Phase Transitions in Antimony Oxychloride Glasses

Robin Orman

MSc Aims

- Perform improved thermal analysis on the Sb₂O₃ polymorphs, senarmontite and valentinite, and explain the transformations observed
- Obtain Raman spectra of the oxides
- Prepare CI-doped and H₂O-doped Sb₂O₃ glasses
- Use thermal analysis and Raman to see how the glass structures relates to those of the oxides
- Prepare and characterise the related oxychloride, onoratoite (Sb₈O₁₁Cl₂)

What is a Glass?

- A non-crystalline solid...
 - No long-range atomic arrangement
- ...that experiences a 'glass transformation region'

Glass Stability

- Glass thermodynamically less stable than a crystal
- Can prevent
 transformation if:

 (a) Activation
 energy high
 (b) Can cool
 rapidly to point
 where kT <<
 activation energy

Glass Stability (2)

Activation energy high if:
(a) Strong directional bonds between atoms
(b) Chemically complex so that atom redistribution slow

Commercial glasses based on multicomponent silicates [SiO₄] - tetrahedra joined by directional Si-O-Si linkages

Sb₂O₃ – very simple [SbO₃] – trigonal pyramids joined by directional Sb-O-Sb linkages

WARWICK

Crystal Structure

SENARMONTITE

Sb₄O₆ molecules in a close-packed arrangement

VALENTINITE

Double chains of [SbO₃] trigonal pyramids arranged to form layers, with the lone pairs pointing into an empty layer.

WARWICK

Previous attempts

Hasegawa et al – X-ray diffraction – interatomic distances suggest
 [SbO₃] pyramids, in chains, as in valentinite

5 mol% B₂O₃ added

Masuda et al – X-ray fluorescence – both Sb³⁺ and Sb⁵⁺ present

5 mol% MO or 10 mol% M₂O

• Bednarik and Neely – infra-red $[SbO_3]$ – trigonal pyramids similar to those in valentinite.

2.5 mol% SiO₂

• Miller and Cody – Infra-red/Raman – 2D like v-As₂O₃

Melted in vycor \rightarrow B₂O₃ + SiO₂

Johnson et al – neutron diffraction – [SbO₃] pyramids

~ 8 at% CI present

Glass preparation

Sb₂O₃ (99.6% Alfa Aesar), SbCl₃ (99% Sigma-Aldrich)
xSb₂O₃(1-x)SbCl₃, x = 0.5, 0.7, 0.85

- Alumina crucible with lid
- 5-10 minutes at 1000°C
- Splat-quenched between two cooled copper plates
- x = 0.85 phase-separated

Raman Spectroscopy

- Glasses tend to give broadened Raman peaks
- Chlorine stabilised
 glasses don't
 appear to match
 c-Sb₂O₃

Glass Crystallisation

• Glass after

crystallisation at 390°C

- Forms senarmontite and onoratoite, with some valentinite
- •H₂O-treatment: crystallises to valentinite

Green = Senarmontite (Sb_2O_3)

Blue = Valentinite (Sb_2O_3)

Magenta = Onoratoite $(Sb_8O_{11}Cl_2)$

Thermal Analysis

- T_g = 297±3°C (85/15, 70/30)
- $T_g = 286 \pm 3^{\circ}C (50/50)$
- $T_c = 334 \pm 3^{\circ}C$
- Small feature:
 depressed valentinitesenarmontite transition
- Later peaks... onoratoite?

Onoratoite compared to Glass

 EDX analysis suggests chlorine content is similar to onoratoite

Valentinite (Sb₂O₃)

Sample	at.% Cl (±2.0)
85/15 (1g)	7.5
85/15 (2g)	8.2
50/50 (Sept. '03)	6.0
50/50 (Oct. '04)	6.9
Onoratoite (predicted)	9.5

Onoratoite (Sb₈O₁₁Cl₂)

Onoratoite preparation

- SbCl₃ (99.6% Sigma-Aldrich)
- 20g hydrolysed in 200ml water at 35°C
- Washed with ethyl ether
- Precipitate held at 420°C under argon for 1 hour
- Based on Matsuzaki *et al.*'s prepe UNIVERSITY OF WARWICK

Thermal Analysis (2)

 Peak 1: Onoratoite decomposition

 Peaks 2-4: Threestage senarmontitevalentinite transition?

Black = Glass **Red** = Onoratoite $(Sb_8O_{11}Cl_2)$

Raman Spectroscopy (2)

• Glass Raman spectra similar to onoratoite

Black = Onoratoite $(Sb_8O_{11}Cl_2)$ Red = 85/15 (1c) sample Green = 70/30 (1) sample Blue = 85/15 (2c) sample Orange = 70/30 (2) sample Magenta = 85/15 (2g) glass

THE UNIVERSITY OF

Conclusions

• Glass appears to be based on onoratoite structure:

- Crystallisation (by heating)
- Crystallisation (by water)
- Raman Spectroscopy
- Chlorine content
- Subsequent transitions probably affected by the presence of chlorine?

Future Work

- High-temperature XRD, Raman or neutron diffraction spectroscopy to examine '3-stage' transition
- Effects of water on the transitions?
- Kinetic studies using DSC techniques

Acknowledgements

- Dr Diane Holland
- Keith Briggs and Dave Hammond
- Ben Parkinson
- Dr Mark Newton and Robin Cruddace
- Prof Frank Berry & Xiaolin Ren at the OU

