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Magnetohydrodynamics (MHD)

Lecturer: Professor Valery Nakariakov, V.Nakariakov@warwick.ac.uk

Online lecture notes: http://goo.gl/oPgmzK

MHD describes large scale, slow dynamics of plasmas. More specifically, we can apply MHD when

1. Characteristic time � ion gyroperiod and mean free path time,

2. Characteristic scale � ion gyroradius and mean free path length,

3. Plasma velocities are not relativistic.

In MHD, the plasma is considered as an electrically conducting fluid. Governing equations are equations
of fluid dynamics and Maxwell’s equations. A self-consistent set of MHD equations connects the plasma
mass density ρ, the plasma velocity V, the thermodynamic (also called gas or kinetic) pressure P and the
magnetic field B. In strict derivation of MHD, one should neglect the motion of electrons and consider
only heavy ions.

The 1-st equation is mass continuity
∂ρ

∂t
+∇(ρV) = 0, (1)

and it states that matter is neither created or destroyed.

The 2-nd is the equation of motion of an element of the fluid,

ρ

[
∂V

∂t
+ (V∇)V

]
= −∇P + j×B, (2)

also called the Euler equation. The vector j is the electric current density which can be expressed through
the magnetic field B. Mind that on the lefthand side it is the total derivative, d/dt.

The 3-rd equation is the energy equation, which in the simplest adiabatic case has the form

d

dt

(
P

ργ

)
= 0, (3)

where γ is the ratio of specific heats Cp/CV , and is normally taken as 5/3.

The temperature T of the plasma can be determined from the density ρ and the thermodynamic pressure
p, using the state equation (e.g. the ideal gas law). For example, in a pure hydrogen plasma, this equation
is

P = 2
kB
mp

ρT, (4)

where mp is the mass of a proton and kB is Boltzmann’s constant.

Now, let us derive the equation for the magnetic field using Maxwell’s equations. Start with Ohm’s law,

j = σE′, (5)

where σ is electrical conductivity (the physical quantity inverse to the resistivity) and E′ is the electric
field experienced by the plasma (fluid) element in its rest frame. When the plasma is moving (with
respect to the external magnetic field) at the velocity V, applying the Lorentz transformation we obtain

E′ = E + V ×B. (6)
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Now, Eq. (5) can be re-written as
1

σ
j = E + V ×B. (7)

In the case of perfect conductivity, σ →∞, we have

E = −V ×B. (8)

Calculating the curl of the electric field E and using one of Maxwell’s equation,

∇×E = −∂B

∂t
, (9)

we can exclude the electric field and obtain

∂B

∂t
= ∇× (V ×B), (10)

which is the 4-th MHD equation — the “induction equation”. In particular, this equation describes the
phenomenon of magnetic dynamo.

To close the set of MHD equations, we have to express the current density j through the magnetic field
B. Consider the other Maxwell’s equation,

∇×B− 1

c2
∂E

∂t
= µ0j (11)

From Ohm’s law, we had E = −V × B. Consequently, we can estimate the electric field as E ∼ V0B,
where V0 is a characteristic speed of the process. Consider the ratio of two terms in Eq. (11):

∇×B and
1

c2
∂E

∂t
.

The first term is proportional to B/l0, where l0 is a characteristic scale of the process, the second to
E/c2t0, where t0 is a characteristic time of the process, V0 = l0/t0. When the process is not relativistic,
V0 � c, the first term is very much greater than the second, and we have

j =
1

µ0
∇×B (12)

In addition, the magnetic field B must satisfy the condition ∇.B = 0.



KHU — Valery Nakariakov — Introduction to MHD 3

Thus, the closed set of MHD equations is

∂ρ

∂t
+∇(ρV) = 0, Mass Continuity Eq.,

d

d t

(
P

ργ

)
= 0, Energy Eq.,

ρ
d V

d t
= −∇P − 1

µ0
B× (∇×B), Euler’s Eq.,

∂B

∂t
= ∇× (V ×B), Induction Eq..

The equations are ideal, which means that all dissipative processes (finite viscosity, electrical resistivity
and thermal conductivity) were neglected.

Also, the magnetic field is subject to the condition

∇ ·B = 0. (13)
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The Nobel Prize in Physics 1970 was given to Hannes Olof Gösta Alfvén “for fundamental work and
discoveries in magnetohydrodynamics with fruitful applications in different parts of plasma physics”.

MHD is applicable from nanometre (10−9 m) scales in, e.g. physics of semi-conductors, to galactic
(1021 m) scales, e.g. galactic arms.
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Example: the applicability of MHD to the solar corona:

1. Speeds are much less than the speed of light.
(In the solar corona: V < a few thousand km/s).

2. Characteristic times are much longer than the gyroperiod and the plasma period.
In the solar corona: fMHD < 1 Hz,
for fgyro = 1.52× 103 ×B(G) ≈ 1.52× 104 Hz

and fplasma = 9× n1/2e (m−3) ≈ 2× 108 Hz,
(for B = 10 G and ne = 5× 1014 m−3).

3. Characteristic times are much longer than the collision times. Characteristic spatial scales are larger
than the mean free path length

λ� lii(m) ≈ 7.2× 107T 2(K)

n(m−3)
.

For the typical conditions of the lower corona, lii ≈ 105 − 106 m.

4. Similar estimations should be made for the spatial scales, and the conditions of applicability are
well satisfied too.
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MHD Equilibrium

The static equilibrium conditions are:

V = 0,
∂

∂t
= 0. (14)

These conditions identically satisfy the continuity, energy and induction equations.

From Euler’s equation we obtain the condition

−∇P − 1

µ0
B× (∇×B) = 0, (15)

which is called the equation of magnetostatics. This equation should be supplemented with the condition
∇.B = 0.

Eq. (15) can be re-written as

−∇
(
P +

B2

2µ0

)
+

1

µ0
(B.∇)B = 0. (16)

The first term can be considered as the gradient of total pressure.
The total pressure consists of two terms, the gas (or thermodynamic) pressure P , and the magnetic pressure

B2/2µ0.
The second term is magnetic tension. The force is directed anti-parallel to the radius of the magnetic
field line curvature.
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Plasma-β
Compare the terms in the magnetostatic equation,

−∇P +
1

µ0
B× (∇×B) = 0. (17)

We have that

∇P ≈ P

λ
and

1

µ0
B× (∇×B) ≈ B2

µ0λ
, (18)

where λ is a characteristic scale of the problem.

The ratio of the gas pressure gradient term and the Lorentz force is known as the plasma-β,

β ≡ gas pressure

magnetic pressure
=

P

B2/2µ0
. (19)

Plasma-β can be estimated by the formula,

β = 3.5× 10−21nT B−2, (20)

where n is in m−3, T in K and B in G.

For example, in the solar corona, T = 106 K, n = 1014 m−3, B = 10 G, and β = 3.5× 10−3.

In photospheric magnetic flux tubes, T = 6× 103 K, n = 1023 m−3, B = 1000 G, and β = 2.

In the solar wind near the Earth’s orbit, T = 2× 105 K, n = 107 m−3, B = 6× 10−5 G, and β = 2.
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Example: Sunspots.

Sunspots appear as dark spots on the surface of the Sun. They typically last for several days, although
very large ones may live for several weeks. Sunspots are magnetic regions on the Sun with magnetic field
strengths thousands of times stronger than the Earth’s magnetic field.

Consider a sunspot as a vertical magnetic flux tube. The magnetic field B0 is vertical. The kinetic
pressure is P0 and PE inside and outside, respectively. The plasma temperature is T0 inside the sunspot
and TE outside.
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Sunspots are long-durational objects with no fast flows of plasma. So, it is naturally to describe their
structure in terms of magnetostatics. As the magnetic field is not bent, the last term in Eq. (15),
responsible for the magnetic tension, is zero. The equilibrium condition becomes

∇
(
P +

B2

2µ0

)
= 0, (21)

This means that the total pressure must be equal inside and outside the sunspot,

PE = P0 +
B2

0

2µ0
. (22)

Let us assume that the density of the plasmas inside and outside the sunspot are equal, ρ0 = ρE . Now,
we divide Eq. (22) by ρ0,
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PE
ρE

=
P0

ρ0
+

B2
0

2µ0ρ0
. (23)

Using the state equations,

PE = 2
kB
mi

ρETE , P0 = 2
kB
mi

ρ0T0, (24)

we obtain from Eq. (23)
2kB
mi

TE =
2kB
mi

T0 +
B2

0

2µ0ρ0
. (25)

This gives us
T0
TE

= 1− B2
0

2µ0

mi

2kBρETE
= 1− B2

0

2µ0PE
(26)

Thus, in a sunspot, TE > T0. Indeed, temperatures in the dark centers of sunspots drop to about 3700
K, compared to 5700 K for the surrounding photosphere. This is why sunspots are seen to be darker
than the surrounding.
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MHD Waves

Ideal MHD connects the magnetic field B, plasma velocity V, pressure P and density ρ:

∂ρ

∂t
+∇(ρV) = 0, (27)

ρ

[
∂V

∂t
+ (V∇)V

]
= −∇P − 1

µ0
B× (∇×B), (28)

∂B

∂t
= ∇× (V ×B), (29)

d

dt

(
P

ργ

)
= 0. (30)

Consider an equilibrium, described by the conditions

∂

∂t
= 0, V = 0, (31)

which gives us the magnetostatic equation

∇P0 +
1

µ0
B0 × (∇×B0) = 0. (32)

The simplest possible solution of the magnetostatic equation is a uniform plasma:

P0 = const, B0 = const, (33)

and the equilibrium magnetic field B0 is straight.

Consider small perturbations of the equilibrium state:

B = B0 + B1(r, t)
V = 0 + V1(r, t)
P = P0 + P1(r, t)
ρ = ρ0 + ρ1(r, t)

 (34)

Substitute these expressions into the MHD equations (27)–(30). Neglecting terms which contain a product
of two or more values with indices “1”, we obtain the set of MHD equations, linearized near the equilibrium
(33):

∂ρ1
∂t

+ ρ0∇V1 = 0, (35)

ρ0
∂V1

∂t
= −∇P1 −

1

µ0
B0 × (∇×B1), (36)

∂P1

∂t
− γP0

ρ0

∂ρ1
∂t

= 0, (37)

∂B1

∂t
= ∇× (V1 ×B0), (38)

Let the equilibrium magnetic field B0 be in xz-plane,

B0 = B0 sinα ex +B0 cosα ez, (39)

where α is the angle between the magnetic field and the unit vector ez:
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Consider plane waves, propagating along ez, so that all perturbed quantities are proportional to exp(ikz−
iωt). (This gives us ∂/∂t = −iω and ∇ = ik.) Projecting equations (35)–(38) onto the axes, we have

−iωρ1 + ikρ0Vz1 = 0, (40)

−iωρ0Vx1 −
ikB0 cosα

µ0
Bx1 = 0, (41)

−iωρ0Vy1 −
ikB0 cosα

µ0
By1 = 0, (42)

−iωρ0Vz1 + ikP1 +
ikB0 sinα

µ0
Bx1 = 0, (43)

−iωBx1 + ikB0 sinαVz1 − ikB0 cosαVx1 = 0, (44)

−iωBy1 − ikB0 cosαVy1 = 0, (45)

−iωBz1 = 0, (46)

−iωP1 +
iωγP0

ρ0
ρ1 = 0. (47)

The set of equations (40)–(47) splits into two partial sub-sets. The first one is formed by equations (42)
and (45), describing By1 and Vy1. The consistency condition gives us

ω2 − C2
A cos2 αk2 = 0, (48)

where CA ≡ B0/(µ0ρ0)1/2 is the Alfvén speed. This is dispersion relations for Alfvén waves.

Main properties of Alfvén waves:

• they are transverse, V ⊥ k;

• Alfvén waves can be linearly polarised, elliptically polarised, or circularly polarised;

• they are essentially incompressive: they do not modify the density of the plasma, ∇.V = 0;

• their group speed is always parallel to the magnetic field, Vgroup ‖ B0; while the phase speed can
be oblique to the field, Vphase may be 6‖ B0; Vphase 6‖ Vgroup;

• the absolute value of the group speed equals the Alfvén speed, CA.
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The second partial set of equations is formed by equations (40), (41), (43), (44) and (47) and describes
variables Vx1, Vz1, Bx1, P1 and ρ1. The consistency condition gives us

(ω2 − C2
A cos2 α k2)(ω2 − C2

sk
2)− C2

A sin2 αω2k2 = 0, (49)

where Cs ≡ (γp0/ρ0)1/2 is the sound (or acoustic) speed.

Equation (49) is bi-quadratic with respect to ω and consequently has two pairs of roots. They correspond
to fast and slow magnetoacoustic waves.

Main properties of magnetoacoustic waves:

• they are longitudinal, V‖k;

• they are essentially compressive: they always perturb the density of the plasma;

• the fast wave can propagate in the direction perpendicular to the field at the speeds Vphase and

Vgroup equal to the fast speed, VF ≡
(
C2
A + C2

s

)1/2
;

• the fast wave cannot propagate along the field — if k‖B0 the fast wave becomes incompressive and
degenerates to the Alfvén wave;

• in the β < 1 case, the slow wave propagates along the field at the speed Cs and degenerates to the
usual acoustic wave; the slow wave cannot propagate across the field;

• in the slow wave the density and the absolute value of the magnetic field are perturbed in anti-phase,
while in the fast wave in phase.

Polar plots for phase speeds (ω/k) and group speeds (dω/dk) for β < 1:
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Non-Ideal MHD Equations
We can account for non-ideal (e.g. dissipative) effects. In this case the set of MHD equations become

ρ
∂V

∂t
+ ρ(V · ∇)V = −∇P − 1

µ
B×∇×B + F , (50)

∂B

∂t
= ∇× (V ×B) + η∇2B, (51)

∂ρ

∂t
+∇ · (ρV) = 0, (52)

ργ

γ − 1

d

dt

(
p

ργ

)
= −L. (53)

The parameter η is the magnetic diffusivity, connected with the electrical conductivity σ,

η = 1/(µσ). (54)

The term F is an external force acting on a unit of volume of the plasma. For example, if we take into
account the gravity and the viscosity,

F = −ρg + νρ

[
∇2V +

1

3
∇(∇ ·V)

]
, (55)

where g is the gravity acceleration and ν is the coefficient of kinematic viscosity (assumed uniform).

Incompressible limit. Consider the situation when ρ = ρ0 = const. Then, from the continuity Eq.,

0 =
∂ρ0
∂t

= −∇ · (ρ0V) = 0, (56)

ρ0∇ · (V) = 0, ∇ · (V) = 0 (57)

Motions which satisfy this condition (e.g. Alfvén waves) are incompressible.
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The ratio of specific heats γ is usually about 5/3. In some cases, isothermal (T = const) processes can
be considered, with γ = 1.

The righthand side of equation (53) contains the energy loss/gain function L, discussed later. When
L = 0, the equation reduces to the adiabatic equation.

In addition, the electric current density j, the electric field E and the temperature T can be determined
from the equations:

j = ∇×B/µ, (58)

E = −V ×B + j/σ, (59)

P =
kB
m
ρT, (60)

where kB is the Boltzmann constant and m is the mean particle mass.

In equation (60), the expression kB/m = R̃/µ̃, where R̃ and µ̃ = m/mp are the gas constant and the
mean atomic weight (the average mass per particle in units of the proton mass), is often used.

If there are only protons and electrons, ne = np,

m =
neme +mpnp

ne + np
≈ mpnp
ne + np

= 0.5mp, (61)

c.f. Eq. (4).

For example, in the solar corona the presence of He (alpha-particles) and other elements (in addition to
H) makes m/mp = µ̃ ≈ 0.6.

The total number of particles per unit volume

n =
np + ne ≈ 2ne
np + ne + nother ≈ 1.9ne

. (62)

Consequently,
ρ = npmp + neme + nothermother ≈ nemp (63)

The adiabatic equation ((53) with L = 0) can also be taken in several different forms, e.g.

dp

dt
− γp

ρ

dρ

dt
= 0 (64)

(Exercise: Derive it from equation (53))
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Non-adiabatic effects in the energy equations

The right hand side of equation (53) is the energy loss/gain function,

L = ∇ · q + Lr − j2/σ −H, (65)

where

q is the heat flux due to the thermal conduction, q = −κ∇T , with κ being the thermal conductivity.

Lr is the radiation function, in the optically thick plasma of the solar interior it is Lr = −κr∇2T , with
κr being the coefficient of radiative conductivity;

j2/σ is the ohmic dissipation; and

H represents the sum of all the other heating sources.

In rarified and magnetised plasmas,
q = −κ̂∇T, (66)

where κ̂ is the thermal conduction tensor. In this case

∇ · q = ∇|| · (κ||∇||T ) +∇⊥ · (κ⊥∇⊥T ). (67)

Thermal conduction along the field is primarily by electrons,

κ|| = 10−11T 5/2Wm−1K−1. (68)

Conduction perpendicular to the field is mainly by protons, and

κ⊥
κ||

= 2× 10−31
n2

T 3B2
, (69)

where the field is in teslas.

In strongly magnetised plasmas, thermal conduction across the magnetic field is dramatically depressed.

Estimate the ratio for the coronal parameters, n = 1015 m−3, T = 106 K and B = 10 G = 10−3 T.

In the optically thin part of the solar atmosphere (where T ≥ 2× 104 K)
(what are the parts of the atmosphere where this condition is fulfilled?)
the radiation function takes the form

Lr = nenHQ(T ) ≈ n2eQ(T ), (70)

where ne is the electron concentration and nH is the hydrogen concentration, (ne ≈ nH) and Q(T ) is a
function of temperature T . Often, the function can be approximated as χTα, where χ and α are constant:
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When the plasma pressure P remains constant (isobaric processes), a convenient alternative form of
equation (53) is

ρcp
dT

dt
= −L, (71)

where cp is specific heat at constant pressure,

cp =
γ

γ − 1

kB
m
.

4. Energetics

In MHD, three different types of energy are considered:

• internal energy ↔ entropy,

• EM energy ↔ Poynting flux,

• mechanical energy ↔ kinetic energy

increase
in entropy

= heat flux− radiation + heat sources

inflow of EM
energy E×H

=
electrical

energy E · j +
a rise in magnetic

energy B2/2µ

ρ
d

dt

(
V 2

2

)
= −V · ∇P + V · j×B + V · F
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Consequences of the Induction Equation

Consider the induction equation with the diffusive term

∂B

∂t
= ∇× (V ×B) + η∇2B (72)

Compare the right hand side terms.

Let the plasma have the typical speed V0 and the length scale l0, then

“convective term”: ∇× (V ×B) ≈ V0B

l0
, (73)

“diffusive term”: η∇2B =
ηB

l20
. (74)

Their ratio is
V0B

l0

l20
ηB

=
l0V0
η

= Rm. (75)

This dimensionless parameter Rm is called the magnetic Reynolds number.
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1. Diffusive Limit

If Rm � 1, the convective term can be neglected with respect to the diffusive term, and the induction
equation becomes

∂B

∂t
= η∇2B. (76)

This is the diffusion equation. It implies that field variations on a length scale l0 are destroyed over a
diffusion time scale,

τd = l20/η. (77)

The smaller the length-scale, the faster the magnetic field diffuses away.

In a fully-ionised plasma,
τd ≈ 10−9l20T

3/2, (78)

where the length scale is in m and the temperature in in K.

E.g., in the solar corona, T = 106 K, and the typical length scale is 1 Mm= 106 m, thus

τd ≈ 10−91012109 = 1012 s = 30, 000 years (!!) (79)

Since solar flares represent a release of magnetic energy over a time-scale of 100 or 1000 s, it seems that
a length-scale as small as

τd = 102 ≈ 10−9l20109 → l0 ≈ 10− 100 m (80)

Example: Consider the diffusion of a unidirectional magnetic field B = B(x, t)ey with the initial step-
function profile:

B(x, 0) =

{
+B0, x > 0
−B0, x < 0

(81)

(“a current sheet”, e.g. in helmet streamers).
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(Image of the corona taken during a solar eclipse. Several helmet streamers are well seen.)

Suppose the field remains unidirectional. Then Eq. (76) becomes

∂B

∂t
= η

∂2B

∂x2
. (82)

The PDE should be supplemented by initial conditions (81) and the boundary conditions, e.g.

B(±∞, t) = ±B0. (83)

The solution which satisfies the boundary conditions is

B(x, t) = B0 erf(ξ), (84)

where ξ = x/(4ηt)1/2, and

erf(ξ) =
2

π1/2

∫ ξ

0

exp(−u2) du, (85)

is the error function.

(Here, there are three curves shown, corresponding to t = 0, t = 1 and t = 2. Mark the curves in Figure
with the appropriate value of t.)

The gradient of the magnetic field causes the current:

j =
1

µ
∇×B ⇒ jz =

1

µ

dB

dx
(86)

What happens with the other components of the current density? Draw the structure of the current in
Figure for different times.

The width of the current sheet behaves like l = 4(ηt)1/2. Notice that the field density at large distances
remains constant in time. The field lines in the sheet are not moving outwards, since those at large
distances are unaffected. Rather, the field in the sheet is diffusing away, and so it is being annihilated.
(The magnetic energy is being converted into heat by ohmic dissipation).
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2. Perfectly Conducting Limit

When Rm � 1, the induction equation reduces to

∂B

∂t
= ∇× (V ×B) (87)

In this large magnetic Reynolds number limit, the frozen-flux (Alfvén’s) theorem holds:

In a perfectly conducting plasma, magnetic field lines behave as if they move with the
plasma.

In other words:

The total amount of magnetic flux passing through any closed circuit moving with the local
fluid velocity is constant in time

Proof: We show the above statement by proving that the time rate of change of the magnetic flux through
such a circuit is zero.

Consider a closed curve C bounding a surface S which is moving with the plasma.

The magnetic flux of the field B through the elementary area A is

B · n dA,

where dA is a differential of area enclosed within the circuit and n is the unit vector normal to A.

The flux through a circuit may change if

either the field strength at a point enclosed by the circuit changes

or the motion of the boundary results in change in the amount of the field enclosed.

The first type of change is given by
∂B

∂t
· n dA. (88)

The total change is given by integrating over the entire surface S.

The second type of change can be visualised by imagining a piece dl of boundary moving at velocity V
past a magnetic field B. The change in the amount of flux enclosed within the area bounded by the curve
due to the motion of dl is

B · (V × dl). (89)

Using the vector identity
a · (b× c) = (a× b) · c,

we can rewrite Eq. (89) as

B · (V × dl) = (B×V) · dl) = −(V ×B) · dl. (90)

The total change in flux through the circuit due to motion of the contour C, is obtained by integrating
the above expression around C.

Combining both the effects, the total change of the flux through a circuit:

d

dt

∫
S

B · n dA =

∫
S

∂B

∂t
· ndA−

∮
C

(V ×B) · dl. (91)

We can then use the Stokes theorem,∫
S

(∇×Q) · n dA =

∮
C

Q · dl,
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and get ∮
C

(V ×B) · dl =

∫
S

[∇× (V ×B)] · n dA. (92)

Consequently, Eq. (91) becomes

d

dt

∫
S

B · n dA =

∫
S

[
∂B

∂t
−∇× (V ×B)

]
· n dA, (93)

and, together with the induction equation, it gives

d

dt

∫
S

B · n dA = 0. (94)

Thus, the magnetic flux passing through the circuit C is constant.

Consequently, the magnetic field lines are frozen into the plasma: plasma can move freely along field
lines, but, in motion perpendicular to them, either the field lines are dragged with the plasma or the field
lines push the plasma.

Alfvén’s Theorem prohibits reconnection of magnetic field lines.
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Magnetic reconnection
Consider a current sheet. In its very vicinity the resistivity can be taken as finite.

The plasma diffuses into the current layer at some relatively small inflow velocity Vi. (More specifically:
there is the total pressure balance across the current sheet; in the vicinity of the current sheet there are
large gradients of the field and hence diffusion; the total pressure outside the current sheet is getting
higher, resulting into a pressure gradient forces, moving field lines toward the current sheet from the top
and bottom).

In the current sheet the oppositely directed magnetic field lines get reconnected, resulting into the mag-
netic tension forces in the horizontal direction. These forces drive the frozen-in plasma — the sling shot
effect.

The plasma is accelerated along the layer (in the sketch in the horizontal direction), and eventually
expelled from its ends at some relatively large velocity Vo, which can be shown to be about the Alfvén
speed CA. The (incompressible) mass conservation condition gives us LVi = lVo, hence Vi � Vo.

It is the Sweet–Parker stationary reconnection.
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Energy conversion in magnetic reconnection:

• The input energy is the energy stored in the magnetic field.

• Change of B because of reconnection generates steep gradients of B, hence increase in ∇×B. It
leads to the increase in the current density j.

• As the diffusivity is not negligible in the reconnection region (in the vicinity of the current sheet),
the current is subject to Ohmic dissipation, hence increase in internal energy of the plasma.

• Also, the slingshot effect generates bulk flows of plasma, hence increase in its kinetic energy.

• The electric field E = −V ×B accelerates plasma particles: non-thermal high energy particles.

There is however a problem: for typical parameters of the corona, the characteristic time of energy release
by magnetic reconnection is about a few tens of days. This is too long to explain dynamical phenomena
(e.g. flares and CME) in the solar atmosphere. The problem of “fast reconnection” is one of the key
problems of modern solar and space plasma physics. Possible solutions: anomalous resistivity, non-MHD
processes...
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Hydrostatic Pressure Balance

The magnetohydrostatic equilibrium condition is

0 = −∇P + j×B + ρg, (95)

coupled with
∇ ·B = 0, (96)

µj = ∇×B, (97)

P =
ρRT

µ̃
, (98)

and T satisfies an energy equation.

Before investigating any specific phenomena we need to consider the basic pressure balance when the
magnetic field does not exert any force.

Consider the simple case of a uniform vertical magnetic field. For simplicity we assume that the temper-
ature is known.

Thus,

B = B0ẑ, g = −gẑ.

Hence, j = 0 and there is no Lorentz force.

In addition, the pressure is P = P (z) and (95) becomes

dP

dz
= −ρ(z)g = − gµ̃

RT (z)
P (z) = −P (z)

Λ(z)
, (99)

where

Λ(z) =
RT (z)

µ̃g
, (100)

is the pressure scale height.

Eq. (99) is a separable, first order ordinary differential equation so that

dP

P
= − 1

Λ(z)
dz,

and integrating gives
logP = −n(z) + logP (0),

where

n(z) =

∫ z

0

1

Λ(u)
du,

is the ‘integrated number’ of scale heights between the arbitrary level at which the pressure is P (0) and
the height z. Therefore,

p(z) = p(0) exp [−n(z)]. (101)

If the atmosphere is isothermal so that both T and Λ are constant, then (101) gives

P (z) = P (0) exp (−z/Λ), ρ(z) = ρ(0) exp [−z/Λ], (102)
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so that the pressure decreases exponentially on a typical length scale given by the pressure scale height
Λ:

(Here, three curves are shown, corresponding to Λ = 1, Λ = 2 and Λ = 3. Mark the curves in the figure
with the appropriate value of Λ.)

Consider typical values of the pressure scale height. Taking the solar gravitational constant as g =
274 ms−2 and R = 8.3× 103 J K−1 mol−1 then Λ takes the following values:

1. In the photosphere T = 6, 000 K and µ̃ = 1.3 so that

Λ =
RT

µ̃g
=

8.3× 103 × 6× 103

1.3× 274
= 140 km.

2. In the corona T > 106 K and µ̃ = 0.6 giving

Λ =
RT

µ̃g
=

8.3× 103T

0.5× 274
≈ 50.5T m.

Thus, the scale height can be estimated as

Λ/Mm ≈ 50T/MK.

E.g., the scale height of the corona observed by TRACE-171Å (the temperature is 1 MK) is 50 Mm.
(This figure is comparable to the size of a loop).
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Example: Density stratification in a polar plume.

Polar plumes are cool, dense, linear, magnetically open structures that arise from predominantly
unipolar magnetic footpoints in the solar polar coronal holes.

The solid line shows the hydrostatic solution for T = 106 K.

3. In the Earth’s atmosphere T = 300 K, g = 9.81 ms−1, µ̃ = 29 in air and so

Λ =
8.3× 300

29× 9.81
= 8.7 km.

Note that the height of Mount Everest is about 8.8 km. Thus, the air pressure at the summit of Everest
is about 1/e = 0.37 that of the air pressure at sea level.
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Thermal equilibrium
In more realistic models, the hydrostatic equilibrium should be supplemented with the thermal equilibrium
between thermal conduction, radiation and heating (see Eq. (65)):

d

ds

(
κ0T

5/2 dT

ds

)
= χn2eT

−1/2 −H, (103)

where s is the coordinate along the magnetic field.

In particular, for short coronal loops, with the major radius shorter than the scale height of the stratifi-
cation, (RL < Λ) the loop pressure p(s) can be taken to be constant,

P (s) = P0 (104)

and, consequently, from the state equation, the density is

ne(s) = P0/2kBT (s). (105)

Assuming that all three terms in Eq. (103) are of the same order, we get, comparing the terms on RHS
of Eq. (103),

H ≈ P 2
0 χT

−5/2

4k2B
. (106)

and the LHS and RHS terms,
κ0T

7/2

R2
L

≈ P 2
0 χT

−5/2

4k2B
, (107)

the scaling law:
T ∝ (P0RL)1/3. (108)

This scaling law is called RTV (after Rosner, Tucker & Vaiana) was, as the zero-order approximation,
confirmed observationally in the soft X-ray and EUV band:
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Hydrostatic equilibrium at larger heights

(Image of the solar corona taken with a coronograph).

Determination of the density stratification on larger scale, e.g. in coronal holes, requires taking into
account the effects of the spherical geometry and the change of the gravitational acceleration with height,

g(r) =
GM�
r2

(109)

where r is the radial coordinate.

The magnetic field is assumed to be strictly radial,

B =
B0R

2
�

r2
. (110)

In the following we consider spherically symmetric isothermal (T = const) atmosphere.

Again, there is no the Lorenz force. The magnetostatic equation is similar to (99),

dP (r)

dr
= −ρ(r)g(r), (111)

which, with the use of the state equation,

P =
ρRT

µ̃

can be rewritten as
dρ(r)

dr
= −

R2
�
r2

1

Λ
ρ(r). (112)

Here, the scale height Λ was defined by substituting the value of the gravitational acceleration g(R�) =
GM�/R

2
� at the solar surface into Eq. (100).
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ODE (112) is separable, ∫
dρ

ρ
= −

∫
R2
�

Λr2
dr (113)

with the solution

ρ(r) = C exp

(
R2
�

Λr

)
. (114)

Determining the constant C from the condition ρ(R�) = ρ0, we obtain

ρ(r) = ρ0 exp

[
R�
Λ

(
R�
r
− 1

)]
. (115)

This solution coincides well with the observationally determined empirical dependence. E.g., the pro-
file of plasma concentration in polar coronal holes determined with SPARTAN 201-01 (from Fisher &
Guhathakurta 1995):

An empirical model was constructed by Esser et al. (1999),

ne =
2.494× 106

r3.76
+

1.034× 107

r9.64
+

3.711× 108

r16.86
, (116)

which corresponds to the theoretical dependence reasonably well.

Notice that Eq. (115) gives infinite density at r → ∞, so can be applied at the heights below 5–6 R�
only. At larger distances from the Sun steady flows of plasma (the solar wind) must be accounted for.
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Potential and Force-Free Fields
Magnetic Field Lines
If the magnetic field B = (Bx, By, Bz) is known as a function of position, then the magnetic lines of force,
called the magnetic field lines, are defined by

dx

Bx
=
dy

By
=
dz

Bz
=
ds

B
. (117)

The solution to (117), a system of ordinary differential equations, defines a curve in three dimensional
space that is the field line. In parametric form, in terms of the parameter s, the field lines satisfy

dx

ds
=
Bx
B
,

dy

ds
=
By
B
,

dz

ds
=
Bz
B
, (118)

where the parameter s is the distance along the field line.

Example: Consider the field given by B = B0(y/a, x/a, 0), where B0 and a are constants, calculate the
equations of the field lines. Using (117), the field lines are given by

dx

(y/a)
=

dy

(x/a)
, ⇒ xdx = ydy,

and so
x2 − y2 = ±c2 = constant.

Therefore the field lines are hyperbolae.

–4

–2

0

2

4

y

–4 –2 2 4x

This is a neutral point or an X-point.
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Potential Fields
If β � 1, we may also neglect the gas pressure (with respect to the magnetic pressure!) magnetostatic
equation (95) reduces to the low β plasma approximation

j×B = 0 (119)

and the magnetic field is called force-free.

A simple solution to (119) is given by assuming that the current density j is identically zero so that the
magnetic field is potential. Thus, the field must satisfy the conditions

j =
1

µ0
∇×B = 0, (120)

and
∇ ·B = 0, (121)

The most general solution to (120) is
B = ∇φ, (122)

where φ is the scalar magnetic potential.

Substituting (122) into condition (121), we get

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0, (123)

which is Laplace’s equation. It is commonly used for the determination of the basic geometry of the
magnetic field. Eq. (123).

Example: Potential extrapolation of the coronal field Solving it we obtain the magnetic field
geometry e.g. in the corona. Measurements of the magnetic field at the photosphere provide us with a
boundary condition for



KHU — Valery Nakariakov — Introduction to MHD 36

However, potential fields do not have electric currents that are necessary for plasma heating and impulsive
energy releases, e.g. flares and coronal mass ejections (CME).

Force-Free Fields
Again, we assume that λ � Λ and β � 1 and we again have the force-free field equation (119). If the
magnetic field is not potential (|j| 6= 0) then the general solution is that the current must be parallel to
the magnetic field. Thus,

µ0j = αB, ⇒ ∇×B = αB, (124)

for some scalar function α which may be a function of position and time.

Property of α: The scalar function α(r) is not completely arbitrary since B must satisfy the conditions:

• ∇ ·B = 0 and

• the vector identity ∇ · (∇×B) = 0.

So using (124) we obtain

∇ · (∇×B) = ∇ · (αB)

= α∇ ·B + B · ∇α.

Hence,
B · ∇α = 0, (125)

so that α is constant along each field line, although it may vary from field line to field line. If α = 0,
then the magnetic field reduces to the potential case already considered.

If α is constant everywhere then

∇×B = αB ⇒ ∇× (∇×B) = ∇× (αB) = α∇×B = α2B.

However, ∇×∇×B = ∇(∇ ·B)−∇2B and so

−∇2B = α2B. (126)

This is a Helmholtz equation.

If α is a function of position, i.e. α(r), then we have

∇× (∇×B) = ∇× (αB) = α∇×B +∇α×B

= α2B +∇α×B

Hence, we get two coupled equations for B and α, namely

∇2B + α2B = B×∇α, (127)

and
B · ∇α = 0. (128)

They are usually solved numerically.

Example: Nonlinear Force-Free (NLFF) extrapolation of photospheric sources:
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Example: Comparison of potential and NLFF extrapolations
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Parker’s solar wind model
The corona cannot remain in static equilibrium but is continually expanding. The continual expansion
is called the solar wind.

Assume that the expanding plasma of the solar wind is isothermal and steady.

The governing equations can be obtained from the MHD equations setting ∂/∂t = 0:

∇ · (ρV) = 0, (129)

ρ(V · ∇)V = −∇P + ρg, (130)

P = ρRT, (131)

and
T = T0. (132)

Also, we restrict our attention to the spherically symmetric solution. The velocity V is taken as purely
radial, V = ver and the gravitational acceleration g = ger obeys the inverse square law,

g = −GM�
r2

. (133)

The temperature and, consequently, the sound speed

C2
s = p/ρ, (134)

are constant.

We are interested, for simplicity, in the dependence on the r coordinate only. Thus, the expressions for
the differential operators in the spherical coordinates are

∇a =
da

dr
, ∇ ·A =

1

r2
d

dr

(
r2Ar

)
.

In the spherical geometry, the governing equations describing and the radially symmetric values are

ρv
d v

d r
= −dP

d r
− GM�ρ

r2
, (135)

d

dr
(r2ρv) = 0 ⇒ r2ρv = const. (136)

Substituting (134) into (135) we exclude the pressure from the equations,

ρv
d v

d r
= −C2

s

d ρ

d r
− GM�ρ

r2
, (137)

or

v
d v

d r
= −C2

s

1

ρ

d ρ

d r
− GM�

r2
. (138)

To exclude ρ, we use (136),
d

dr
(r2ρv) = ρ

d

dr
(r2v) + r2v

dρ

dr
= 0, (139)

and obtain
1

ρ

dρ

dr
= − 1

r2v

d

dr
(r2v). (140)
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Now, Eq. (138) becomes

v
d v

d r
=
C2
s

r2v

d

d r
(r2v)− GM�

r2
. (141)

Rewriting this equation, we obtain (
v − C2

s

v

)
d v

d r
=

2C2
s

r
− GM�

r2
, (142)

and, then (
v − C2

s

v

)
d v

d r
= 2

C2
s

r2
(r − rc) , (143)

where rc = GM�/(2C
2
s ) is the critical radius showing the position where the wind speed reaches the

sound speed, v = Cs.

This is a separable ODE, which can readily be integrated,∫ (
v − C2

s

v

)
dv =

∫
2
C2

s

r2
(r − rc) dr, (144)

giving the solution (
v

Cs

)2

− log

(
v

Cs

)2

= 4 log

(
r

rc

)
+ 4

rc
r

+ C. (145)

The constant of integration C can be determined from boundary conditions, and it determines the specific
solution. Several types of solution are present in the figure:

Types I and II are double valued (two values of the velocity at the same distance), and are non-physical.

Types III has supersonic speeds at the Sun which are not observed.

Types IV seem also be physically possible. (The “solar breeze” solutions).

The unique solution of type V passes through the critical point (r = rc, v = Cs) and is given by C = −3.
It can be obtained from the general solution (145) by putting the coordinates of the critical point. This
is the “solar wind” solution (Parker, 1958). It was discovered by Soviet Luna-2, Luna-3 and Venera-1
probes in 1959.

Let us estimate the critical radius rc. For a typical coronal sound speed of about 105 m/s, and the critical
radius is

rc =
GM�
2C2

s

≈ 6× 109 m ≈ 9− 10R�. (146)
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At the Earth’s orbit, the solar wind speed can be obtained by substituting r = 214R� to Eq. (145), which
gives v = 310 km/s.

For the radial flow, the rotation of the Sun makes the solar magnetic field twist up into a spiral.

Suppose the magnetic field is inclined at an angle φ to the radial solar wind velocity:

The component of the vector V perpendicular to the vector B, v sinφ, must equal the speed of the field
line in that direction, because the field is frozen in the plasma. But, the field is dragged by the solar
rotation with the angular frequency Ω. The normal component of the speed of the field line is Ω(r−R�).
Consequently,

v sinφ = Ω(r −R�) cosφ, (147)

which gives us

tanφ =
Ω(r −R�)

v
(148)

Taking v ≈ 310 km/s and calculating the frequency of the equatorial rotation period, which is about 26
days, Ω = 2π/(26× 24× 60× 60) ≈ 2.8× 10−6 rad/s, we obtain that near the Earth’s orbit, r ≈ 214R�,
the angle is about 45◦.



KHU — Valery Nakariakov — Introduction to MHD 41

In-situ observations have established that there are actually two component in the solar wind,

• relatively low-speed streams (v < 350 km/s) - the “slow solar wind” and

• high-speed streams (v up to 800 km/s) - the “fast wind”.

The slow wind is denser and carries greater flux of particles. The presence of the fast wind has been
observed at higher solar latitudes.
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Realtime monitoring of the solar wind near the Earth’s orbit:
http://www.swpc.noaa.gov/products/ace-real-time-solar-wind


