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Problem Sheet

Problem 1 Estimate in km the distance on the Sun corresponding to one arc-
second when the Earth is in perihelion and is in 147.5 million km from the Sun
and when it is in aphelion, in 152.6 million km from the Sun.

Solution Consider a triangle with a vertex formed by the Earth (A) and the
side (|BC|), opposite to the vertex and perpendicular to the line connect-
ing the Earth and the Sun. The size of the side is to be determined. The
angle at the vertex representing the Earth is α. The height |AD| of the
triangle is RAE - the distance between the Earth and the Sun. The trian-
gle ABC is isosceles. The height meets the side |BC| at the point D and,
consequently, divides the triangle ABC to two identical triangles ABD
and ACD.

Consider the triangle ABD. The angle BAD is α/2. Consequently, the
side BD is expressed through |AD| = RAE and α as

|BD| = RAE tan(α/2),

and |BC| = 2|BD|. Substituting the figures,

|BC| = 2|BD| = 2RAE tan(α/2).

The angle α is one arcsec or, in radiants, α = π/180/60/60.

ForRAE = 147.5×106 km, BC = 715.1 km, and forRAE = 152.6×106 km,
BC = 739.8 km. The average value of the distance corresponding to one
arcsec is (739.8 + 715.1)/2 = 727.5 km.

Problem 2 Observations show that the solar constant increases by 0.1%. Link-
ing the solar constant with the Sun’s absolute luminosity, and assuming the Sun
emits as a black body, and that the solar radius does not change and the dis-
tance between the Earth and the Sun remains the same, determine the relative
increase in the temperature of the solar surface.

Solution Assuming that the solar radiation is spatially isotropic, we estimate
the Sun’s absolute luminosity as L� = f�S, where f� is the solar constant
and S is the area of a sphere of radius 1 AU.

In the first measurement we have f� = f�1 and L�1 = f�1S,

and in the second f� = 1.001f�1 and L�2 = 1.001f�1S.

On the other hand, according to the Stefan–Boltzmann law, the Sun’s
absolute luminosity is determined by the temperature of the solar surface,
T�1 and T�2, in the first and the second measurements, respectively.
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Thus, we obtain

f�1S = 4πσR2
�T

4
�1

1.001f�1S = 4πσR2
�T

4
�2.

and
T�2

T�1
= (1.001)1/4.

Problem 3 Show that the adiabatic equation can be expressed as

∂p

∂t
+ V · ∇p = −γp∇ ·V. (1.1)

How would the expression change in the incompressible case?

Solution Starting with the energy equation

ργ

γ − 1

d

dt

(
p

ργ

)
= −L, (1.2)

we observe that in the adiabatic case L = 0 it can be rewritten as

d

dt

(
p

ργ

)
= 0. (1.3)

Then, we rewrite the left hand side of this equation as

1

ργ
dp

dt
− γpρ−γ−1 dρ

dt
= 0, (1.4)

or
dp

dt
− γp

ρ

dρ

dt
= 0. (1.5)

as ρ is not zero.

Consequently, we obtain

∂p

∂t
+ (V · ∇)p− γp

ρ

[
∂ρ

∂t
+ (V · ∇)ρ

]
= 0. (1.6)

Then, we use the continuity equation to get

∂ρ

∂t
= −∇ · (ρV), (1.7)

and obtain

∂p

∂t
+ (V · ∇)p− γp

ρ
[−∇ · (ρV) + (V · ∇)ρ] = 0, (1.8)
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or
∂p

∂t
+ (V · ∇)p+

γp

ρ
[ρ∇ ·V +∇ρ ·V −V · ∇ρ] = 0, (1.9)

and, cancelling two last terms in the brackets, we arrive at

∂p

∂t
+ (V · ∇)p+ γp∇ ·V = 0. (1.10)

In the incompressible case ∇ ·V = 0 and the adiabatic equation becomes

∂p

∂t
+ (V · ∇)p = 0. (1.11)

Problem 4 Show that in the case of constant pressure, the energy equation

ργ

γ − 1

d

dt

(
p

ργ

)
= −L, (1.12)

can be rewritten as

ρcp
dT

dt
= −L, (1.13)

where cp is specific heat at constant pressure,

cp =
γ

γ − 1

kB
m
.

Solution Differentiating the left hand side of Eq. (1.12), and taking into ac-
count at p = const, we have

ργ

γ − 1

d

dt

(
p

ργ

)
=

pργ

γ − 1

dρ−γ

dt
= − γ

γ − 1

p

ρ

dρ

dt
(1.14)

Using the expression for cp, we rewrite the left hand side of Eq. (1.13)

ρcp
dT

dt
=

γρ

γ − 1

d

dt

(
kBT

m

)
. (1.15)

Using the ideal gas law,
p

ρ
=
kBT

m
, (1.16)

we have

γρ

γ − 1

d

dt

(
kBT

m

)
=

γρ

γ − 1

d

dt

(
p

ρ

)
=

γρ p

γ − 1

d

dt

(
1

ρ

)
= − γp

(γ − 1)ρ

dρ

dt
.

(1.17)
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Problem 5 There is a dimensionless number, Rm, called the magnetic Reynold’s
number.

Rm =
LV

η
, (1.18)

where V is a typical plasma velocity, L is a typical scale and η is the magnetic
diffusivity. The magnetic diffusivity is defined as

η =
1

µσ
, (1.19)

where σ is the electrical conductivity in ohm m−1.
According to Braginski, in a strongly magnetised plasma η can be estimated

as

η = 109T−3/2m2s−1

Estimate the magnetic Reynolds number in the corona, in sunspots and in
the solar wind, making appropriate assumptions about the typical spatial scales
and times.

Solution In the corona, the typical parameters are T = 106 K, V = 1000 km/s
(e.g., the Alfvén speed) and L = 1 Mm (e.g., the loop cross-section diam-
eter), which gives η = 1 m2/s and Rm ≈ 1012.

In sunspots, T ≈ 6 × 103 K, V ≈ 1 km/s (e.g., the Alfvén speed) and
L ≈ 10 Mm (e.g., the sunspot umbra diameter), giving η ≈ 2000 m2/s
and Rm ≈ 5× 106.

In the solar wind, T ≈ 105 K (e.g., near the Earth’s orbit), V ≈ 500 km/s
(the Alfvén and the sound speeds, the solar wind speed) and L = 1R� =
6.96× 108 m, giving η ≈ 30 m2/s and Rm ≈ 1013.

In all the cases, the magnetic Reynolds number is much greater than unity.

Problem 6 If the radius of a sunspot is l = 107m and η = 103m2s−1, estimate
the time of the sunspot magnetic field will diffuse away.

Solution In this answer, we take Rm � 1 and study pure magnetic diffusion
by considering

∂B

∂t
= η∇2B. (1.20)

This is a diffusion equation and so indicates that any irregularities in
an initial magnetic field will diffuse away and be smoothed out. The
field will tend towards a simpler uniform field. This process of smoothing
out variations will occur on a timescale given by the diffusion timescale,
τdiffusion ≈ L2/η,

τdiffusion ≈ 1011seconds ≈ 3, 000years.
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Problem 7 A chromospheric magnetic element has the magnetic field of 1000 G,
and the radius 100 km. Determine the radius of the coronal loop which is a con-
tinuation of this element if the field is estimated to be 15 G.

Solution The magnetic flux must be conserved. Assuming both the cross-
sections of the chromospheric magnetic element and the coronal loop to
be circular, we have

πr2B = const, (1.21)

where r is the radii of the circles.

Consequently, the magnetic field Bp at the chromospheric level and Bc in
the corona and the radii of the magnetic flux tube in the chromosphere
and in the corona, rp and rc, respectively, are connected with each other
by the relation

Bp
Bc

=

(
rc
rp

)2

. (1.22)

It gives us

rc =
√
Bp/Bc rp ≈ 800km. (1.23)

Problem 8 A neutral slab of a non-magnetized plasma of width l is confined by
two regions of a magnetized plasma penetrated by the magnetic field of strength
B0, parallel to the slab boundaries. The field reverses its direction from one side
of the slab to the other. Neglecting the magnetic diffusivity η, show that the slab
can be in equilibrium. What is the thermodynamic pressure in the slab?

Solution The magnetostatic condition of the equilibrium in the configuration
is

d

dx

(
p+

B2

2µ

)
= 0, (1.24)

which is the continuity of the total pressure across the slab (here, x is the
coordinate perpendicular to the slab). We can see that this condition is
independent of the orientation of the magnetic field lines, provided the
field is parallel to the slab boundaries and straight.

Assuming that the gas pressure is p0 and ps in the external and in the
internal media, respectively, we obtain the equilibrium condition,

p0 +
B2

2µ
= ps. (1.25)

In the case of the cold plasma (or, the low-β plasma, p0 � B2
0/2µ),

ps = B2
0/2µ.

This condition can be rewritten through the characteristic velocities. As-
suming that outside the slab, the density is ρ0 and the sound and Alfvén
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speeds are Cs0 =
√
γp0/ρ0 and CA0 = B0/

√
µρ0, and in the slab the

density is ρs and the sound speed is Css =
√
γp0/ρ0, we rewrite the equi-

librium condition as

ρ0

(
C2
s0

γ
+
C2
A0

2

)
=
ρsC

2
ss

γ
. (1.26)

(It was assumed that γ is the same inside and outside the slab).

Problem 9 Sketch the magnetic field lines for B = 1ex + 2xey, and determine
the j×B force at the point x = 0, y = 1.

Solution The field lines are parallel to the y-axis, and consequently the mag-
netic field lines are described by these two equations

dx

Bx
=
dy

By
. (1.27)

Substituting the components of the magnetic field vector, we get

dx

1
=
dy

2x
, (1.28)

or

2x dx = dy, (1.29)

which is a separable ODE. Integrating, we get∫
2x dx =

∫
dy ⇒ y = x2 + C. (1.30)

This equation describes a family of parabolae.

The Lorentz force is

FL = j×B =
1

µ
(∇×B)×B. (1.31)
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Calculating ∇×B we find

∇×B = 0ex + 0ey + 2ez, (1.32)

and, finally, for the Lorentz force,

j×B = −4ex + 2ey + 0ez. (1.33)

At the point x = 0, y = 1, the force is directed in y-direction and its
absolute value is 2.

Problem 10 Investigate the polytropic model of the solar wind. Consider a
steady spherically symmetric outflow from the surface of the Sun. Show that the
MHD equations in spherical coordinates reduce to

1

r2

d

dr
(r2ρv) = 0, (1.34)

ρv
d v

d r
= −d p

d r
− GM�ρ

r2
, (1.35)

v
d

dr

(
p

ργ

)
= 0. (1.36)

Show that the Euler equation may be rewritten as

v
d v

d r
= − γ

γ − 1

(
p

ργ

)
d

dr

(
ργ−1

)
− GM�

r2
, (1.37)

and get the expression

v2

2
+

C2
s

γ − 1
− GM�

r
= const. (1.38)

Solution The mass continuity equation gives us

r2ρv = const ≡M ⇒ ρ =
M
r2v

. (1.39)

The adiabatic equation gives us

pρ−γ = const ≡ S ⇒ p = Sργ . (1.40)

Differentiating this equation, we obtain

dp

dr
= γSργ−1 dρ

dr
. (1.41)

The Euler equation becomes

v
d v

d r
= −γSργ−2 d ρ

d r
− GM�

r2
, (1.42)
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and then

v
d v

d r
= − γS

γ − 1

d

dr

(
ργ−1

)
+GM�

d

dr

(
1

r

)
. (1.43)

Integrating the equation, we get

v2

2
+

γS
γ − 1

ργ−1 − GM�

r
= const. (1.44)

With the use of the definition of the sound speed, Cs =
√
γp/ρ, and

S = pρ−γ we obtain the expression sought.

Problem 11 Observations by GOES spacecraft show that the integrated soft
X-ray flux of a solar flare varies with time as Fsoft(t) ∝ exp(−t2/t2f ), where tf
is about 500 s. Determine the expected time dependence of the hard X-ray and
microwave fluxes generated by the flare.

Solution According to the Neupert effect, during the rise phase of the flare,
the time derivative of the soft X-ray light curve resembles the hard X-ray
curve Fhard. Hence,

Fhard ∝
d

dt
exp(−t2/t2f ) = −2t

t2f
exp(−t2/t2f ). (1.45)

You may also like to make sketches of these two curves.

As the microwave emission is produced by the same non-thermal electrons
as the hard X-ray emission, the microwave light curve would look similarly
to the hard X-ray curve

Problem 12 The vertical dependence of the absolute value of the magnetic
field in an active region is estimated as B = B0(z/a)−4, where a and B0 are
constant. Take that the density profile is given by the hydrostatic equilibrium,
ρ = ρ0 exp(−z/Λ), where ρ0 and Λ are constant. Determine the heights of the
minima of the Alfvén speed and the fast speed.

Solution The Alfvén speed CA is proportional to B/ρ1/2. Hence

CA ∝
(z
a

)−4

exp(z/2Λ). (1.46)

Looking for the extreme of the function, we get

dCA
dz

= −4

a

(z
a

)−5

exp(z/2Λ) +
1

2Λ

(z
a

)−4

exp(z/2Λ) = (1.47)

=
(z
a

)−5

exp(z/2Λ)

(
−4

a
+

1

2Λ

z

a

)
= 0. (1.48)

Hence

−4

a
+

z

2Λa
= 0, z = 8Λ. (1.49)
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This is the height of the minimum of the Alfvén speed.

The fast speed is CF =
√
C2
A + C2

s . The sound speed Cs is proportional to
the root of the temperature. As the scale height Λ is constant, hence the
temperature is constant. Hence the minimum of the fast speed coincides
with the minimum of the Alfvén speed.

Problem 13 The Extreme Ultraviolet Imager onboard SOHO spacecraft ob-
serves an off-limb loop. The emission intensity in the loop is measured to have
the scale height two times larger than outside it. Under the assumption that the
loop cross-section does not change with height, determine the ratio of the plasma
temperatures inside and outside the loop.

Solution Intensity of the optically thin emission is proportional to the density
squared multiplied to the column depth of the emitting object. Take that
the plasma in the loop and outside it is gravitationally stratified, ρe,i ∝
exp(−z/Λe,i), where the indices i and e refer to the physical parameters
inside and outside in the loop, respectively. Hence, the dependence of
the intensity of the emission from the loop of constant minor radius (and
observed off the limb, so its plane can be taken perpendicular to the line-
of-sight) on the height, is Ie,i ∝ ρ2

e,i ∝ exp(−2z/Λe,i). Thus, the intensity
is stratified with Λe,i/2. Taking that the scale height is proportional to
the temperature, obtain

Te
Ti

=
Ie
Ii

=
Λe/2

Λi/2
. (1.50)

Hence, Te = Ti/2.

Problem 14 Spectroscopic measurements show that outside the loop the plasma
is cooler and less dense than inside. What information it gives you about the
ratio of the magnetic field inside and outside the loop?

Solution Across the loop the total pressure balance should be kept:

pe +
B2
e

2µ
= pi +

B2
i

2µ
(1.51)

Using the ideal gas law, p ∝ ρT , we get that Be > Bi.

Problem 15 Imaging observations in EUV show that the global kink mode of
a coronal loop has the phase speed of 1000 km/s. The loop appears to be 100
times brighter than the background plasma. Show that in the low-β plasma the
kink speed can be estimated as Ck ≈ CAi

√
2/(1 + ρe/ρi). Using this expression

or otherwise estimate the Alfvén speed in the loop. (Here the indices i and e
refer to the physical parameters inside and outside in the loop, respectively.)

Solution Using the definitions of the Alfvén speed and the kink speed we obtain

CK =
1

µ1/2

(
B2
e +B2

i

ρe + ρi

)1/2

. (1.52)
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If β � 1, magnetic pressure dominates across the loop, hence Be ≈ Bi.
Then

CK ≈
Bi√
µρi

√
2

1 + ρe/ρi
= CAi

√
2/(1 + ρe/ρi). (1.53)

As intensity of the optically thin emission is proportional to the density,
we obtain that ρe � ρi, as the loop is much brighter than the background
plasma. Hence Ck ≈ 21/2CAi, which gives CAi ≈ 707 km/s.

Problem 16 The SOHO/SUMER spectral instrument discovered quasi-periodic
oscillations of the intensity and Doppler shift in the coronal emission line Fexix.
The period of the oscillations is in the range of 5-15 min. It is suggested that
these oscillations can be interpreted as standing sound waves in coronal loops.

(a) Consider linear sound waves propagating strictly along the magnetic field,
parallel to the z-axis, neglect dissipation and gravity, and show that the Euler
equation and continuity equations may be reduced to the equations,

ρ0
∂Ṽ

∂t
= −∂p̃

∂z
,

∂ρ̃

∂t
+ ρ0

∂Ṽ

∂z

where ρ0 is the constant equilibrium density, and the tilde denoted perturbations
of the physical value.

(b) Show that with the use of the expression p̃ = C2
s ρ̃ where Cs is the sound

speed, the above equations combine to the wave equation

∂2Ṽ

∂t2
− C2

s

∂2V

∂z2
= 0.

(c) Apply the “rigid wall” boundary conditions (V = 0) at the loop footpoints
(z = 0 and z = L) and determine the resonant frequency of the global acoustic
(also called “longitudinal”) mode of the loop.

Solution (a) The sound (or acoustic, or longitudinal, in solar plasma structures
all these names describe the same wave mode) waves do not perturb the
magnetic field, hence the only non-zero force on the right hand side of the
Euler equation is the gradient of the pressure. Consider weak perturbation
of the equilibrium given by the constant density ρ0, gas pressure p0 and
temperature T0. Linearising the equation we obtain

ρ0
∂Ṽ

∂t
= −∇p̃. (1.54)

Taking that the flows in the wave are parallel to the z-axis we get ∇ →
∂/∂z. Thus we get the first of the equations given in this subquestion.

Similarly linearising the continuity equation and considering the flows
along the z-axis only we obtain the second given equation. Here we should
also use that the equilibrium density is constant.
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(b) Differentiating the first giving equation with respect to time, and the
second given equation with respect to z and excluding ρ̃ and p̃ we get the
wave equation.

(c) Taking that in a harmonic wave all physical quantities vary in time as
e.g. cosωt, we get that

∂2Ṽ /∂t2 = −ω2V0 cosωt, (1.55)

where V0 is the amplitude of the wave. In general the amplitude is a
function of the position along the loop and should satisfy the boundary
conditions at the footpoints. Hence, the wave equations becomes

d2V0

dz2
+
ω2

C2
s

V0 = 0. (1.56)

This equations is a simple harmonic oscillator equation with the general
solution

V0 = A cos(ωz/Cs) +B sin(ωz/Cs), (1.57)

where A and B are arbitrary constants. Applying the given boundary
conditions, V = 0 at the loop footpoints (z = 0 and z = L), we get

V0 = B sin(ωz/Cs), (1.58)

where the frequency ω satisfies the condition ω = πCs/L. (Here we used
that the oscillation is the global acoustic mode that corresponds to the
spatial harmonic of the lowest frequency.)

In a more rigorous description we have to take into account that the actual
speed of the longitudinal mode of a coronal loop is not the sound speed
Cs, but the tube speed CT . Also, an interesting problem would be to
look at the phase relation between the oscillations of the velocity and the
perturbations of the density and the pressure in this mode.

Problem 17 A global coronal wave is observed to propagate in a coronal hole in
the horizontal direction. The speed of the wave at the height 50 Mm is estimated
to be 2 times higher than near the bottom of the corona. Consider the atmo-
sphere to be plane, the magnetic field vertical and uniform, and the temperature
constant, and estimate the temperature.

Solution The wave propagates in the horizontal direction, hence across the
magnetic field. In a uniform plasma (as it is stated in the problem) the only
MHD wave that propagates across the field is the fast wave, propagating
at the speed CF =

√
C2
A + C2

s . In a low-β plasma of the coronal holes, we
can neglect the sound speed in comparison with the Alfvén speed in the
expression: CF ≈ CA = B0/

√
µρ0, where B0 is the equilibrium magnetic

field and ρ0 is the equilibrium density. As the temperature is constant,
the density is exponentially stratified, ρ0(z) = ρ00 exp(−z/Λ), where Λ is
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the scale height and ρ00 is the density at the bottom of the corona. The
scale height is determined by the temperature, T0, Λ/Mm ≈ 50T0/MK.

Comparing the fast speeds at the two given heights we get

CF (z0)

CF (0)
= 2 ≈

√
ρ0(0)

ρ0(z0)
, (1.59)

where z0 = 50 Mm. Substituting in that expression ρ0(0) = ρ00 and
ρ0(z0) = ρ00 exp(−z0/Λ), we get

Λ ≈ z0

2 log 2
. (1.60)

Hence, T0 ≈ 720, 000 K.

Problem 18 The temperature of the exponentially stratified plasma in a coro-
nal hole is 1 MK. The absolute value of the magnetic field is assumed to depend

on height as B0 = B00

(
z

z0

)α
, where z0 = 50 Mm and α is a constant. Obser-

vations show that the global coronal compressive wave propagates at the heights
z = 10 Mm and z = 50 Mm at speeds 0.5 Mm s−1 and 0.6 Mm s−1, respectively.
Assuming that the wave propagates perpendicularly to the field, and the plasma
β is about 0, determine the index α.

Solution The density is stratified as
ρ = ρ0 exp(−z/Λ), with Λ(Mm) ≈ 50× T (MK) ≈ 50 Mm.

The global coronal wave is a fast magnetoacoustic wave (compressive,
perpendicular) hence its speed is CF = (C2

A(z) + C2
s )1/2.

As β ≈ 0, we get CF = CA(z).

Thus, using the observed ratio of the global wave speeds,
0.6/0.5 ≈ CF (50 Mm)/CF (10 Mm) ≈ CA(50 Mm)/CA(10 Mm),
with
CA(50 Mm)/CA(10 Mm) =
= B0(50/50)α(µρ0)−1/2 exp(50/100)/B0(10/50)α(µρ0)−1/2 exp(10/100) =
= exp(0.5)/(0.2)α exp(0.1)

Hence,
6/5 = exp(0.5)/(0.2)α exp(0.1), or α = log0.2(5 exp(0.4)/6) ≈ −0.13.


