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ABSTRACT

Long-term evolution of instantaneous parameters of decayless kink oscillations of six solar coronal loops observed for longer
than 2 h each is studied. The oscillations are analysed by processing sequences of 171 A images obtained with the Solar Dynamics
Observatory (SDO)/Atmospheric Imaging Assembly (AIA) in the time interval from 2020 December till 2021 June, with the
motion magnification technique. It is established that decayless kink oscillations could exist for more than 30 or 40 oscillation
cycles. Neither the loop brightness nor instantaneous parameters of the oscillations show a monotonic increase or decrease
during the oscillation. The observed instantaneous oscillation periods and amplitudes are found to vary randomly in time, with
distributions around the mean values that resemble Gaussian profiles. Mean values of the oscillation periods and amplitudes are
consistent with previous observations of this phenomenon. A power-law dependence of the oscillation period on the displacement
amplitude is found, with the power-law index of 0.41 and with the 95 per cent confidence interval of [0.39, 0.71]. In general,
we established the lack of correlation between instantaneous oscillation parameters and loop brightness. One exception is an
event with relatively strong anticorrelation of the amplitude and the loop’s brightness, with the cross-correlation coefficient of
about —0.81, but this effect requires a further study. Fourier power spectra of the envelopes of the time-evolving instantaneous
amplitudes and periods are white noise, indicating that consecutive values of the instantaneous parameters are independent of
each other. The results obtained provide an empirical ground for validating and comparing existing and future theoretical models

of decayless kink oscillations of coronal loops.
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1 INTRODUCTION

It has been a decade since the first observation of the low-amplitude
decayless kink oscillations of plasma structures of the solar corona,
such as loops (Tian et al. 2012; Wang et al. 2012) and magnetic
flux ropes (Kim, Nakariakov & Cho 2014). In coronal loops, the
characteristic displacement amplitude of these persistent oscillations
is 0.05-0.45 Mm and characteristic periods are 1.5-11 min (Anfino-
gentov, Nistico & Nakariakov 2013; Anfinogentov, Nakariakov &
Nistico 2015). The linear scaling of the oscillation period with the
length of the oscillating loop indicates that they are standing modes
with the wavelength, and hence the oscillation period determined by
the length of the oscillating loop acts as a kink wave resonator.
Appearing in the absence of eruptive events (Nistico, Nakari-
akov & Verwichte 2013), and recognized to be ubiquitous in qui-
escent active regions (Anfinogentov et al. 2013, 2015), the decayless
regime of kink oscillations has a great potential for coronal seismol-
ogy (Duckenfield et al. 2018; Anfinogentov & Nakariakov 2019).
In particular, it can provide us with the information about coronal
active regions before the flares and mass ejections (e.g. Magyar &
Nakariakov 2020; Nakariakov et al. 2021), which is crucial for the
solar activity forecasting. Also, decayless kink oscillations may be
useful in the broader context of the coronal heating problem (e.g. Van
Doorsselaere et al. 2020), revealing unknown channels of the energy
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flow through the solar atmosphere. The potential of decayless kink
oscillations for coronal heating through the development of Kelvin—
Helmbholtz instability (KHI) and resonant absorption is discussed by
Karampelas et al. (2019a).

The mechanism responsible for sustaining the oscillations remains
a mystery. In the large-amplitude decaying regime, in the vast
majority of cases kink oscillations are impulsively excited by low
coronal eruptions (Zimovets & Nakariakov 2015), with the follow-
up damping caused by the conversion of the kink mode to unresolved
torsional motions by resonant absorption (e.g. Goossens, Andries &
Aschwanden 2002; Ruderman & Roberts 2002) or to fluting modes
by KHI (e.g. Terradas, Magyar & Van Doorsselaere 2018; Antolin &
Van Doorsselaere 2019; Van Doorsselaere et al. 2021). In contrast,
due to its sustenance, decayless kink oscillations should be excited
and sustained by a continuously operating external energy supply
that counteracts damping. Nakariakov et al. (2016) demonstrated the
lack of an apparent resonance in an ensemble of oscillating loops,
which means that the force is not periodic. Two other options, a
self-sustained oscillation with a quasi-steady energy supply and a
decaying oscillation sustained by an external random driver, were
proposed instead. To be more specific, in the randomly driven model,
the footpoint driver varies rapidly and irregularly, in comparison with
the kink oscillation period. Numerical simulations demonstrated that
both options could lead to the existence of decayless kink oscillations
(see Afanasyev, Karampelas & Van Doorsselaere 2019; Afanasyev,
Doorsselaere & Nakariakov 2020; Karampelas & Van Doorsselaere
2020). The plausibility of the latter scenario has also been confirmed
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Table 1. Observation information of the analysed oscillating loops, including the NOAA active region (AR) number,
the location of the image centre [(x, y) in arcsec from disc centre], the start time (7), time duration of the oscillation (Af
in hours), the length of the oscillating loop (L in Mm), and the mean period (P in min) and amplitude (Ao in Mm). The

dash means the loop does not anchor at an active region.

Loop ID AR Date (x, y) (arcsec) t (UT) At (h) L(Mm) Py (min) Ay (Mm)
Loop #1 12790 2020-12-12 (+838, —477) 10:30 3.2 210 4.32 0.23
Loop #2 - 2020-12-29 (=912, —366) 05:30 3.5 217 5.20 0.31
Loop #3 12796 2021-01-21 (+895, —=371) 21:17 3.3 71 2.34 0.16
Loop #4 - 2021-03-23 (=778, —633) 05:24 4 181 4.72 0.23
Loop #5 - 2021-03-23 (—818, —620) 21:14 4.3 238 5.48 0.27
Loop #6 12833 2021-06-24 (+888, +393) 20:55 4.1 199 5.26 0.19

analytically by Ruderman & Petrukhin (2021) and Ruderman,
Petrukhin & Pelinovsky (2021), while it could possibly depend on
the noise spectrum. An alternative interpretation links decayless kink
oscillations with regular, impulsively excited damped oscillations of
loops with gradually evolving profiles of the equilibrium parameters
(Antolin et al. 2016, 2017; Pascoe, Goddard & Van Doorsselaere
2020). These models involve the combination of resonant absorption
and KHI.

A useful approach to revealing physical mechanisms operating in
an oscillatory system is the comparison of empirically determined
scaling of mean values of observables, such as the oscillation period,
quality factor, amplitude, wavelength, etc., with each other with
theoretically predicted mutual dependences of those parameters.
In particular, such a comparison has revealed that the damping of
kink oscillations is associated with the effect of resonant absorption
(Ofman & Aschwanden 2002; Verwichte et al. 2013), their nature as
eigen oscillations of individual coronal loops in both decaying and
decayless regimes (Anfinogentov et al. 2015; Goddard et al. 2016),
and the importance of non-linear effects (Goddard & Nakariakov
2016). For decayless kink oscillations, useful information could
also come from the study of the evolution of their instantaneous
parameters, for example the instantaneous values of the oscillation
period and amplitude. The theoretical modelling of the mechanisms
responsible for sustaining decayless kink oscillations has not pre-
dicted a scaling relationship between observables, but such a study
could be motivated by the determination of the empirical scaling of
the observed parameters of the oscillations.

The relatively low displacement amplitude of decayless kink oscil-
lations, which is typically a fraction of a pixel size of the best available
extreme ultraviolet (EUV) imaging telescopes, makes their study a
rather challenging task. The technique of motion magnification (MM;
Anfinogentov & Nakariakov 2016) has proven to be a robust tool for
the analysis of this regime of coronal loop oscillations. It allows for
a confident detection of transverse oscillatory motions with a broad
range of oscillation periods in the plane of the sky, and gives a linear
scaling of the output parameters of the oscillations with the input
values (e.g. Zhong et al. 2021) even in noisy data. The MM has been
successfully applied to the analysis of the second parallel harmonics
(Duckenfield et al. 2018), and detection of preflare oscillations (Li
et al. 2020; Mandal, Tian & Peter 2021).

The aim of this paper is to determine observational properties
of decayless kink oscillations of coronal loops and their evolution
during the lifetime of the oscillation. We expect that this empirical
information would motivate the search for similar scaling laws
in the theoretical modelling of the process, which would allow
us to identify the specific mechanism responsible for the sustain-
ability of the oscillations. The paper is organized as follows: in
Section 2, we describe the observational data used in our study
and the analytical technique; in Section 3, we present the results

obtained; and in Section 4, we summarize our findings and draw
conclusions.

2 OBSERVATIONS AND DATA ANALYSIS

For the analysis, we search for long-lasting (>2h) decayless kink
oscillations of high-contrasted coronal loops located off-limb or
near limb in the time interval from 2020 January to 2021 June 25
using sequences of solar coronal images taken with the Atmospheric
Imaging Assembly (AIA; Lemen et al. 2012). The analysed loops
are situated in non-flaring, quiescent active regions, which prevents
the appearance of decaying kink oscillations of the loops, driven by
impulsive events. The observed coronal loops are most pronounced
in the 171 A channel and are less contrasted in cooler or hotter lines.
Therefore, we only focus on the 171 A data for the detection and
analysis.' The analysed 171 A AIA level 1 image sequences have the
cadence time of 12's and pixel size of 0.6 arcsec. The selected data
(see Table 1) are processed with the Image Patch Extract routine to
extract sub-frames with stationary patches. As the analysed features
are off-limb, it is not necessary to derotate the image sequences.

2.1 Data analysis

As the amplitude of decayless kink oscillations is usually too
small to be resolved by eye in movies made by AIA data sets
(e.g. Anfinogentov et al. 2015; Nakariakov et al. 2021), we apply
the MM technique to the AIA image sequences to magnify these
subtle motions. In our study, parameters of the MM algorithm are
determined according to a specific occasion, with the magnification
factor k varying from 2 to 10, and smoothing width equals to 50
frames as the typical period of decayless kink oscillations is shorter
than 10 min (Anfinogentov et al. 2015; Anfinogentov & Nakariakov
2019). The data with magnified oscillatory motions is used for the
following analysis.

Each loop of interest is outlined by several clicked points, which
are fitted to an ellipse. To cover the range of user-supplied points,
the ellipse is truncated as an arc, whose length (chordal distance) is
estimated as the loop length by summing up finite linear segments.
Then, slits with a certain length and width are chosen perpendicular
to the best-fitting ellipse to make time—distance plots in a similar
manner as described in Duckenfield et al. (2018) and Anfinogentov &
Nakariakov (2019). For each analysed loop, we have several slits
across it, spaced evenly along the loop. The length of each specific slit
is determined to include the full oscillatory transverse displacement
of the loop of interest. At each instant of time, the transverse intensity

"Multithermal characteristics of kink oscillating loops are investigated by
Nistico, Anfinogentov & Nakariakov (2014).
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Figure 1. Overview of the selected coronal loops in which decayless kink
oscillations are studied. Grey dashed curves are the best-fitting ellipses
that highlight the loops. The white slits ‘A-B’ perpendicular to the ellipse
are used to make time—distance plots that are presented in Fig. 2. Here,
images are enhanced using the multiscale Gaussian normalization (Morgan &
Druckmiiller 2014).

profile is averaged over the slit width (usually several pixels) to
enhance the signal-to-noise ratio. Such an averaging should not
lead to any loss of information, as the oscillation wavelengths are
comparable to the length of the oscillation loop, i.e. much larger than
several pixels. In this way, time—distance data cubes (time, distance,
slit number) are created. Next, we check the resulting time—distance
cubes to see whether there is a clear decayless oscillatory pattern.
If there is one, then the candidate is counted as a good example for
further analysis.

For those candidate events with apparent decayless kink oscil-
lations, we select one time—distance map with a clear oscillatory
pattern as representative to analyse the evolution of decayless kink
oscillations in this loop. Then oscillation parameters are measured
with the use of the chosen time—distance plots as follows. First, in the
time—distance plot, we track the loop boundary manually (by eye).
Alternatively, we track the vibration of the loop centre by fitting the
transverse intensity profile with a Gaussian at each instant of time,
using the Solar Bayesian Analysis Toolkit (SOBAT; Anfinogentov
et al. 2021).

Secondly, in the time-distance plot, we identify the maxi-
mum/minimum displacement positions (crests and troughs) of the
transverse oscillation, [#;, d;], where i is the extremum index, and
t and d are the time and spatial coordinates, respectively. Thirdly,
we calculate the instantaneous half-period (P;/2 = ;1 — t;) and
the magnified apparent instantaneous displacement amplitude (i.e.
the distance between the crests and troughs, 2A,,; = |d; + | — d;|) for
each half-cycle of oscillation. Since the magnified amplitude depends
linearly on the original amplitude (Anfinogentov & Nakariakov 2016;
Zhong et al. 2021), the original apparent amplitude is 1/k of the
magnified amplitude, i.e. A; = Ap;/k. To reduce the uncertainty, we
repeat the above procedure for magnified data obtained with three
different magnification factors k, e.g. k = 4, 6, 8. In this way, we
obtain a sequence of pairs of the instantaneous half-periods P;/2 and
amplitudes 2A; determined for consecutive half-cycles with different
values of k, which are used in statistical analyses.

3 RESULTS

We analyse decayless kink oscillations of six loops selected ac-
cording to the high contrast and long-durational oscillatory patterns.
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Figure 2. Typical time—distance maps demonstrating decayless kink oscilla-
tions in the analysed loops. The maps are made using the slits situated across
the loops, denoted in Fig. 1. In all cases, the magnification factor k of the
magnified data is 6. The white dots represent the apparent loop boundary in
the plane of the sky, and the red crosses denote the maximum/minimum
displacement of the loop boundary. In panel (f), the dark vertical slit
corresponds to dark frames, i.e. the missing data frames. In each panel,
the intensity is scaled to reveal the oscillatory pattern. Animation shows the
oscillations of Loop #1 and a time—distance map with (left) and without
(right) the MM.

The overviews of the host active regions are displayed in Fig. 1.
The information about the loops and the dates and times of the
observations is shown in Table 1. It includes the NOAA active region
(AR) number, coordinates of the region of interest, the observation
date and start time and duration, the oscillating loop length, the
mean value of oscillation period, and amplitude. Among these six
loops, three of them are anchored in active regions that have NOAA
numbers. Loop #4 and Loop #5 are from the same decaying active
region. Most of their (apparent) footpoints are near the limb, some
are located on disc, while others are beyond the limb. All loops are
seen in 171 A for longer than 3 h. Their lengths vary from 71 Mm
(62 Mm) to 238 Mm. Loop #3 gets split into two threads at about 1/3
of observation, with one of the 71 Mm length moving upwards, see
the oscillatory pattern above the fitted one in the time—distance map
in Fig. 2(c); while another one of 62 Mm oscillating around the initial
position. But, though both of these new loops are anchored at the same
footpoints, they may simply overlap due to the line-of-sight (LoS)
effect, and as the Sun rotates westwards, one grows longer visually.

Fig. 2 shows examples of time—distance plots made along identi-
fied perpendicular slits labelled by ‘A-B’ in Fig. 1. In each example,
the oscillating loop remains high contrasted even if its intensity
varies in time, so the transverse profile of the loop is recognizable
most of the time, hence the oscillatory pattern. In the vicinity of
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Figure 3. Instantaneous oscillation amplitudes (2A) and periods (P/2) of
decayless kink oscillations in six coronal loops, with rows from top to bottom
corresponding to Loop #1 to Loop #6. The histograms of half-periods (first
column) have 0.2 min bins, and of amplitude (second column) have 0.05 Mm
bins. Scatter plots of the amplitude—period pairs and velocity amplitude (V)—
period pairs on logarithmic scales are given in the third and fourth columns,
respectively. The blue curves represent the best-fitting Gaussians to the
histograms, with the centres and widths of the Gaussian fits indicated in
the corresponding panels. The cross-correlation coefficients (c_c) between
parameter pairs are indicated at the top of each scatter plot.

Loop #4, there is another distinguishable loop that has a pronounced
oscillation signal that lasts for around 2 h, see the oscillatory pattern
in the bottom of the panel (d). The white dots outline one of the
boundaries of the loop, and the red crosses indicate positions of the
extreme displacements. In all cases, transverse oscillations last for
tens of cycles. More specifically, the oscillations of Loop #1 to Loop
#6 sustain for 38, 38, 48, 40, 47, and 26 cycles, respectively. In all the
cases, the instantaneous oscillation period, i.e. the duration of one
cycle is about several minutes. The visual inspection reveals that the
instantaneous amplitude and period vary in time. Focusing on one
certain case, these oscillation parameters evolve slowly, with minor
increase or decrease in time. However, oscillations of Loop #1 and
Loop #6, have a virtually stationary period and their amplitude do
not vary too much, as seen in panels (a) and (f).

3.1 Instantaneous parameters of the oscillations

Histograms of instantaneous displacement amplitudes and periods
determined during the time evolution of the six analysed loops,
are shown in Fig. 3. The histograms generally have a Gaussian
(normal) distribution. Best-fitting the distribution with the Gaussian
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Figure4. Scatter plots of instantaneous displacement amplitudes and periods
(panel a) and instantaneous velocity amplitudes and periods (panel b) of
decayless kink oscillations observed in six different loops. Circles of green,
blue, red, orange, purple, and yellow correspond to Loop #1 to Loop #6,
respectively. The colour bar in the left indicates the loop length (in Mm)
of different oscillating loops. The white dashed line shows the best-fitting
line, corresponding to the power-law dependence shown at the bottoms of
panel (a). The background is the posterior predictive distribution sampled by
MCMC for the best-fitting power function.

function, we determine centres and standard deviations of the
Gaussian fits. The centres give us the mean values of the oscillation
parameters. For Loop #1 to #6, their oscillation periods (Py & o) are
432 £ 1.2,5.20 + 3.54,2.34 £ 0.80, 4.72 £ 1.3, 548 &+ 1.8, and
5.26 &+ 1.36 min, respectively, and their apparent amplitude (A¢ & o)
is0.23 +£0.075,0.31 £0.135,0.16 +0.07,0.23 £ 0.09, 0.27 £ 0.11,
and 0.19 4 0.05 Mm, respectively. The errors are estimated by the
standard deviations. Loop #2 has the widest spread of the period and
amplitude, while the smallest deviations of those parameters are in
Loop #3 and Loop #6, respectively.

The correlation between the instantaneous oscillation periods and
apparent amplitudes is studied with the use of scatter plots of
those two variables with each other on a logarithmic scale (see the
third column in Fig. 3). In addition, we calculate cross-correlation
coefficients of the period and amplitude time evolutions. It is found
that the cross-correlation coefficients in Loop #1 and Loop #3-Loop
#6 are less than 0.35, i.e. negligibly small, while in Loop #2 it
is 0.51 that may indicate some meaningful correlation. Since the
velocity amplitude (V, estimated as 27t A/P) is a proxy of oscillation
energy, similar scatter plots of periods and velocity amplitude are
created [see panels (a4)—(f4)] to reveal the power-law dependence
of the velocity amplitude (and the kinetic energy) upon the period.
Cross-correlation coefficient between these two variables in Loop
#1 to Loop #6 is —0.54, —0.47, —0.46, —0.50, —0.49, and —0.63,
respectively, indicating weakly negative correlation. In addition, two
scatter plots that combine the measurements made in all six loops
are shown in Fig. 4. Parameters of different loops are indicated by
a certain colour. As kink oscillations are of standing nature, their
period should linearly scale with the loop length, which can be
roughly seen in Fig. 4. As a matter of fact, the estimation of the
loop length is subject to the projection effect, and more accurate
estimations could be done with stereoscopic data not available in
the considered cases. The cross-correlation coefficient of oscillation
periods and amplitudes estimated in all six loops is 0.42, and that of
periods and velocity amplitudes is —0.46.

As the cross-correlation coefficients of data-pairs do not show
a conclusive relationship between oscillation parameters of interest,
while scatter plots in Fig. 3 show that power-law dependence between
amplitude and period is highly possible, we perform a quantitative
comparison of two competing models with the use of SOBAT. The
models are (1) the power-law model, P = c(A)* + Py, where P
and A are the period and displacement amplitude, respectively, ¢
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Figure 5. Time evolution of the instantaneous amplitudes of decayless kink
oscillations. Panels (al)—(a6): detrended time series of the instantaneous
amplitudes (black curve) obtained by subtracting the trend from oscillating
signal indicated by white dots in Fig. 2, and their envelops (red curves)
obtained by interpolating the absolute values of the detrended crests and
troughs (red stars) with cubic splines. Panels (b1)—(b6): centred envelops
extracted from panels (al)—(a6). Panels (c1)—(c6): Fourier power spectra of
the time evolution of the envelopes. The orange lines are best-fitting linear
functions of the spectra. The corresponding fitting coefficients are labelled.
The periods are normalized to the mean values obtained in Fig. 3.

is a normalization constant, @ is a power-law index, and Py is
an intercept constant term and (2) the flat model, P = Py, i.e.
the period is independent of displacement amplitude. For all six
loops together, data-pairs are best fitted with these two competing
models separately using the Markov chain Monte Carlo (MCMC)
approach with 10° samples, and the Bayesian evidence is calculated.
Then, the Bayes factor B, is estimated as the ratio of the Bayesian
evidence of the two models. Thus, we obtain the value K, = 2In B>,
as a measure of how strong the evidence towards model 1 with
respect to model 2 is. For all six loops together, K}, of 9.65 yields
strong evidence in favour of the power-law model in comparison
to the flat model. The best-fitting power-law index o = 0.41, with
the 95 percent confidence interval of [0.39, 0.71]. The best-fitting
curve is shown in Fig. 4, overplotted with corresponding posterior
predictive distribution sampled by MCMC, which is well consistent
with observations. Here, as velocity amplitude is proportional to A/P,
the dependence between it and the period can be inferred from that
of the period and displacement amplitude. Hence, there is no need to
perform additional fitting of these two parameters.

3.2 Time evolution of the instantaneous parameters

In Section 3.1, we found that the instantaneous oscillation periods
and amplitude have a Gaussian-like distributions. However, the
histograms do not give us the information about whether this variation
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Figure 6. Similar to Fig. 5 but for instantaneous periods.

of the oscillation parameters is abrupt or gradual. To reveal the
time evolution of the oscillation parameters, we determine the
gradual trend of the oscillations by smoothing the mid-points of
the extreme positions of the oscillatory displacements, indicated by
the red crosses in Fig. 2, with a window width of around double
the period. Then the trend was subtracted from the signals to obtain
the detrended time series, see the black curves in Fig. 5(al)—(a6).
Interpolated time envelopes of the oscillation parameters are shown
by blue curves. It is evident that the amplitude and period vary
in time rather smoothly, while irregularly. The time evolution of
the instantaneous parameters is quantified by the Fourier power
spectra. For the analysis, it is convenient to construct an envelope
that spline interpolates the absolute values of detrended extremes
(i.e. both maxima and minima, see the red stars in Fig. 5a). Power
spectra of the envelopes of instantaneous amplitudes and periods are
shown in Figs 5 and 6, respectively, with the periods measured in the
values of the corresponding mean oscillation periods Py obtained in
Fig. 3.

The power spectra are broadband. Typically, the spectra have
three distinct intervals that could be fitted with linear functions that
correspond to the power-law dependences of the spectral power.
Obviously, the meaningful spectral intervals for this fitting are
with the periods greater than Py. For the instantaneous amplitudes,
the best-fitting values of the power-law indices are 0.68, 0.19,
1.10, 0.36, —0.12, and 0.81 for Loop #1 to #6, respectively. The
average value is 0.50 and the standard deviation is 0.44, giving the
spectrum resembling white noise. A similar behaviour is shown by
the evolution of the instantaneous periods (Fig. 6). In the long-period
part of the spectra, the best-fitting power-law indices are 0.03, 0.71,
1.10,0.19,0.31, and —0.16, giving us the mean value of 0.36 and the
standard deviation of 0.46. Thus, the spectrum of the time variation
of the instantaneous periods is close to the white noise too.
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Figure 7. Time variation of the relative instantaneous brightnesses (black
curves), and oscillation amplitudes (blue curves) and periods (red curves) of
six oscillating loops. All curves are smoothed over five oscillation half-cycles.

3.3 Correlation of the oscillation parameters with the
brightness of the loop

According to Fig. 2, the instantaneous brightness of the oscillating
loops varies in time. It is of interest to test whether the variation
of instantaneous parameters of the oscillations correlates with the
loop’s brightness. For example, Loop #1 becomes brighter in the
middle of the observation, while the oscillation amplitude turns
apparently smaller. In each time frame, the brightness is estimated
as the maximum value in the perpendicular slit shown in Fig. 1.
Here, the instantaneous brightness of a loop’s centre is the original
one with mean value subtracted and then normalized by the average
brightness of the loop during the whole duration of the observation.
The time variations of the brightness and simultaneous variations
of instantaneous periods and amplitudes in all analysed loops are
shown in Fig. 7. The brightness trends in different loops are different,
while intermittent minor changes are seen in all six loops. Loop #1
brightens up gradually and then dims quicker. Loop #2 turns dimmer
in the middle. Brightness of Loop #3 varies frequently. Loop #4 and
Loop #5 grow brighter at the end of observation. The brightness of
Loop #6 sustains for more than 2 h but drops down rapidly in the end
of the observation.

Generally, the evolution of oscillation parameters and loop bright-
ness are not synchronized. In all six loops, cross-correlation coef-
ficients between the brightness and amplitude or period for the full
series do not exceed 0.5. However, in three events, in some specific
time intervals there exists negative correlation between brightness
and displacement amplitude. The cross-correlation coefficient be-
tween the brightness and amplitude for Loop #1 in the time interval

1839

of [0, 123 min] is —0.81, for Loop #2 in [53 min, 136 min] is —0.74,
and for Loop #5 in [71 min, 156 min] is —0.72.

4 DISCUSSION AND CONCLUSIONS

In our study, we considered instantaneous parameters of decayless
kink oscillations in six long-living (>2h) coronal loops. All the
analysed loops appear in the 171 A channel of SDO/AIA are off-limb,
and have contrast boundaries with the background. During the chosen
time intervals, the loops show decayless low-amplitude oscillatory
transverse displacements. The observed oscillatory patterns last in the
six different loops for 38, 38, 48, 40, 47, and 26 oscillation cycles. The
oscillations can occur for much longer, and are not detected outside
the analysed time intervals because of the change of the observational
conditions. Observational data cubes were processed with the use of
the MM technique (Anfinogentov & Nakariakov 2016), which allows
us to magnify oscillatory motions in a broad range of periods and
amplitudes (Zhong et al. 2021). We determine instantaneous values
of the oscillation amplitudes and periods as the distances and times
between extreme values of repetitive transverse displacements of
the loops. The amplitudes are apparent, i.e. the effect of the angle
between the LoS and the unknown plane of the oscillation, if the
oscillations are linearly or highly elliptically polarized, is not taken
into account. In all the analysed loops, the oscillation amplitudes do
not show a systematic decay or growth.

Mean values of the oscillation periods determined in different
loopsare 4.32 £1.2,5.20+3.54,2.34 +0.8,4.72 £ 1.3,5.48 £ 1.8,
and 5.26 £ 1.36 min, and the corresponding apparent amplitudes are
0.23 £ 0.075, 0.31 £ 0.135,0.16 £ 0.07, 0.23 £ 0.09, 0.27 £ 0.11,
and 0.19 £ 0.05 Mm. The error bars were estimated by the standard
deviation. Parameters of the analysed oscillations are fully consistent
with previous observations of this phenomenon by, e.g. Nistico
et al. (2013), Anfinogentov et al. (2013, 2015), Anfinogentov &
Nakariakov (2019), and Li et al. (2020).

Instantaneous values of both the oscillation amplitudes and periods
show scattering around the mean values. In all six loops, histograms
of the instantaneous oscillation parameters have Gaussian-like distri-
butions, while in some cases there are significant outlets. Some strong
outlets in the instantaneous periods could be attributed to oscillation
cycles that are missing in the detection, when, because of noise it is
impossible to identify extreme values of the displacements. Strong
outlets in instantaneous amplitudes could be attributed to the effect
of evolving background intensity.

The variance of oscillation parameters varies from loop to loop.
There may be some correlation with the host active region, e.g.
their magnetic complexity. For example, Loop #1 and Loop #6 have
periods and amplitudes that fluctuate not too much, and both are in
a unipolar active region that share similar properties (e.g. the size
of the active region, spot numbers). However, Loop #2, Loop #4,
and Loop #5 are located in decaying active regions that contain no
sunspots; hence, no proxy to quantify the properties of their host
regions. Similarly, Loop #3 is anchored at an active region where
a sunspot is disappearing during the observation, which indicates a
low potential for flares. Therefore, the link between the variation of
oscillation parameters and properties of the host active region is not
obvious in the current work, and it would be more suitable to be
investigated in statistics containing tens of cases in the future.

In previous observation of decayless kink oscillations of coronal
loops, the oscillation period was found to be independent of am-
plitude (e.g. Nakariakov et al. 2016). In all loops analysed in our
study except one, cross-correlation coefficients of the instantaneous
periods and amplitudes are lower than 0.5. In one loop, its value
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is 0.51. The visual inspection of a scatter plot that combines the
instantaneous parameters of all oscillatory cycles in all six loops may
suggest some positive correlation of these parameters with each other.
However, the small value of the cross-correlation coefficient, 0.42,
does not allow us to claim this correlation confidently. Likewise, the
negative correlation between velocity amplitude and period cannot be
confirmed by their cross-correlation coefficients of —0.46 to —0.63.
On the other hand, using the MCMC Bayesian approach, we found
strong evidence that the oscillation period has indeed a power-law
dependence on displacement amplitude, with power-law index of
0.41f8;8(2), through quantitative comparison of best-fitting models
for P versus A for all six loops among flat model and power-law
model.

The scattering of instantaneous parameters of the oscillations
should rather be attributed to the usual random scattering of experi-
mental data because of noise, intrinsic to any natural phenomenon.
On the other hand, the marginal indication of the positive correlation
of the instantaneous amplitudes and periods does not fully exclude
a possibility of a true dependence that should be looked for in
bigger data sets. Such a correlation should also be searched for
in the competing theoretical models of decayless kink oscillations.
Likewise, the Gaussian distributions of the instantaneous periods and
amplitudes could be looked for in the model suggested by Afanasyev
et al. (2020); i.e. it should be checked whether such statistics are
purely based on the observational errors, or are features of the
model. The width of the Gaussian distribution determined in our
study empirically could be compared with the width determined by
the model parameters, e.g. the statistics of the random driver.

Looking at the time evolution of the instantaneous parameters of
the oscillations, i.e. the time envelopes, we established that in all cases
its Fourier power spectra in the intervals of the oscillation periods
greater than the mean period are power law with the indices of 0.68,
0.19, 1.10, 0.36, —0.12, and 0.81 for instantaneous amplitudes and
0.03, 0.71, 1.10, 0.19, 0.31, and —0.16 for instantaneous periods.
The mean value of the power-law index of the envelope of the
instantaneous amplitudes is 0.50 £ 0.44, and of the period is
0.36 = 0.46. We interpret those spectra as almost white noise.
Thus, we do not see a significant correlation of the instantaneous
values of the amplitudes in consecutive cycles of the oscillations. The
same is applicable to instantaneous periods. Therefore, we conclude
that decayless kink oscillations do not form oscillation trains, in
contrast with another almost monochromatic oscillatory process
in the solar atmosphere, 3-min oscillations above sunspot umbrae
(e.g. Sych 2016). This feature of decayless kink oscillations could
also be important for the identification of the specific mechanisms
responsible for their sustainability. What should also be taken into
account is that the loop, in reality, is subject to a combination
of regular and noisy external perturbations, which affects the
statistics.

The brightness of the observed loops in the 171 A channel shows
some time variation. In general, we did not find a correlation of
the brightness variation with the variation of the instantaneous
periods and amplitudes of the oscillations. However, statistically
significant anticorrelation of the brightness and amplitude, with the
highest cross-correlation coefficient of about —0.81, was established
in some specific time interval for one of the loops. The apparent
independence of the instantaneous period of the brightness suggests
that the variation of the brightness does not modify the kink speed in
the loop. It means that either the brightness variation does not involve
the variation of the magnetic field and density, or they both evolve but
their evolution does not change the ratio of the field and the square
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root of the density. The appearance of significant anticorrelation of
the brightness and oscillation amplitude in a certain time interval may
be attributed to the selection effect and thus be artificial. However,
we cannot rule out its natural origin, which indicates a need for a
dedicated study of this effect.

The apparent sustainability of the oscillations for much longer
than 30-40 oscillation cycles, with the intensity varying non-
monotonically, indicates that the KHI mechanism may not play the
main role in this process. The instability caused by the transverse
shear of flows in the oscillations has been intensively studied in
numerical simulations (e.g. Antolin et al. 2016; Afanasyev et al.
2019; Guo et al. 2019; Karampelas et al. 2019a; Karampelas, Van
Doorsselaere & Guo 2019b). In these simulations, once being excited
by a continuous footpoint driver, the loop starts oscillating and the
oscillation amplitude first grows until the onset of turbulence/KHI,
and then decays due to energy dissipation via KHI (see e.g. figs 7 and
8 in Guo et al. 2019). For example, the time-scale of this growth—
decay process is 1500-2000 s (14—17 cycles of the oscillation), given
the driver velocity of 2 km s~!, period of 87-106 s, and magnetic field
of 50G. However, in our observations, the oscillation amplitude
sustains for much longer than 20 cycles along with reversible
evolution of the loop width and intensity. In addition, the intensity
variation in the host loops caused by KHI should be positively related
to the apparent amplitude changes in 171 A and be negatively related
in a hotter line like 193 A (Antolin et al. 2016), but Fig. 7 show that
there is no correlation between the loop brightness and the oscillation
amplitude or period. Yet, whether KHI is visible in EUV image
sequence depends on the initial boundary condition of coronal loops
(Antolin et al. 2017). If the temperature inside and outside the loop
is similar, the overall intensity variation as response of KHI is minor,
which could be in an undetectable spatial scale. Anyway, our findings
offer important observational evidence for the further study of the
possible appearance of KHI in decayless kink oscillations of coronal
loops.

Empirical results obtained in this study show that decayless kink
oscillations of coronal loops could exist for more than 30 or 40
oscillation cycles. Neither the loop brightness nor instantaneous
parameters of the oscillations show a systematic evolution during
the analysed time intervals. We established the lack of correlation
between instantaneous oscillation period and amplitude, and, in
general, between the oscillation parameters and loop brightness.
One exception could be a relatively strong anticorrelation of the
oscillation amplitude and the loop’s brightness, but this effect
requires a further study. Furthermore, period and displacement
amplitude could have a power-law dependence, of which physical
implication remains uncertain. Anyway, due to the size of the
associated uncertainties, it is difficult to unequivocally stipulate
the precise relationship. Consecutive values of the instantaneous
parameters of the oscillations are independent of each other. The
variation of the instantaneous parameters seems to be purely random,
and hence needs to be considered as an observational error. These
results indicate the questions that should be addressed by the existing
and future theoretical models of the phenomenon of decayless kink
oscillations of coronal loops.
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In this paper, we analysed AIA data using the Interactive Data
Language (IDL), SolarSoftWare (SSwW; Freeland & Handy 1998)
package, the MM technique (Anfinogentov & Nakariakov 2016),
and the Solar Bayesian Analysis Toolkit (SOBAT; Anfinogentov
et al. 2021). The AIA data are available at http://jsoc.stanford.edu/.
The data are processed and analysed using the routines available
at https://www.lmsal.com/sdodocs/doc/dcur/SDODO0060.zip/zip/en
try/ (Section 7). The MM code is available at https://github.com/Ser
gey-Anfinogentov/motion_magnification. The SOBAT is available at
https://github.com/Sergey- Anfinogentov/SoBAT/tree/master/idl.
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