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ABSTRACT

The dependence of the period of sausage oscillations of coronal loops on length together with the depth and
steepness of the radial profile are determined. We performed a parametric study of linear axisymmetric fast
magnetoacoustic (sausage) oscillations of coronal loops modeled as a field-aligned low-β plasma cylinder with a
smooth inhomogeneity of the plasma density in the radial direction. The density decreases smoothly in the radial
direction. Sausage oscillations are impulsively excited by a perturbation of the radial velocity, localized at the
cylinder axis and with a harmonic dependence on the longitudinal coordinate. The initial perturbation results in
either a leaky or a trapped sausage oscillation, depending upon whether the longitudinal wavenumber is smaller
or greater than a cutoff value, respectively. The period of the sausage oscillations was found to always increase
with increasing longitudinal wavelength, with the dependence saturating in the long-wavelength limit. Deeper and
steeper radial profiles of the Alfvén speed correspond to more efficient trapping of sausage modes: the cutoff value
of the wavelength increases with the steepness and the density (or Alfvén speed) contrast ratio. In the leaky regime,
the period is always longer than the period of a trapped mode of a shorter wavelength in the same cylinder. For
shallow density profiles and shorter wavelengths, the period increases with wavelength. In the long-wavelength
limit, the period becomes independent of the wavelength and increases with the depth and steepness of the radial
profile of the Alfvén speed.
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1. INTRODUCTION

The theoretical foundation of magnetohydrodynamic (MHD)
coronal seismology, the rapidly developing branch of solar
physics that uses MHD waves and oscillations for plasma di-
agnostics, is the theory of MHD oscillations of a plasma cylin-
der (see, e.g., Banerjee et al. 2007; De Moortel & Nakariakov
2012; Stepanov et al. 2012, for recent reviews). This model
adequately describes standing and propagating MHD waves in
various plasma structures of the solar corona, such as loops and
various filaments. In the low-β plasma, typical of coronal active
regions, a plasma cylinder embedded in a plasma with differ-
ent properties has four main modes: torsional, kink, sausage,
and longitudinal modes (e.g., Zaitsev & Stepanov 1975, 1982;
Edwin & Roberts 1983). These modes have very different phys-
ical properties and different observational manifestations. The
sausage mode, also known as an m = 0 or peristaltic mode, is
a sequence of expansions and contractions of the cross-section
of the cylinder, accompanied by a variation in the plasma den-
sity and in the absolute value of the magnetic field. In a low-β
case the plasma flows in the sausage mode are predominantly
transverse, in the radial direction (e.g., Gruszecki et al. 2012).

Initial interest in the sausage mode was associated with the
medium-period quasi-periodic pulsations observed in flaring
energy releases (e.g., Rosenberg 1970; Zaitsev & Stepanov
1982; Nakariakov & Melnikov 2009). The first direct spa-
tially resolved observational detection of a sausage oscillation
of a flaring loop was made in the gyrosynchrotron and soft
X-ray emission (Nakariakov et al. 2003; Melnikov et al. 2005).
Detailed analysis of the possible examples of sausage oscilla-
tions showed good spatial coherence of the oscillatory signals
over the whole loop spatially resolved in the microwave band
(Inglis et al. 2008). Such a spatial structure is consistent with the
sausage mode, while alternative interpretations, e.g., in terms of
the “dripping” model (Nakariakov & Melnikov 2009), cannot be
excluded. Analysis of the optical emission from a cool post-flare

loop revealed the possible presence of the global (fundamental)
sausage mode as well as its second spatial harmonic (Srivastava
et al. 2008). Sausage oscillations could also be responsible for
the intensity oscillations observed in the gradual phase of a
white-light flare on the RS CVn binary II Peg (Mathioudakis
et al. 2003). Very recently, periodic variations of the EUV emis-
sion were also interpreted in terms of sausage oscillations (Van
Doorsselaere et al. 2011; Su et al. 2012). In these interpretations
it is important to pay attention to the line-of-sight integration ef-
fect, as recently pointed out by Mossessian & Fleishman (2012)
and Gruszecki et al. (2012). In particular, for a line of sight per-
pendicular to the oscillating cylinder and for a spatial resolution
of the order of the diameter of the cylinder or poorer, the inten-
sity perturbations produced by a sausage mode in the optically
thin emission regime are negligible. Theoretical modeling of
sausage modes of coronal structures has a long history. Sausage
modes are highly dispersive and their properties are dependent
upon the longitudinal wavenumber (e.g., Zaitsev & Stepanov
1982; Edwin & Roberts 1983; Roberts et al. 1984; Selwa et al.
2004). Depending upon the ratio of the longitudinal wavelength
(determined, e.g., in the case of standing waves by the length
of the oscillating loop) to the radius of the plasma cylinder, the
mode can be either trapped or leaky. Trapped modes experience
total internal reflection at the cylinder surface and are evanescent
outside the loop. The period of standing trapped sausage modes,
i.e., in dense and thick flaring loops, grows with wavelength
(Nakariakov et al. 2003; Aschwanden et al. 2004). Sausage
modes of longer wavelengths leak from the cylinder, forming
a train of outwardly propagating fast magnetoacoustic waves
outside the cylinder. This mechanism of wave leakage is intrin-
sic and different from the tunneling caused by non-uniformity
of the external medium (see, e.g., Verwichte et al. 2006). The
threshold value of the ratio of the longitudinal wavelength to
the radius of the cylinder is defined by the ratio of the fast mag-
netoacoustic speeds inside and outside the cylinder (Zaitsev &
Stepanov 1982; Edwin & Roberts 1983). Such a behavior was
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Figure 1. Examples of the radial profiles of the Alfvén speed in the plasma
cylinder considered for different values of the parameters α and δ, which
control the steepness and depth of the profile, respectively. The thick solid
curve corresponds to α = ∞, δ = 0.8, the thin solid curve to α = 2, δ = 0.8,
the dotted curve to α = 4, δ = 0.8, the dashed curve to α = 4, δ = 0.9, and
the dot-dashed curve to α = 4, δ = 0.5. The Alfvén speed is normalized to its
value at infinity and the radial distance is normalized to the effective radius of
the cylinder.

found to be weakly sensitive to the smoothness of the transverse
profile of the fast speed (Pascoe et al. 2007b), fine structure in
the form of multiple coaxial shells (Pascoe et al. 2007a), lon-
gitudinal variation of the cylinder cross-section (Pascoe et al.
2009), and finite-β effects (Inglis et al. 2009).

However, sausage modes are still not entirely understood. In
particular, the dependence of the time period on the longitudinal
wavelength in the leaky regime, information crucial for the
development of seismological techniques based upon this mode,
is still debated. On the one hand, analysis of dispersion relations
for linear sausage perturbations clearly showed that in the
long-wavelength regime the period of leaky sausage modes
is independent of wavelength (e.g., Zaitsev & Stepanov 1982;
Cally 1986; Kopylova et al. 2002, 2007) and is determined
by the ratio of the radius of the cylinder to the internal value
of the fast speed. On the other hand, it was argued that the
gradual increase in wavelength from a trapped regime value
should lead to an increase in the period (Nakariakov et al. 2003;
Aschwanden et al. 2004) for a fixed value of the radius of the
cylinder. Moreover, numerical simulations of the initial-value
problem demonstrated that the period of the mode grows with
wavelength (e.g., Pascoe et al. 2007b; Inglis et al. 2009) in
both trapped and leaky regimes. The situation is complicated by
difficulties in searching analytically for the complex roots of the
transcendental algebraic equations representing the dispersion
relations (Ruderman & Roberts 2006).

In this paper we aim to resolve this long-standing discrepancy.
We analyze an initial-value problem, considering the evolution
of an axially symmetric perturbation of a straight plasma
cylinder embedded in a uniform magnetic field, as in the works
of Pascoe et al. (2007b), Inglis et al. (2009), and Gruszecki et al.
(2012). In contrast to Pascoe et al. (2007b) and Inglis et al.
(2009), where a plane plasma slab was considered, we study
sausage modes of a plasma cylinder. Moreover, we extend the
range of the parameters of the problem, considering ratios of
the length of the perturbed cylinder to its diameter up to 60 and
ratios of the Alfvén speeds outside and inside the cylinder up to
20. In previous studies these parameters were considered up to
15 and 7, respectively (Inglis et al. 2009). In addition, we study

the dependence of the sausage mode period on the steepness of
the transverse profile of the plasma in the cylinder.

We consider a radially non-uniform plasma cylinder embed-
ded in a uniform and straight magnetic field in the zero-β regime.
We perform a parametric study of the sausage mode of this
plasma equilibrium, varying the contrast of the Alfvén (fast
magnetoacoustic) speed inside and outside the cylinder and the
steepness of the plasma non-uniformity in the radial direction.
We consider, for the first time, the transition from the short-
wavelength trapped regime to the long-wavelength regime, in-
vestigating how the dependence of the period on the wavelength
evolves to its independence.

2. NUMERICAL MODEL

Consider a smooth cylinder of a zero-β plasma, stretched
along a uniform magnetic field B0 directed in the z-direction.
The density of the plasma ρ0 decreases with the radial coordinate
r. This is a standard setup for modeling sausage oscillations of
coronal loops: see, e.g., Figures 1 and 2 of Pascoe et al. (2007a).
The Alfvén speed (that coincides with the fast speed in this
limit) increases in the radial direction and is modeled by the
function

CA(r) = B0/
√

μ0ρ0(r) = CA∞

[
1 − δ exp

(
− rα

dα

)]
, (1)

where CA∞ is the Alfvén speed at infinity, 0 < δ < 1 is
the decrease in the speed at the axis of the cylinder, α > 1
is the index of the steepness of the profile, d is the effective
radius of the cylinder (see Figure 1), and μ0 is the vacuum
permeability. The Alfvén speed is then CA0 = CA∞(1 − δ)
at the cylinder axis. Thus, by varying the parameters δ and
α we change the contrast ratio CA0/CA∞ and the steepness
of the radial profile, respectively. As the magnetic field is
uniform and the gas pressure is taken to be negligible, the
equilibrium total pressure is constant everywhere. Hence, the
parameter δ = 1 − CA0/CA∞ is connected with the contrast of
the equilibrium plasma density ρ0 in the cylinder center and at
infinity as δ = 1 − [ρ0(∞)/ρ0(0)]1/2. The case of an infinitely
steep profile, α → ∞, corresponds to the Edwin & Roberts
(1983) model with a step-function profile.

In this study we restrict our attention to dissipationless
processes, described by ideal MHD:

ρ
d V
d t

= − 1

μ0
B × curlB, (2)

∂B
∂t

= curl(V × B), (3)

∂ρ

∂t
+ div(ρV) = 0, (4)

where the vectors V and B are the plasma velocity and magnetic
field, respectively, and ρ is the plasma density. In Equation (2),
we ignore finite-β effects as they are not significant for sausage
modes of coronal loops (Inglis et al. 2009).

It is natural to use a cylindrical coordinate system, with the
z-axis coinciding with the axis of the cylinder and with φ and r
the azimuthal and radial coordinates, respectively. Considering
linear magnetoacoustic perturbations of the cylindrical equi-
librium given by Equation (1); and taking perturbations to be
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independent of the polar angle φ in the sausage mode, we obtain
for the perturbed quantities

∂vr

∂t
= B0

μ0ρ0

(
∂Br

∂z
− ∂Bz

∂r

)
, (5)

∂Br

∂t
= B0

∂vr

∂z
, (6)

∂Bz

∂t
= −B0

(
∂vr

∂r
+

vr

r

)
, (7)

where vr is the radial component of the plasma velocity, and
Br and Bz are the perturbations of the radial and longitudinal
components of the magnetic field, respectively.

Using the standard procedure of excluding of all but one per-
turbed variable from Equations (5)–(7) (see, e.g., the linear part
of Nakariakov et al. 1997), we obtain the fast magnetoacoustic
wave equation,

∂2vr

∂t2
= B2

0

μ0ρ0(r)

(
∂2vr

∂z2
+

∂2vr

∂r2
+

1

r

∂vr

∂r
− vr

r2

)
, (8)

for sausage perturbations of the field-aligned plasma cylin-
der. Slow magnetoacoustic perturbations are absent from this
equation as we ignore finite-β effects.

As the equilibrium is uniform along the axis of the cylin-
der (in the z-direction) we can perform the Fourier transform
with respect to this coordinate, assuming that the perturbed
physical quantities depend upon z as cos(kzz). These assump-
tions correspond to the consideration of standing modes with
longitudinal wavelength 2π/kz. Thus, we obtain the fast wave
equation for the harmonic fast magnetoacoustic perturbations
in the longitudinal direction,

1

C2
A(r)

∂2vr

∂t2
+

(
k2
z +

1

r2

)
vr − ∂2vr

∂r2
− 1

r

∂vr

∂r
= 0. (9)

Equation (9) contains explicit dependence upon only two
coordinates, the time t and the radial coordinate r. In particular,
Equation (9) describes standing sausage waves of wavelength
2π/kz, as observed in flaring coronal loops.

An initial-value problem is solved with the initial condition

Vr (r, t = 0) = A0r exp(−r2/d2), (10)

where A0 is the amplitude. This form of the initial perturbation
has the sausage symmetry as it is independent of the azimuthal
angle φ and the plasma velocity at the axis of the cylinder is
zero. The width of the perturbation in the radial direction is
taken to be sufficiently large to avoid the excitation of higher
radial harmonics: the shape of the perturbation is close to
the transverse structure of the lowest mode (see, e.g., Pascoe
et al. 2007b; Inglis et al. 2009), with one maximum of the
radial velocity perturbation in the radial direction. Higher radial
sausage harmonics have more than one extremum in the radial
direction, and hence are excited by driver (10) less effectively. In
the longitudinal direction, the initial perturbation is described
by a harmonic function with wavenumber kz. Equation (10)
is supplemented by the boundary conditions Vr (r = 0, t) =
Vr (r = 50d, t) = 0.

The evolution of the initial perturbation was calculated
numerically using the function pdsolve of Maple 16, which

implements a second-order (in space and time) centered finite-
difference scheme (see Maple User Manual 2012, for details).
The convergence of the method was checked by doubling the
number of grid points. The performance of this solver, in
particular the radial structure of the sausage mode and its period
for a given wavelength, was tested by comparing with the exact
analytical results for a similar problem for a zero-β plasma slab
with symmetric Epstein profile of the density embedded in a
straight magnetic field (Cooper et al. 2003). In the cylindrical
case considered in this paper calculations were carried out in
the domain (0 < r < 50d, 0 < t < NdCA∞), where N is
sufficiently large (e.g., N = 50) for confident resolution of
several periods of oscillations.

Two typical scenarios of the evolution of the initial pertur-
bation, leaky and trapped oscillations, are shown in Figure 2.
The figure shows the time evolution of the radial structure of
the initial impulsive perturbation of the harmonic dependence
on the longitudinal coordinate, cos(kzz), for an arbitrary value
of z. It is evident that in the trapped regime the initial excitation
remains localized near the axis of the cylinder (r = 0) and is
evanescent for higher values of r. In contrast, the leaky waves
are radiated from the cylinder to the external medium as propa-
gating fast magnetoacoustic waves. However, they can be seen
in the cylinder for some time after the excitation as decaying
harmonic oscillations.

By analyzing the signal at a chosen spatial position, e.g.,
r = d, we obtain information about its time evolution and
hence the period of oscillations and the decay time. As the signal
decays quickly in the leaky regime, the preferred analytical tool
is to fit the time signal with an exponentially decaying harmonic
function using the least-squares method. In this study we restrict
our attention to the analysis of the dependence of the period on
the parameters of the cylinder and the initial excitation only.

3. PARAMETRIC STUDY

3.1. Dependence of the Sausage Mode Period on the
Longitudinal Wavelength

Figure 3 shows the dependence of the period of sausage
oscillations on the wavelength 2π/kz. In the short-wavelength
limit the period is determined by the ratio of the longitudinal
wavelength to the Alfvén speed at its center (e.g., Edwin &
Roberts 1983). In the figure, this corresponds to the straight
line P = 2π/[kzCA(r = 0)] = 2π/[kzCA∞(1 − δ)]. With
increasing wavelength, the period increases and the effective
phase speed is in the range between the Alfvén speed in the
center of the cylinder and at infinity, which is consistent with
the reasoning in Nakariakov et al. (2003). As the wavelength
increases, the growth of the period becomes less steep, gradually
approaching another asymptote, P = 2π/(kzCA∞), determined
by the Alfvén speed outside the cylinder. An important feature
of this dependence is the presence of the cutoff value. At the
cutoff, the period is equal to the ratio of the wavelength to the
value of the Alfvén speed at infinity.

For wavelengths shorter than the cutoff value, the oscillations
are trapped and the period grows with increasing wavelength.
This is consistent with the results obtained in the slab geometry
(Pascoe et al. 2007b; Inglis et al. 2009). In the weakly leaky
regime, for wavelengths slightly exceeding the cutoff value,
the period still grows with wavelength (see the right panel
of Figure 3), again in agreement with the slab case. For long
wavelengths, the dependence of the period on the wavelength
shows saturation, and the period becomes independent of
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Figure 2. Left panel: example of a trapped oscillation, obtained for the parameters kz = 1.5, δ = 0.8, and α = 6. Right panel: example of a leaky oscillation for
kz = 0.4, δ = 0.7, and α = 6. The time is measured in d/CA∞ and the radial distance in d. The vertical axis shows the radial component of the plasma velocity
measured in units of the initial amplitude A0.

Figure 3. Left panel: dependence of the period of oscillations on the wavelength 2π/kz for different values of the parameter δ that is connected with the density contrast
inside and outside the cylinder. The dotted curve shows the case of δ = 0.95, the dot-dashed curve δ = 0.9, triple dot-dashed δ = 0.8, dashed δ = 0.7, and the solid
line is for δ = 0.5. The diamonds represent the specific measurements. The value of α is 6 for all curves. The thick straight line shows the cutoff, P = 2π/(kzCA∞).
Other straight lines show the values of P = 2π/[kzCA∞(1 − δ)] for the various values of δ. The long dashed line shows where the damping time is equal to three
periods of oscillations. The period is measured in units of d/CA∞ and the wavelength in units of d. Right panel: same as in the left panel, but zoomed to show the
trapped regime.

wavelength. This effect is more pronounced for cylinders with
higher ratios of the external to internal Alfvén speeds, in other
words with a deeper potential well in the radial profile of the
Alfvén speed. This effect was not found in the slab case (Pascoe
et al. 2007b; Inglis et al. 2009) because the wavelengths in
the simulations were insufficiently long to see the saturation
of the sausage mode period. In all cases considered, for the
same values of wavelength and the Alfvén speed at infinity,
the sausage mode periods are always longer for cylinders with
lower internal Alfvén speed. In the low-β model considered,
cylinders with lower internal Alfvén speed are cylinders with
denser plasma.

The figure also contains a curve indicating where the damping
time is equal to three periods of oscillations. Above this curve,
the oscillations are of sufficiently high quality to be easily
detectable in the data. Thus, leaky sausage oscillations in long
dense loops, with a high ratio of the Alfvén speeds, can also
be of sufficiently high quality, with the damping time much
longer than the period of oscillations, to be easily detectable
in the data. We must point out that the damping considered

here is connected with the wave leakage only. In addition,
the sausage mode can be subject to damping connected with
various dissipative processes, which also reduce the quality of
the oscillations. For example, in hot and dense flaring loops
field-aligned thermal conduction (Zaitsev & Stepanov 1982)
may be such a process. This effect is not considered in our study
as our governing equations are ideal.

3.2. Dependence of the Sausage Mode Period on
the Steepness of the Transverse Profile

The left panel of Figure 4 shows the effect of the transverse
profile steepness on the sausage mode period. As discussed in
Section 3.1, for the step-function profile, in the short-wavelength
limit the period is determined by the ratio of the longitudinal
wavelength to the Alfvén speed at its center. Our calculations
confirm this result, which is correct for smooth profiles also.
With increasing wavelength, the period growth is lower than
the short-wavelength asymptote, P = 2π/[kzCA∞(1 − δ)]. For
the same wavelength, the periods of sausage oscillations in

4



The Astrophysical Journal, 761:134 (6pp), 2012 December 20 Nakariakov, Hornsey, & Melnikov

Figure 4. Left panel: dependence of the period of oscillations on the wavelength for different steepnesses of the radial profile α. The thick solid line corresponds to
α = ∞, the thin solid line to α = 8, the triple dot-dashed line to α = 6, the dashed line to α = 4, and the dot-dashed line to α = 2. The value of δ is 0.8 for all curves.
The straight lines are the cutoffs P = 2π/(kzCA∞) and P = 2π/[kzCA∞(1 − δ)]. Right panel: dependence of the period, in the long-wavelength limit, on the ratio
of external to internal Alfvén speeds for different steepnesses. The dotted curve corresponds to α = 20. The other curve styles are the same as in the left panel. The
thick solid line shows the analytical solution in the long-wavelength limit for the step-function profile. In both panels, the period is measured in units of d/CA∞ and
the wavelength in units of d.

cylinders with smoother Alfvén speed profiles, of lower indices
α, are evidently shorter. This effect can be explained as follows.
In the case of the step-function profile, the maximum of the
perturbation inside the cylinder is situated at the radial distance
where the Alfvén speed is equal to its value at the axis of
the cylinder. In cylinders with smoothly growing radial Alfvén
speed profiles, the speed at that radial distance is higher than
at the axis of the cylinder. Hence, the effective phase speed of
sausage oscillations in cylinders with smoothly growing Alfvén
speed profiles is higher. For the same longitudinal and radial
wavelengths, higher values of the effective phase speed give
shorter periods.

Also, for steeper profiles, the cutoff value of the wavelength
is found to be bigger. For comparison, we show the analytical
result obtained for a cylinder with a step-function profile that
corresponds to the limit α → ∞ in our consideration. Hence, as
one would intuitively expect, cylinders with steeper profiles are
better waveguides for fast magnetoacoustic waves of sausage
symmetry.

From the left panel of Figure 4 we find that the effect of the
radial steepness of the plasma cylinder on sausage oscillations is
rather strong. The difference in the values of the sausage mode
period between cylinders with a Gaussian (α = 2) and a step-
function (α → ∞) radial profiles is more than twice as large
for a given parameter δ.

3.3. The Long-wavelength Limit

In the right panel of Figure 4 we demonstrate the dependence
of the period in the long-wavelength limit, when it becomes
independent of the wavelength, on the Alfvén speed (or density)
contrast in the cylinder and on the steepness of its radial profile.
The period is systematically longer for higher differences
between the Alfvén speeds inside and outside the cylinder, and
for steeper profiles.

For comparison, we show the analytical result obtained for a
cylinder with a step-function profile that corresponds to the limit
α → ∞ in our consideration. This shows that in the zero-β limit
the period of a long-wavelength sausage mode of a step-function

cylinder depends linearly on the value of 1/CA0,

P ≈ 2πd/2.4CA0, (11)

(e.g., Kopylova et al. 2007), which is consistent with our
calculations.

It is also evident that for smoother profiles the sausage mode
period becomes shorter (see also the discussion in Section 3.2).
The period grows with increasing ratio CA∞/CA0, while for
smaller values of the steepness parameter α this dependence
departs from the linear relationship that appears in the α → ∞
cases. For a fixed value of the ratio of the Alfvén speeds, the
dependence of the period on the steepness parameter α is seen
to be extremely nonlinear. In particular, for CA∞/CA0 = 10,
which is a typical value for flaring loops (e.g., Nakariakov et al.
2003), we get an estimated formula

P ≈ 26.1d tanh(lg α). (12)

This is applicable to low-β profiles steeper than Gaussian,
α > 2, and is consistent with the analytical result in the α → ∞
limit.

4. CONCLUSIONS

We performed numerical simulations of the azimuthally sym-
metric initial-value problem for a field-aligned low-β plasma
cylinder with a smooth radial profile of the density (and hence
of the Alfvén speed). The plasma cylinder was excited by a
symmetric perturbation of the radial velocity of the plasma and
of a harmonic shape in the longitudinal direction. Fast magne-
toacoustic sausage modes were found to be easily excited in
both trapped and leaky regimes. The results obtained can be
summarized as follows.

1. With increasing longitudinal wavelength, the period of the
sausage oscillations always grows but this dependence is
saturated in the long-wavelength limit.

2. In the trapped regime, the period lies between two values,
corresponding to the ratio of the effective radius of the
cylinder and the Alfvén speed at its axis and at infinity, and
grows increasing wavelength.
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3. For wavelengths greater than the cutoff value, sausage
modes become leaky. In response to an impulsive excitation
in the cylinder, the leaky waves show decaying oscillatory
behavior with a period determined by the parameters of the
cylinder (the Alfvén speed contrast ratio and steepness).
Outside the cylinder, the leaky waves form a wavetrain
pattern that propagates outward at the external Alfvén
speed. As expected, deeper and steeper profiles of the
Alfvén speed correspond to more efficient trapping of
sausage modes: the cutoff value of the wavelength increases
with steepness and the density (or Alfvén speed) contrast
ratio.

4. In the leaky regime, the period is always longer than the
period of a trapped mode of shorter wavelength, and also is
longer than the cutoff value (the ratio of the wavelength and
the Alfvén speed far from the cylinder). For shallow profiles
of the density (and hence the Alfvén speed) and shorter
wavelengths, the period grows with wavelength in the
leaky regime also. In the long-wavelength limit, the period
becomes independent of wavelength and is determined by
the depth and steepness of the radial profile of the Alfvén
speed: the period is approximately inversely proportional
to the internal value of the Alfvén speed and depends on
the steepness index α as tanh(lg α).

Our findings resolve the longstanding problem of the depen-
dence or independence of the period of sausage oscillations on
wavelength. Indeed, for shorter wavelengths, even in the leaky
regime, the period grows with wavelength. In particular, for
thick flaring coronal loops with a density contrast of about 10
(and hence with an Alfvén speed contrast ratio of about 3.16)
and a length of about 5–6 times their diameters, as considered
by Nakariakov et al. (2003) and Aschwanden et al. (2004), the
period of the fundamental sausage mode indeed increases with
wavelength. But for longer wavelengths (and higher density
contrast ratios), the dependence of the period on wavelength ex-
periences saturation and becomes consistent with the analytical
results obtained by Zaitsev & Stepanov (1982) and Kopylova
et al. (2002, 2007). Thus, we infer that opposing conclusions
drawn previously concerning the dependence of the sausage
mode period on wavelength were based on different ranges of
the parameters of the problem, and hence are not contradictory.
More specifically, the regime described in Pascoe et al. (2007b)
and Inglis et al. (2009) corresponds to segments of the solid
and dashed curves near the thick solid line in Figure 3 (right
panel). On the other hand, the regime described in Zaitsev &
Stepanov (1982) and Kopylova et al. (2002, 2007) corresponds
to the saturation of the curves in the long-wavelength part of
that figure.

This result has important implications for the seismological
diagnostics of plasmas in flaring loops with the use of sausage
oscillations. In particular, the pronounced dependence of the
sausage oscillation period on the steepness of the radial profile
of the Alfvén speed provides us with a tool for probing that
parameter. The transverse steepness is vital for the assessment
of the efficiency of kink wave damping in the solar corona (see,
e.g., Goossens et al. 2012 and references therein) and of associ-

ated coronal heating. An additional advantage of seismological
techniques utilizing the sausage mode is provided by its indepen-
dence of the length of the loop in the long-wavelength regime.
This allows one to exclude this parameter from consideration
in the diagnostics of long dense loops. Moreover, Equation (12)
gives us a tool for probing the transverse profile of the Alfvén
speed and density of sausage oscillations in a coronal loop pro-
vided we are able to get independent measurements of the loop
diameter d and the Alfvén speed CA0. In particular, the latter
parameter can come from the observation of a kink oscillation
of the same loop.
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