Module I, Lecture 12: Rotating Frame Approximation

Interaction representation
Because Zeeman interactions commonly encountered in magnetic resonance are fairly large (from MHz
to THz in practically encountered magnets), it is usually inconvenient to calculate the spin system trajec-

tory G(ﬁo) from a given initial state [)0 using the full Hamiltonian superoperator H :
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G(ﬁ0)={e’H’ﬁo,re[o,w>} = G(py)=1Py PPy P’ Py P=e™ At~ H|

because the time step At required to sample the system trajectory accurately is extremely small (mi-
croseconds to picoseconds) on the time scale of the simulation (seconds). The following transformation
(called interaction representation transformation or rotating frame transformation) is often applied to

get rid of the large Zeeman terms in Liouville space:

%ﬁ(r):—i(ﬁo+ﬁ[l)[)(t) H = adil =[H, ]

s(t)="p(t)  AX(1)=eHe™ = %&(r):_iﬁf(z)(&(f)

This result is easy to verify by explicit substitution and simplification. Similarly, in Hilbert space:
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Ep(t):—z[H(ﬁHl,p(t)}
G(t)=e™p(r)e™  AX(t)=™He™ = %&(;) =i A} (),6(7) ]

with the result that the “large and simple” term I:IO disappears from the equation and the “small and

complicated” term Ifll acquires time dependence because it is now wrapped in I:IO propagators.

Because SO (n) is a subgroup of SU(n), we could say that the transformation above is a (perhaps

complicated) rotation. In the case where H|, is Zeeman in-
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teraction of one spin, the interaction representation trans-
formation does actually amount to a simple rotation in the
physical sense: exp(—iiz¢) rotates the system by an angle
@ in the XY plane, hence the “rotating frame” term. The
case where interaction representation is invoked with re-
spect to all Zeeman interactions in the system is not easy to
visualize and is best approached as a formal unitary trans-

formation.

Secular parts of spin interactions

Because of its ubiquity, the case of interaction representa-

tion transformation with respect to Zeeman Hamiltonian "¢ frejectory of Mars in the geocentric refer-

ence frame, including several periods of apparent

deserves special attention. Some types of interactions com- retrograde motion (Johannes Kepler, “Astrono-

mute with L,, and therefore exp(—iLZt), and are unaf- mia Nova”, 1609) — an example of an unfortu-

. . . . te choice of interacti tation.
fected by the interaction representation transformation: nate choice of interaction representation



[L,,L,S,1=[S,,L,S,]1=0, [L,+S,,LS,+L,S,+L,S,1=0

Note that the scalar coupling operator iXS'X +iY§Y +£ZS'Z does not commute with L, and §, indi-
vidually. Irreducible spherical tensor basis is particularly convenient here — it is ordered with respect to

this commutation property:

(L,.7, (L)]=L,7, (L)=mT, (L), [L,+S,.7,(LS)] :(iz +$ jr (L.S)=mT, (L.S)
This allows us to evaluate the rotating frame expressions:
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Similarly, for two-spin irreducible spherical tensor operators:
e (LZ+SZ) (L S) (Lz+Sz)f - eim(x)tf;m (L,S)

In other words, the irreducible spherical tensor operators are eigenoperators of the f,z commutation
superoperator — the consequence of the original spherical harmonics (see the lecture on the SO(3)

group) being eigenfunctions of iz .

Consider now the rotating frame transformation of the irreducible spherical tensor expansion of a gen-

eral Hamiltonian of a coupled two-spin system, in which both spins are of the same type (e.g. 'H):
2
H=|ol,+oS, |+ [a)lLZ + 0,8, +7J LSy + LSy + 1,8, )+ Y a,T,, (L,S)}
m=-2

In a strong enough magnet, the Zeeman frequencies would have two components of very different
magnitude — the carrier frequency @, which is the same for all protons (around 600 MHz in a 14.1 Tesla
magnet), and the offset frequencies @,, @, coming from the chemical shifts (of the order of kHz in the
same magnet). Spin-spin couplings (both isotropic and anisotropic) in typical NMR systems are also in

the Hz to kHz range. Based on this observation, we will split the Hamiltonian:

A

A=A,+H,  H=ol,+oS,
N A A A 2 2 A
H=oL,+®S,+7J(L-$)+ Y a,T,,(LS)
m=-2
so that the “big” part FIO contains the carrier Zeeman frequencies, the “small” part ]:11 has the offsets

and the couplings. After the interaction representation transformation with respect to FIO, we have:

HIR (t) _ eiw(iz+§z)f |:0)L +0)2S +7Z'J(L S)+ Z am L’S)}e—iw(iﬁi‘z)t _

m=-2

[a)lL +w,S, +2J(L- S)+a0 2o (L S} > a,é"T,, (L,S)

m#0

There are two kinds of terms in the resulting rotating frame Hamiltonian — the time-independent terms
in square brackets and the very rapidly oscillating (MHz to THz) terms under the sum. The secular ap-

proximation (dating back to Johannes Kepler, no less) states that the effect of the rapidly oscillating



terms may be ignored, because they average to zero on the time scale of the evolution under the time-

independent terms (kHz). We will analyse this assumption in detail in due time, but for now we have:
I:IIR = (01]:2 + (023’2 + 7Z'J(Z . 5) + aof“z,o (L,S)

meaning that the very large terms formally vanish from the Hamiltonian and the time-domain simula-
tion can be carried out in the rotating frame with a fairly leisurely sub-millisecond time step with the

additional benefit of not having the double-quantum and mixed terms (£+§+, iz*§+' etc.) around.

Weak coupling limit
The secular Hamiltonian derived in the previous section still contains quite a few terms:
. . . N A A A A PN
A =ol,+o,8,+1J (LS + LSy + 1,5, ) +a, S £S5 —Z(L+S_ +L3,)
we could take this procedure further and observe that in heteronuclear spin systems the difference in

Zeeman frequencies @, and @, is still very large. We could apply a second interaction representation

transformation (or amend the original one), with respect to the rest of the Zeeman Hamiltonian:
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and so the second interaction representation transformation yields:

I:Ilkz \/Zao +rJ £z§z+ ﬂ_l gao (ei(m]_mz)ti*g_+e_i(w|_m2)tl’:_§+)
3 2 4\3

In the cases where the frequency difference @, —®, is large (that is, in high-field heteronuclear sys-

tems), it is permissible to ignore the rapidly oscillating second term, yielding a particularly simple weak
. 2 A A
H = §a0+7rJ L,S,

A situation that often occurs in ESR spectroscopy is when only one of the Zeeman interactions is much

coupling form for the interaction:

Pseudosecular coupling

larger than the spin-spin couplings —in a 0.33 Tesla ESR magnet, the proton Zeeman frequency is just 14
MHz, which is comparable to the typical hyperfine coupling. We can therefore only achieve any simplifi-
cation by going into the rotating frame with respect to just one of the two coupled spins. We will also

need to have the Hamiltonian written out explicitly term by term via raising and lowering operators:



where @, and @, are the electron and nuclear Zeeman frequencies, a is the isotropic hyperfine cou-
pling and b, are the irreducible components of the anisotropic hyperfine coupling. An interaction rep-
resentation transformation with respect to I:IO = weiz then yields:
TR o PO L A et & —iod T & by it a D ojest &
A =S, +al,S,+> (LS +e L8 )+ =2 ™ LS + LS, -
2 2 2
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where the parts that did not acquire a frequency multiplier have been highlighted in blue. Ignoring the

rapidly oscillating terms then yields:

A =08, val,8,-BE S LS o, \ELZSZ

and the requirement for the Hamiltonian to be Hermitian further dictates that b_, = —b,, so that:
. . 2 N N
H =08, +| b, 3 +a|L,S,+b L,S

This form is often useful in ESEEM, ENDOR and DNP simulations.

Summary
System Low-field High-field High-field High-field
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