly affected by the perturbation amplitude. There is a
least favorable wave number for lowk and after a maximum as
the wave number increases the observed amplitude decreases
(the right panel of Fig. 6), but the minimal observability is not
well pronounced. The optimal angle grows with the wave num-
ber (Fig. 7).

4. Effects of loop curvature

Since the observability of fast magnetoacoustic waves is deter-
mined by the angle between the LOS and the loop segment, it
is important to account for the effects of loop curvature. The
change of the LOS angle would lead to variation of the ob-
served amplitude of the wave. This can cause amplification or
attenuation of the observed wave amplitude, which should not
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Fig. 7. Dependence of the optimal observation angle along a straight
segment of a coronal loop in the presence of a harmonic kink, solid,
and sausage, dashed, perturbation upon the wave numberk. To graph-
ical accuracy the lines for the amplitudesa = 0.1, 0.05 and 0.02 fall
on top of one another.

be confused with the actual growth or decrease of the ampli-
tude (e.g., the growth connected with the stratification, Ofman
et al. 1999).

When the wavelength is comparable with the loop cross-
section width and is much shorter than the radius of curva-
ture of the loop, the loop curvature does not affect the fast
wave propagation. Consequently, we may study the curvature
effects on the wave observability using the results of Sect. 3.
Consider a semi-circular loop. The loop plane has an angleσ
with the LOS, Fig. 9. For simplicity, we assume that the LOS
is in the plane of the wave polarization. The angle between the
LOS and the tube axisθ for any segment is then given by

θ = arccos(cosφ sinα − sinφ cosα) , (10)

whereα is the angle between the solar surface and the LOS
andφ is the angle between a loop radial line to the observed
point and the solar surface, Fig. 8. The observed amplitude as a
function of observation angle for various parameters is shown
in Fig. 10. The form of the function plotted in Fig. 5 but modi-
fied to the loop semi circle is retained, reflected about the point
where the angle between the loop and the LOS is 90◦ and 0◦.
One can clearly see that the observed intensity is strongly mod-
ified along the loop profile despite the lack of any real wave
amplification or attenuation.

5. Application to SECIS observations

This result has applications to the apparent impulsive, fast-
mode wave presented by Williams et al. (2001). In the com-
panion paper, Williams et al. (2002) analyze the phase and
amplitude progression of an oscillatory signal, with a pe-
riod of several seconds, along a coronal loop apex observed
in Fe λ5303 Å by SECIS. Active region NOAA 8651 ap-
peared on the north-west limb of the Sun on the day of eclipse
(1999-Aug.-11), and the loop in question ostensibly straddled
the limb, much as the example in Fig. 9 (left panel). Adopting
a semi-circular geometry for the loop implies that the observer
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Fig. 8. A diagram of the loop geometry used. The angleα is the angle
between the LOS and the solar surface andφ is the angle between a
loop radial line to the observed point and the solar surface. We then
use Eq. (10) to find the angle between the loop segment axis and the
LOS,θ.
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Fig. 9. A Typical observation of an off limb coronal loop, left. The
loop plane has the angleσ to the LOS. Changing this angle, right, has
the effect of modifying the amplitude of the observed signal by cosσ
assuming that the LOS is in the plane of the wave polarization. The
dotted line corresponds to cosσ = 0.4, the solid to 0.7 and the
dashed to 1.
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Fig. 10. Dependence of the observed amplitude of emission intensity
variation along a coronal loop in the presence of a harmonic kink
(left) and sausage (right) perturbation upon the position on the loop
at which the observation is made. Here the wave numberk = 1, with
the amplitudesa = 0.05, solid and dashed and 0.02, dotted. The an-
gleφ is the angle between the tangent to the solar surface and the loop
section observed where the angle between the solar surface and the
LOSα = 30◦, solid, 52.5◦, dotted and 75◦, dashed.

views the loop at an angle ofσ ∼ 15 degrees. One can imme-
diately recognize that, since cosσ ∼ 1, the effect of amplitude
modification would be at (or near) its greatest.

The observationally determined wave length of the prop-
agating disturbances is about 12 Mm and the loop width is
about 5−10 Mm, giving the normalized wave numberk of
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Fig. 11.A plot of the maximum amplitude at the most frequent scale
of the points, analyzed by Williams et al. (2001), against their loop
position. Thex axis error bars are the uncertainty in position and the
y axis error bars have been calculated statistically by taking the square
root of the number of photons and normalizing with respect to time.
The figure also includes possible lines as in Fig. 10 for kink, solid
and sausage, dashed, modes with the parametersa = 0.05, k = 1
andα = 51◦, solid, and 55◦, dashed.

about two or three. According to Fig. 6, observability of per-
turbations with wave numbers in this range is about optimal.
Perhaps, this, together with optimal observation angle of the
loop plane, explains the very fact of the successful detection
of these propagating disturbances by SECIS. The theory devel-
oped above predicts that the variation of the LOS angle along
the loop should lead to variation of the observed amplitude of
the propagating disturbance. In particular, theobservedwave
amplitude should experience increases and decreases at differ-
ent segments of the loop (Fig. 10). This motivated our study of
the amplitude variation as a function of the position at the loop
in the SECIS data.

Figure 11 demonstrates the amplitude of the wave mov-
ing through the SECIS points analyzed by Williams et al.
(2001). The wave amplitudes at these points, calculated from
the wavelet transform and are plotted against the estimated loop
position. Note that the intensity used here is an amplitude and
not an absolute intensity. The horizontal axis error bars repre-
sent the uncertainty in position and the vertical axis error bars
were calculated statistically by taking the square root of the
number of photons per data point and normalizing with respect
to time (s−1). Note that these values are estimates and not rig-
orously calculated experimental errors. One can clearly see a
peak, roughly between 75 and 85 degrees along the loop and
assuming the vertical axis errors are not significantly differ-
ent, this feature may be explained by the LOS effect. Crudely
judging by eye the kink mode at a LOS angle of 51◦ seems to
fit the best. However, as the sausage wave can exhibit similar
behavior, the observational data do not allow us to determine
which of the modes is responsible for the propagating distur-
bances observed. The analysis of the estimated propagation
speed, of about 2100 km s−1, makes the sausage wave inter-
pretation more favorable, as it is likely that this value of speed
is likely to be closer to the Alfv´en speed outside the loop. The
size of the error bars does not allow us to make any conclusions
about the observed wave dissipation.
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6. Conclusions

Both kink and sausage transverse compressible (or fast mag-
netoacoustic) wave modes of coronal loops,which displace the
loop along the LOS, may be detected using imaging telescopes.
This effect is pronounced for wave lengths comparable with the
loop width,making it relevant for short period waves only. The
observed intensity amplitude as a function of the wave parame-
ters and observation angle behaves in a similar, but not identical
way to an incompressible wave in a loop (Paper I). The main
effect brought by the compressibility of the medium is the de-
parture of the optimal observation angle of the sausage wave
from 90 degrees.

The loop curvature changes the observational angle, affect-
ing the observed wave amplitude. This leads to a modulation in
a form of significant, up to an order of magnitude, increases and
decreases of the observed amplitude along the loop. The effect
is more pronounced for kink perturbations. As solar coronal ob-
servations usually show strong noise, the observational mani-
festation of the amplitude variation may look like an abrupt ap-
pearance and disappearance of the waves in certain segments
of loops.

The analysis of the amplitude variation of propagating dis-
turbances observed by SECIS reveals that the wave train am-
plitude experiences a significant increase and then decrease. It
is difficult to quantify this phenomenon because of strong ob-
servational noise, but, qualitatively, the existence of the strong
change of the amplitude is obvious. Observational detection of
this phenomenon may be considered as an additional proof of
the interpretation of the SECIS observed propagating distur-
bances as fast magnetoacoustic wave trains.

The dependence of the LOS effect discussed above upon
the ratio of the wave length and the loop width, makes it po-
tentially useful for MHD coronal seismology. However, further
observational and theoretical studies are necessary.
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