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ABSTRACT

Quantum coherent transport in nanostructures has been one of the
most exciting topics in ‘mesoscopic physics’ over the past decade.
Interference and quantisation effects determine electronic properties in
many phenomena like quantum Hall effect or conductance oscillations in
small metallic rings. Furthermore, time-dependant coherent phenomena
like the suppression of tunneling by irradiation with light have become the
focus of very recent research.

In this project, we theoretically investigate the scattering of
electrons from one-dimensional model potentials that change as a function
of time and are of the form of a repulsive double delta function. We will
perform calculations of the time-dependant Schrédinger equation to be
solved numerically in a subsequent project, and compare with limiting
cases that can be solved analytically.

Our aim is to make predictions for experimentally relevant
quantities like e.g. the time averaged transmission coefficient.

The project is concluded upon finding the Fano resonance of the
quantum dynamical case and the zero-channel transmission amplitude,
involving a defined Green’s function and a recursively defined self-energy,
for this quantum dynamical case.



Quantum mechanical
scattering in a time-
dependant 1d potential.

An investigation into the transmission through
a double delta potential barrier.
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CHAPTER 1-:-INTRODUCTION TO QUANTUM
MECHANICS AND ITS APPLICATION TO THIS

INVESTIGATION.

SECTION 1.1- INTRODUCTION

1.1.1 The Schrodinger wave equation

In any introduction to quantum mechanics, Schrodinger’s wave equation must be the most

important mathematical tool; Stationary Schrddinger equation; AY = EY
Where ¥ is the wave function corresponding to | ¥ | integrated over all dimensions being
the representation of the probability density of the particle. ¥ completely describes the

information of the particle at all points in space.

H is the Hamiltonian operator and is functional when acting on an eigenfunction i.e. the wave
function, V. It contains the information of the total energy constraints on the particle and
defines the idealized system of which the particle is a constituent. Consequentially, this gives
an eigenvalue, E, which is usually defined in a sequence or series and is, as the physics of the
microscopic world suggests, quantized into a discrete spectrum of values corresponding to the
allowed energy values and is the expected value of the effect of the Hamiltonian of the system
(for a simple example of energy quantization, refer to Einstein’s explanation of the

photoelectric effect).

1.1.2 Potential barriers, the transmission coefficient and the delta function

The potential barrier function is included in the Hamiltonian of the system;
2 2

ﬁ:_fcjllz+V(x)in one dimension. Where the first part of the Hamiltonian represents the
m dx

effect of the kinetic energy of the incident particle wave function.

V(x) includes all the information of the potential barrier and represents the form of the
potential in normal coordinate space. For an in depth look at the form of the delta function

(sometimes called the Dirac delta function), see Appendix 1 of Eugen Merzbacher’s Quantum



Mechanics' (third edition, Wiley, 1998). The forms of the Dirac delta potentials in this project

are repulsive potentials (for a further discussion of this see the aims section of this report).

To get a grip on the problems in this project, | have chosen to point out a simple example of
the effect of a repulsive square potential barrier on an incident wave function (this example is
taken from chapter 2 of Franz Mandl’s Quantum Mechanics" (Wiley, 2001). Refer to this

book for derivations of the results quoted here.

1.1.3 Simple potential barrier problem

The potential in 1d shall have the form expressed opposite.
V(x)=V,(>0), for|x|<a

The incident wave function, ¢, can be expressed as a
V(x) =0, for|x|>a

superposition of plane waves spanning from —oo to +oo, where

k represents the wave number:-

k= 2" forE >0 - =y,
7

P(x < —a) = Ae" + Be ™
#(x > a) = Ce™

e represents a wave function traveling in the positive x -4

direction and e ™ represents a wave function traveling in the negative x direction (a reflected

—ikx

wave function). There are no waves of the form e ™™ at x > a, since there is nothing defined
for the particle wave function to reflect from in this defined area of co-ordinate space. Read
the first few chapters of A.P. French’s Vibrations™ and wave for an introduction to the

complex exponential form of a wave.

A is a constant amplitude, A’ and C are constants related to A. A, A’ and C are related to the
particles currents. The particle current density of the incident beam is given by:-
hk

2 . .
Jlncident = m |A| = JTransmitted + JRe flected

Which is obeys a conservation of particles argument. This gives the reflection and

transmission coefficients as:-



R= Mamd T = dmansnites 54 4150 the relationship thatT + R =1.
J Incident J Incident

For this case, in the inner regi0n|x| < a, the wave function has oscillators or real exponential

character depending on the energy:
E>V, = x| < a)= Be'® + B'e ®
i where s = |27 (v, ~E) and q = 2T (E -V,)
E<Vy = g(x<a)=Be™ +B%e” h 7

The resulting transmission coefficients are found by taking into account the fact that ¢(x) and
¢'(X) have to be continuous at x = + a . The following transmission coefficient was derived

from the above to give:-

16(k/()2

e **where.2ax >>1
(k+x) "

T=

The following graph is a qualitative view of what is happening before and after the potential

barrier:
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1.1.4 The Delta function and its properties'




The delta function is the maths used to describe bits". To gain an understanding of the
properties of the delta function, we first need to define a functional distribution for it to be
described by. An appropriate function to use would be the

Gaup function (in co-ordinate space), g(x) and its Fourier

. . glx)

transform (in phase space), g(k):
(x+L)?
1 3
9(X) = —=—=¢e *
2o ? o
_o%K?

gk)=e 2 L X

Where o is a measure of how broad the distribution is in the x plane. If we now use this fact
and limit o to zero, we have what is called the Delta function. In co-ordinate space, this would
correspond to an extremely sharp wave packet around x = - L that could serve as a model for
a particle located at x = - L. We define the Delta function:

(x+L)?

e 20

o(x+L):=Ilim

1
o0 W

If the limit in the Delta function does not reach 0, but is still a very, very small number in the

context of the function, the delta function can be used to describe discrete data (i.e. quanta).
Conversely, if the limit does reach zero, the function will become meaningless and just
describes a normal continuous data set, which is adequately described without such a delta

function. The formal definition of the delta function comes from its operation on a function.

XZ

L e Z£(0)

N 27o?

Such an operation is called a functional, which is a mapping that puts a whole function to a

f’; dx3(x) f (x) = lim j”; dxf (x)

(complex or real) number". The function can, almost, be described in a piecewise way; the

delta function is equal to infinity at x = 0 but is equal to zero at all other points.

Some of the properties of the delta function used in this investigation are quoted from Dr
Tobias Brandes’ lecture notes on Quantum Mechanics I, second year physics undergraduate
course, UMIST 2003:

[~ axs()f(x) = £(0)
j”; dx'S(X) f (x = X) = ()



The Fourier transform of the delta function is a superposition of all plane waves; the
corresponding distribution of k-values in k-space is extremely broad, that is uniform from
negative infinity to positive infinity. The corresponding transformation of the delta function
defined by the Gaup function gives:

g(x) =1

i.e. this definition of the delta function is normalised.

1.1.5 Harmonic oscillators

The harmonic oscillator will allow me to introduce a quantum mechanical behaviour to the
potential barrier. I will now, with the help of Franz Mandl, outline the basic physics of the
harmonic oscillator. For more explicit derivations, see Franz Mandl’s Quantum Mechanics",
chapter 12.5 (Wiley 2001).

I have chosen this example as it introduces the Dirac formalisation, which is used in some
parts of this report. Using this formalisation also makes neat proofs that are totally explicit,

yet economical with ink and paper.

~

P

ﬁ = 2— + % ma)Z)A(z
The Hamiltonian for the harmonic oscillator is defined as;- m s o )
~ h d ma) 2
H=-——+
2m dx 2

We now introduce two more operators that either raise or lower the state (state referring to the
state function or wave function of the incident particle). These operators are named,

unsurprisingly, the creation operator and the annihilation/destruction operator:

a=\/E>z+ 5

2h - 2mho

é+:\/%§(_ 5
2 \2mho

respectively.

, are the annihilation operator and the creation operator

We will also define the Hermitian operatora“*a = N.
aand a*do not commute as [é, é*]: da*-a‘a=1=0

The Hamiltonian for the system can be written as H = hw(N + %)



To find the energy eigenvalues for the Hamiltonian, we need to find the eigenvalues of N .
This is clearly an eigenvalue problem. Now we use the eigenstate of N as | 2)and the
eigenvalue of NasA:

NM) = A|A)where (2|4)is defined to be equal to unity in a normalised situation.

A= </1|N|/1> where (4|is the complex conjugate of | ).

2 =(2]a"8]2)

= <é**/1‘é/1> i.e. eigenvalues of N are non-negative and there must exist a smallest
=(a1/d2)>0

eigenvalue A,
N&‘|2)=4a"4a"|2)

= é+(é+é+1) A)  and similarly:
=(A+1)a"|2)

N&| 1) =4"aa| 1)

=(4-1)a)2)

This shows that the operators aand a* destroy or create an eigenstate|)t>.

There exists a lowest state 4, such that4| 4, ) = 0. There is no lower state that exists below the
lowest state (ground state). N|4,)=4"44,)=0, so that | 4,) belongs to the eigenvalue

A, =0 and the eigenvalues of Naren=0,1,2 ...

= N|n> =n|n), where |n)represents the " state of the harmonic oscillator.

Returning to our introduction to the quantum mechanics, we see that |n> is analogous to y/(x) .
To take care of the quantisation previously derived, the wave functiony (x) — w, (x), where
v, (X) has a different harmonic form for eachn =0, 1, 2 ... and for all of our

applications, y, (x) =|n).

From the Schrédinger equation it can be seen that the quantisation of states also occurs in the

energy eigenvalue of the system, E . It can be derived from our Schrddinger equation that

E,=ho(n+y)forn=0,1,2 ...

| think that this section of the introduction is best summed up by a quote from Franz Mandl'™:



“... we can interpret |n> as a state with n quanta present, each with energy 7@ . We can see ...
that &*|n)is a state with (n + 1) quanta i.e. 4" creates a quantum, and that &|n) is a state with

(n—1) quanta i.e. aabsorbs a quantum. a and a"are accordingly known as absorption (or
annihilation) and creation operators respectively. The operator N is called the occupation

number operator; its eigenvaluesn =0, 1, 2 ... specify the number of quanta in the state|n>

SECTION 1.2- AIMS

What is the 8(x) function? An infinite potential in the co-ordinate space. It seems to be a
mirror infinitesimally thin, but still there, as to disrupt the probability amplitude of any
incoming particle wave function, y(x). This could be visualized as ripples on a lake that has
some kind of dam system analogous to the form of the 3(x) function. We would see this in the
quantum world as ripples on the lake that seem to ignore the existence of the dam system, the

only noticeable effect of the dam would be a distortion of the ripples. Considering the case

Could this 8(x) function be a limiting case for a model? Maybe the model would consist of a
region of space being a disallowed area, but since the wave function is a probability of the

particle being there, it can pass the disallowed region without actually penetrating it.

The aims of this theoretical project will be to find out what this 5(x) function is by measuring
its effect on Fermion’s a probability wave function (a ‘“particle’ that obeys Fermi-Dirac

statistics).

The effect of 3(x) on the probability wave function will be found by calculating the amount of
the wave function that is reflected or transmitted through the delta potential. Finding the
transmission coefficient of the whole system can do this. The method used to find this will be

an aim of the project.

The title of this project dictates a double delta potential barrier (see figure 1) as a previous
project has already tackled a single delta potential in a classical and quantum case. For a
better understanding of this project, read the report by John Robinson" with Tobias Brandes
called Transmission through a Quantum Dynamical Delta Barrier' (umist, 2002). Many



analogies can and have been made to this case, but only as far as the method that was used.
The rigorous mathematical techniques involved are obviously more complicated in this

project.

An aim of this project is to apply the method John Robinson used to find a static case for the
system and hence the transmission coefficient. This can then be compared with a quantum

case so that the quantum effect can be deduced.

The static case will use the same boundaries and initial conditions as a square potential barrier
(see section 1.1.3). this is because it has no bound solutions (a repulsive barrier) and is a
similar arrangement to boundaries of my problem. This approach should allow me to find the
transmission coefficient at each boundary and hence find the transmission coefficient of the

whole system by multiplying the two together.

To implement a quantum character to the static case, | will simulate a harmonic, oscillatory
motion on one of the barriers. This will be of the form of a bosonic frequency (see figure 2)
that is coupled to the incident particle wave function (see section 1.1.5). This will quantize the
energy eigenvalues so that a recursive transmission coefficient can be found. Further
representation of the transmission coefficient will also be implemented to make computation

of these transmission coefficients the next obvious step after this project.

These methods completed, comparisons between the static and quantum (oscillator) cases can

be made and concluded upon.

10



SECTION 1.3- MODELED GRAPHIC DIAGRAMS
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CHAPTER 2-:-THE STATIC CASE

SECTION 2.1- BOUNDARY CONDITIONS

These conditions set out the form of the wave functions in the separated zones (see figure 1)

and are of the same exponential form as the simple square potential barrier in section 1.1.3.
Conditions set out like these assume an incident particle bean from the left. e™ represents

wave functions traveling in the positive x direction and e ™ represents waves traveling in the

negative x direction™. The superposition of these states describes the form of the total wave

function at any position in the one-dimensional real space.

P(x<-L)=Ae™ +Re™
P(-L<x<0)=Te" +R,e™ Ve

¥(x>0)=T,e™
(x>0)=T, o
)\V(- L)
Area | Areall Arealll
Wave vector, ) e Ty e T
= Ryer] Roc sl

k — Z;anE -L i} *

SECTION 2.2- THE HAMILTONIAN AND THE SCHRODINGER EQUATION

V(-L)=5(x+L)
V(0)=5(x)

Where §(x— L) is the Dirac delta function at a position x = L, and L is the length of the gap

The piecewise description of the bosonic potential energy variation is:

between the two delta potential functions

The Schrodinger equation, with the applicable Hamiltonian operator inserted is:

By
2m  ox?

+9(0x + L]+ 8[x]y () = Ep (%)

SECTION 2.3- CONTINUITY/DISCONTINUITY CONDITIONS'

12



2.3.1 Continuity conditions

This is a standard condition that requires the wave function not to have any discontinuous
jumps in any part of its form i.e. the wave function should be smooth and continuous. All that
is needed to do this is to equate the wave functions that appear at each side of a boundary
(delta potentials at x =0 & x = -L), at the boundary position.

Continuity condition for wave function at x = 0;

ikx —ikx ikx
Te" +R,e™ =T,e

X=0=>

T+R, =T,

Continuity equation for wave function at x = -L;

Ae™ +Re™ =Te" +R,e ™

X=-L=

AefikL + RleikL — TlefikL + RzeikL

2.3.2 Discontinuity conditions

This is also from a standard condition that requires the derivative of the wave function with
respect to x to be continuous at all points except where the potential is infinite. One can see
that from this condition, it would be intuitive to say that this gradient should be discontinuous

at the places where the potential is infinite.

A method to apply this discontinuity condition is to integrate the Schrédinger equation around
the delta potential position+e, in the limiting case where ¢ is zero. This can then be equated to
the small difference, A, in derivatives at each side of the delta potential position +g, where ¢

is, again, limited to zero.

Discontinuity condition for gradient of wave function at x =0;

[Integrate Schrddinger equation around x = tg, limiting e—>0] = [Differential of the wave

functions at x > 0 and -L < x < 0 and evaluated at +& and -¢, limiting e—0]

dw) 2mg 2mg
A(WJ T TR

13



__ 0 _mg
T, = (1+ﬂi) [says = hzk]

Discontinuity condition for gradient of wave function at x = -L;

[Integrate Schrodinger equation around x = -L+e, limiting e—>0] = [Differential of the wave

function at x< -L and -L< x< 0 and evaluated at —L+¢ and —L-¢, limiting e—0]

dy ) _2mg , i 2mg i
A(KJ: P (Ae ™ +Re™) = P (Te ™ +R,e™)

A
[1+iﬂ+ Iﬂ e2ikL _iﬂe2ikL)

T, =

@+ip)

SECTION 2.4- THE TRANSMISSION COEFFICIENT

2
. . . T
The transmission coefficient of area Il to area Ill is T''= %

T

1

1

")

T 2
Transmission coefficient of area I to area Il is T'= %
T'= Y ! i
. I —2ikL _ i 5,— 2ikL ; I 2ikL _; 5, 2ikL
1-ip - — € +ipe J(1+|,B+ — € —ipe j
[ @-ip) @L+ip)

Transmission coefficient of the whole system is simply the multiplication of successive

transmission coefficients T =T'T"

1
T = . -

It would be useful to find this transmission coefficient in terms of the energy of the incident

particle, T(E).

14



K — /2;:]2E

ﬂ_mg . mg
7’k h/2mE

Using the sensible scale that corresponds to the sale of the Bohr radius, we can set 7 =2m =1

_g [am’ _g [m_ g
jﬂ_Zh 2mE 2\ E  2JE

4E

~T(E)=

JeiZL\/E +[

. 2
e—|2L\/E +97

|
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CHAPTER 3-:-DISCUSSION OF THE RESULTS

OBTAINED FROM CHAPTER 2

The transmission coefficient for the static case can clearly be solved analytically using a
graph of T(E), since there is only a dependence of the transmission coefficient on the energy,
E, of the electron and the potential constant, g. These results should be compared with the
case of the single delta potential barrier"' and the case of the square potential barrier (section
1.1.3).

Comparison with the single delta potential

Results from reference (V) give the transmission coefficient though a Static 1d delta potential
barrier to be:

T 4E2
4E +¢

We can see that the two differ by a variable, & (E), that is multiplied with g This can be
expressed in the form of complex variables:

2
g x
§(E)=—-+¢(E)+¢ (E)
2E
Where ¢*(E) is the complex conjugate of ¢(E). The complex function of kinetic energy of
the incident wave function and potential energy of the delta potential particles:
(1 .9 9°)i2lVE
s(B)=|=—-1l—=-——1
2B JE A4E

This is the part of the transmission coefficient that depends on the distance L between the two

delta potential barriers. When this distance is equal to zero;

2

9
SB)=—¢

4E 4E?
g;‘ 4E% +g°

Giving the transmission coefficientas T =
4E +

16



CHAPTER 4-:-THE OSCILLATORY (QUANTUM)

CASE

SECTION 4.1- BOUNDARY CONDITIONS

These conditions are set out in analogy with chapter 2, but taking section 1.1.5 into account. It
can be seen that the quantisation of the harmonic oscillator dictates a quantisation of states also
occurs in the energy eigenvalue of the system, E . Since the energy and wave vector, k, are
related, the wave vector will also see a quantisation of states, corresponding to Fano" type
resonances. The mathematical theory behind this area of Quantum Dynamics can be found in
Guido Fano’s book ", chapters 5.1-12 and 6.5.

It should be clear, after section 1.1.3, that there will be two separate cases:

When the energy is greater than the bosonic energy, Qn; Real wave vector,

k,=vE—-Qn
When the energy is less than the bosonic energy; Imaginary wave vector,
K, =NQ—-E

The case with the real wave vector is analogous to that of chapter 2. The case with the

imaginary wave vector will need to be described by a decomposition into plane waves:

CASE 1: E > Qn CASE 2- E <Qn

¥ (-L>x)=Ae"* +R e ¥, (-L>x)=R, e
Y (-L<x<0)=T,e"*+R, e ™" P (-L<x<0)=T, " +R,,e"
\Pn (0 < X) = T2,neiknx an (O < X) = T2,ne_KnX

SECTION 4.2- THE HAMILTONIAN AND THE SCHRODINGER EQUATION

2 2
The electron energy Hamiltonian H, = —h—a—z
2m ox

17



The interaction (coupling) Hamiltonian H,; = [go + gl[é+ a* ]]5(x) +9,0(x+L)
The bosonic energy term (harmonic oscillator creating or destroying a state with photon

interaction in the defined integer increments of the creation and annihilation operators, see
section 1.1.5) H, = Q4“4
Where Q =T/iw, and is the bosonic frequency of the photon.

Note that a factor of €%/, the ground state of the boson, is neglected for convenience. However,
2

it should be noted that a lowest state, the ground state, does exist and that no eigenstate can have

a lower eigenvalue than Eo]

The sum of these Hamiltonians for kinetic, potential and interacting energies gives the total
Hamiltonian of the system:

2 2
=0 G600+ 0,[a+a 0+ 0,50+ L)+ 044

2m ox?
a- Meg 15
2n  2mho

é+_/ma))A(_ i 5
2h N 2mhw

Where the formation of the separation ansatz of the electron wave

Creation and Annihilation operators (defined in section 1.1.5):

Schrodinger equation (section 1.1.1); HY = EW

function, ¥ = w(x)¢(x") involves the separation of variables. ¢(x’)is the coupled bosonic wave
function, corresponding to the interacting photon.

Expand the electron wave function, ¥, into a sum of component eigenkets, |n> from the photon

in the electron frame, as a sum over all resonant states, n :
=¥=2 ()
n=0

Where |n> corresponds to ¢, (x’) and is the photon wave function traveling in the positive x

direction. Conversely, 4 _"(x')corresponds to <m|and is the photon wave function traveling in

the negative x direction.

Schrodinger equation as a summation over all resonant states;

18



h? 0?
_2_6_2+ 9,0(x) + gl[é+é*]5(x)+ g,0(x+L)+Qa*a|¥=E¥
m ox

L n® 0%y, (%) .
=3 m o [n)+ go8 (w, ) + g, [a + &* (v, (0] n)

"1+ g,8(x+ L)y, (X)|n) + had dy, (x)|n)

o0

=2 Ey, ()
n=0
ar) =il
Creation and Annihilation operator identities: 4*|n) =+/n+1/n+1)
4'd=N=n

n® 0%y, () -
L5 e 10 8s0 v () + 8509w, (I3

"+ 9,80y, VN +1n+1) + g,5(x + L)y, (X)|n) + haow, (x)n|n)

=3 B, (9|n)

n=0

Change of summation indices so |n> can be taken out as a factor

Ll v, (%)
=>| 2m o&x? M)+ 98 (), (X)) + 915(X)\/ﬁv/n_1(x)|n>
"+ 9,8(0VN + 1y, (X)) + 9,8(x + LY, (X)|n) + how, (x)n|n)

0

=Y E,w,(x)|n)

n=0

Multiply through by the boson state of the interacting photon<m|, making use of the fact that

<m| > mn» Whereo s the Kronecker delta, a mathematical tool that gives a “true of false”

condition for the resonance of the photon wave function with the electron wave function:

Onn=0form=n Opnn=1form=n

This gives the Schrodinger equation as a recursive y, equation:

__T+go5 +g1 \/_Wn 1+g1 )Vn+1l//n+1+g25(x+|-)l//n+ha)m//n :En‘//n

SECTION 4.3- CONTINUITY/DISCONTINUITY CONDITIONS

19



Continuity conditions

These are exactly analogous to those used in chapter 2, except that there are two cases
corresponding to the two different types of wave function, depending on the energy of the

incident electron, see section 1.1.3.

CASE 1: E > Qn

Continuity condition for wave function at x = 0;
T,,e" +R, e =T, e
X=0=
T,.+R,, =T,,
Continuity condition for wave function at x = -L;
T,.e"* +R, e = Ae"* + R e
X=-L=

—ik,L ikyL _ —ik,L ik, L
Tl’ne + szne =Ae + Rlyne

CASE 2: E < Qn

Continuity condition for wave function at x = 0;
T +R, e =T, e
x=0=>
Tl,n + R2,n :Tz,n
Continuity condition for wave function at x = -L;
R, =T e ™ +R, e"™
X=-L=
R,e " =T, e"" +R, e™"

Discontinuity conditions

These are also exactly analogous to those used in chapter 2, except that there are again two
cases corresponding to the two different types of wave function, depending on the energy of
the incident electron, see section 1.1.3. Also, see section 1.1.4, for the properties of the delta

function.
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CASE 1: E > Qn

Discontinuity condition for gradient of the wave function at x =0;

Integrate Schrédinger equation around x = tg, limiting e—>0;

Am’””}ZhT[goy/n(0)+glﬁwn_1(0)+gﬂ/n +1y/n+1(0)]Differentiate the wave functions at x > 0 and -L
X

< x < 0 and evaluate at +¢ and -¢;

d :
A(%) = Ikn (TZ,n _Tl,n + R2,n)

Which can be written as a sequence:

T :_(go(Tz,n)-I'gl\/ﬁ(TZ,n—l)) hk ( 2n 1n)
2,n+1 91\/m m 91\/F

Discontinuity condition for gradient of the wave function at x =-L;

Integrate Schrédinger equation around x = -L+g, limiting e—0;

Oy, | _2m _
A{E}L =2 [9,w,(-L)]

Differentiate the wave functions at x < -L and -L < x < 0 and evaluate at -L+¢ and -L-¢;

A[ dd‘//nj _ ikn(Tlne—iknL R, neiknL _ Ane—iknL + RlneiknL)
X ) ' ! '

An + Imgz T eZIk L

1n
' in |||| i
9, 1 9, 2ik, L

€
nkK, nk,

CASE 2: E < Qn

Discontinuity condition for gradient of the wave function at x =0;

Integrate Schrédinger equation around x = tg, limiting e—>0;

0
[ l//xn :‘ [gol//n + gl\/>l//n l + gl\/ﬁl//ml ]

Differentiate the wave functions at x > 0 and -L < x < 0 and evaluate at +¢ and -¢;

A(ddﬂj:_lcn(TZn + RZn _Tln):_ZKn(TZn _Tln)
X . . , . ,



Which can be written as a sequence:

(go(TZ,n)+ gl\/ﬁ(TZ,n—l))_l_ thn (TZ,n _Tl,n)
gn+1 m g n+l

T2,n+1 =

Discontinuity condition for gradient of the wave function at x =-L;

Integrate Schrodinger equation around x = -L+g, limiting e—0;

oy, | _2m B
A{E}_L = [9,w,(-L)]

Differentiate the wave functions at X < -L and -L < x < 0 and evaluate at -L+c and -L -¢;

d
A(%) =K, (Tlvne""L +R, 7" - Rzlne”‘“L)
X )L

—2k,L
e

n 2
(1_6—21("L +h KnJ
mg,

Forming of two recursive relations

The four relations above can be reduced to two separate recursive relation, corresponding to

the two types of wave vector.

CASE 1: E > Qn :

mgn+1(T, ., J+ mg, (T, )} +| mg, —ir%, - ngEZiknL_ (r,,)=—(A) ik,
kS ! A 0 n imgz(1+e2'k"L) 20 ) imgz(1+ez'k"L)
(R R
Ik, hk.
CASE 2: E < Qn .
—2K,L

mg/n +1(T, .., )+ mg,n(T, ., )+| mg, — A’k - » mmgg:(i— =T

2
hik,

) (Tz,n ): 0
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SECTION 4.4- ASSUMPTIONS OF THE INCIDENT ELECTRON BEAM

A fundamental simplification must be made at this point, to make the previous equation the
general statement that it seems. The constant amplitude for a specific state, A,, must be simplified

to make an calculations less complicated. Impose the condition that A| = AJ,, ,i.e. the boson is in

its ground state for an electron incident from the left. We can also set A = Ag= unity,

corresponding to a knowledge of the incident bean intensity.

If we let k, be real or imaginary for a given E and n, the two recursion relations can reduce to

L : h*k _ o :
one. For simplicity, we will use y, = ™, where y, can be either real or imaginary. Again,
m

we set i=2m=1, to put any measurements at the scale of the Bohr radius.

g7t . )- i7, Gy
2n)—

glM(TZ,n+1)+ 91\/H(T2,n—1)+ go"”n‘ﬁm L y, +ig (1+62ik"L)
M= N

7

This is true for and E > E , where E corresponds to the ground state energy of the boson, fy :

which was noted in section 4.2. Recall the definition ofk, = +E —Qn . The above equation can

now be expressed in terms of E.

Jn+l Jni i gzeZiLm i7n2(E)§n,o
sttt v =in®) e )= i)
7a(E)

SECTION 4.5- THE STATIC QUANTUM CASE (FANO RESONANCES)Vii

The above recursion relation can be compared with the static case from chapter 2 by equating

o to g2 and g; to zero. This should give the Fano resonances"’, of this quantum dynamical

case corresponding Qa*a of the harmonic oscillator without any electron interaction:

A Report and investigation by David Goodwin with Dr T. Brandes as the supervisor 23



2iL«/E—Qn iy 2
: 7o (E)S,
g_l}/n(E)_ v 2iLVE-Qn 2n)= i 2&@
|g 1+e yn(E)+|g(1+e )
7a(E)
iLVE-On
: 2iLE-n : ge’" 2
= (®) +igh+e™ =) g —wn(E) e (1,0)=-ir, (€16,
7a(E)
E)o
= (Tz,n): _ ¢’ r:®) n,io (E)geZiL\/E—Qn B gz(1+eziLJE-Qn )EZiLJE—Qn
ig(2+ez|LJE-Qn )+ y.(E)- (1+ez|LJE-Qn) 7 _ _
( ) + |gh+ eZlL\/E—Qn)
7a(E)S,,
(TZ n ): g2 : g _
2ig + }/n (E) _ e2IL\/Ean

7.(E)  7.(E)

Using the definition of the transmission coefficient in section 1.1.3, and the assumption made

in section 4.4, an expression for the transmission coefficient can be formulated:

TO(E)— . : Vo (E)8%n0 . 2
g 2iLVE—Qn g ~2iLJE—on

2,02 E)— 9 ? E)_ 9
L"‘w”() (E) 1) I 9+7:(8) (E) BACK ]

2
Using the definition of y (E) :h—\/E —Qn and setting #° =2m=1and use the equation in
m

it’s ground state (n = 0), the equation can be simplified to a similar form of the transmission

coefficient found in chapter 2.

4E
2 2 2 H
4E 2 2 g g - g _l eZiL\/E g _ Ig _1 e—2iL\/E
+g L +2E+(4E+IPE + na 7FE

This should now be compared with the transmission coefficient found in chapter 2:

TO(E)=

4E

2 . 2
4E 1 g 1 .9 g )iaWE (1 ;9 9% )-i2dE, 9
2E  JE 4E 2E  JE 4E 2E

T(E)=
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CHAPTER 5-:-DISCUSSION OF THE RESULTS

OBTAINED FROM CHAPTER 4

It will be useful from this point, to express the recursion relation as an infinite, tridiagonal

matrix’, M:
: gzyneZiknL \/_
~iy, - . 1 0 0
Joml y, +ig, [L+et o
\/_ 0,7 p2iil \/_
1 -y, - 27 _ 2 0
2ik, L
H g27/ne !
0 \2 —ly, - .
g (90 4 v +ig, 4 et
0 0 K
_ o, i
T, iy, (E)

7o(E) +ig, 1+ e?F)
and A= 0

) T

Where MT=Aif T = :
) 0

T )

n

An approximation to the solutions lay in truncating the matrix, M. alternatively one can solve
this matrix recursively, with the introduction of a defined Greens function, Go(E)"™":

. gz?’o(E)eznﬂ/E N
G,(E)= - E)-
o(E) l:go iy, (E) yO(E)+i92(1+e2iL£)]

Using this, To(E) can be defined:

I (E)= _[ 7, (E) ]{ 1 J
7o (E) +ig, (L +e2-F | | G, (E) -2 @ (E)
Where =™ (E) is the recursively defined self energy (see page 129 of E.N. Economou’s
Green’s functions in quantum physics"".
Ng,”
G, '(E -QN) -z (E)
Using y,(E) =y,(E —Qn), the self-energy can be expressed as a continued fraction:

M (E)=

2

Z(l)(E): gl

297

G, (E-Q)- 307
1

G,'(E-2Q) - 40’
1

G, (E - 3Q) -
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CHAPTER 6-:-CONCLUSION

SECTION 6.1- THE DIFFERENCES BETWEEN THE STATIC AND QUANTUM CASES

SECTION 6.2-POSSIBLE APPLICATIONS AND FUTURE PROSPECTS OF THIS INVESTIGATION.
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APPENDIX-:-MATHEMATICAL DERIVATIONS

SECTION A.1- THE STATIC TRANSMISSION COEEFICIENT FROM AREA Il TO AREA 111 (SEE

FIG.1)

Continuity condition for wave function at x = 0;

Tleikx + Rzefikx :Tzeikx
Xx=0=
T,+R, =T,
Discontinuity condition for gradient of the wave function at x =0;

Integrate Schrodinger equation around x = #¢, limiting £—0;

1 0"y (x)

S omi-e ox?

dx + f:g(5[x + L]+ 8[x]w (x)dx = Ef:z//(x)dx
E sz//(x)dx =0

2
I (d_%//j +0w(0) = O,WhereA[d—wj = Iimd—w

2m \ dx
dy) 2mg
A —|=—7w(0
(dxj Py v (0)

w(0)=T,+R, =T,

dy) 2mg 2mg
A[a} w (TR =TT

Differentiate the wave functions at x > 0 and -L < x < 0 and evaluate at +<and -&;

27
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d H i —ikx
d_l/x/_g = ik(T,e™ —R,e™)
W, e
dx .,
lime >0
d .
d_!)/(/ =|k(T1_R2)
W,
dx |,
A9 ik, =T, +R,)
dX 2 1 2
. 2m
'k(Tz _T1+R2)=h—gg(T1+R2)
mg
sayf = ——
yp 2K

The transmission coefficient for area two to area three (through the delta potential at x =

—
! 2
|
o 1T,
T|* - AL+ A)
1

")

SECTION A.2- THE STATIC TRANSMISSION COEFFICIENT FROM AREA | TO AREA Il (SEE FIG.1)

Continuity equation for wave function at x = -L;
Aeikx + Rlefikx :-I-leikx + Rzefikx
X=—L=
Ae—ikL + RleikL :-I—le—ikL + RzeikL
Discontinuity condition for gradient of wave function at x = -L;

Integrate Schrodinger equation around X = -L #¢, limiting £—0;
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B L0’y (X)
2m - Ox?

dx + j U (x+ L]+ S (x)dx = Ej z// (x)dx
E [:y/(x)dx ~0

2
—h—A(d—'//) +g://(—L):0,WhereA(d—l’//] :Iimd—'//
X ). dx ),

2m 0 X |,
d 2m
)=y
l//(_l—) — Ae—ikL + RleikL — Tle—ikL + R eikL

dy ) 2mg ., iy 2MY i ikL
A== === (Ae™ +Re +R,e
(%)= 209 ne 1 ey = e )

-L+¢

Differentiate the wave function at x< -L and -L< x< 0 and evaluate at —-L+<cand —L-¢;

O;—')/(’ - ik(Ae™ — Re ™)

‘jj—‘i - ik(T,e"™ — R,e ™)
lime — 0

Z—ZL = ik(Ae ™ —Re™)

Z—‘)/(’H = ik(T,e ™ — R,e™)

A[dl//j — ik Tle—ikL _ RzeikL _ Ae ik RleikL)
-L

ik(TlefikL . RzeikL _ A 4 RleikL): 2;; ( Ae—* 4 R elkL) 2;”9 (T ek L R elkL)

[(T Ay (R - R)e'“} —2ipy(-L)

T =A- [Ziﬁ(//(_ L)eikl- + (Rl _ Rz)ezm_]

mg
sayf =)
T, :Tl(l_ Z/Bi)_ R2(1+ 2,&)

R2=T2_T1

T, =T.(0-2/)-T,1+2/4)+T,(1+24)
CT(@+1-24+24) T,

L (2+28) [+ A)

Recall the following relationships:
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Tl
27 wrip)
R, :-I—le—ZikL +R, — Ag 2K
T,
@+ip)

Substitute into the above equation for Ty;
T, = A—[2iB(T, + R,e?™ )+ (R — R, )™ |
= A-2ifT, - 2ifR,e™ — Re™ +R,e™"
= A=2ifT, - 2ifR,e”™™ —T, + A- Re”™ + R
=2A-2iAR,e™ —T,(1+2ip)

=2A- mﬂ( —TJ””—ﬂﬂ+mﬂ)

Rl :Tle72ikL + _T Ae72IkL

T
(1+ip)

Zﬂ 2|kL 2ikL
2A = T(2+2Iﬁ+(1+ ,8) —2ife )

A
IB 2ikL H 2iij
1+if+—=e™" —ife
( @+ip)

1+ip

T, =

2
. . T
Transmission coefficient T'= %

-
: ( g —2ikL+iﬂe—2ikL][1+lﬂ+ ip 2|kL_il6,62iij
1-ip) (1+ip)
=>T'= L
ip o= 2KL i 2L |4 i 2L ;o 2ikL
( i - ( ﬂ) +ipe j[1+lﬁ+(1+iﬁ)e -ife j
i 1
L BOIB) 2k gk o2 P0-1P) ik _ g _iB+18) 2k SP0+1A) - 2ik
(1+/3 ) (1+/3 ) (1+/32) (1+/32j
. p? 2(1+I,6’) v 2 ﬁZe—ZikL_ﬂz(l—iﬂ)

(1+/3) [Eu ) (1+/32) |

ip+ 2P g2 a-ip) ([ B2 -ipf - pRavin) 2 |
1422+ (( )(1+ /;ZJ ) . (( )(“ ﬂzj ) . (1+ﬂﬂ2) +(iﬂ_ﬂ2)e- 2ikL _(iﬁ +/32>ez|kL

SECTION A.3- THE QUANTUM TRANSMISSION COEFEICIENT FROM AREA Il TO AREA 111
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(SEEFIG.2)

CASE 1: E > Qn

Continuity condition for wave function at x = 0;
Tllneiknx + sznefiknx =T2'neiknx
x=0=
Tl,n + R2,n = Tz,n
Discontinuity condition for gradient of the wave function at x =0;
Integrate Schrodinger equation around x = #¢, limiting £—0;

nt oy, |* .
—o— |+ 0o (0)+ VW (0)+ 0, VN + 1y, (0) + Fren |

wx=E [ dxLimit € > 0;-
s v =E, [ v,

&

J.jz//ndx =0

= |:ag)/(n :| B il_rzn[gol//n (0) + gl\/ﬁlr//n—l (O) + gl vn +ll/jn+l (0)]

A{%} =22 o, @+ 9.y, 1+ 9,30+ Ty, 0)

Differentiate the wave functions at x > 0 and -L < x < 0 and evaluate at +¢ and -¢;

v _ ik, (T, ,e"* - R, e ™)

dx |,

Wal ik 7, et

dX +& ’
lime >0

dy, .

W_ = II(n (Tl,n - Rz,n)

dl//n = iknT2n
dx |, ’

A sk (1, -7, +R,,)

dX n\'2n 1,n 2,n
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2m — .
= ? I:gol//n (O) + gl\/ﬁl//n—l (O) +0,vn +1Wn+l (O)] = Ikn (Tz,n _Tl,n + R2,n)
Wn (0) = Tl,n + R?_,n = T2,n

= _ﬂ[go(-rz,n )+ gl\/ﬁ(TZ,n—l)_'_ gl Vv n +1(T2,n+1 )] = 2(-I-Z,n _Tl,n)

h2k,
Which can be written as a sequence:

__ (gO(TZ,n )+ gl\/ﬁ(TZ,n—l))_i_ | thn (Tz,n _Tl,n)
2 g,4/n+1 m g.W/n+1

CASE 2: E < Qn

Continuity condition for wave function at x = 0;

T

T.e ™ +R, e" =T, e™
Xx=0=
T, +R,, =T,
Discontinuity condition for gradient of the wave function at x =0;

Integrate Schrodinger equation around x = #¢, limiting £—0;

2 +e
_;l_|:aal//n:| +gol//n(0)+g1\/ﬁl//n—1(0)+gl Vn+1l//n+1(0)+ha)n.|. WndX:EnI l//ndX lelt & _)0’-
ml x|, - "

fl//ndx =0

= {%} B il_rzn[gol//n (0) + gl\/ﬁlr//n—l (O) + gl vin +ll//n+l (0)]

A{%} -2 o ©+ 9.y, 1+ 9,40+ Ty,,0)

Differentiate the wave functions at x > 0 and -L < x < 0 and evaluate at +<and -&;
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dV/n —KkX KX
W_g_ Kn(Tl,ne ! _Rz,ne n)
d
ﬂ __KnTZne ¥
dx +& '
lime—>0
dy,
dx 7:_Kn(T1,n_R2,n)
d
Y :_KnTZn
dx |, '
dy,
A d— :_Kn(TZn +R2n _Tln):_ZKn(TZn _Tln)
X , . , , .

2m
N h—z[gown (0) + g,y 1 (0) + g, N+, (0)) = ~2x, (T, ~T,.)

l//n (0) = Rz,n +T1,n :TZ,n
= _h%[gO(TZ,H )+ gl\/ﬁ(TZ,n—l)"— gl v+ 1(T2,n+l)]:T2,n _Tl,n

Which can be written as a sequence:

T __ (go(TZ,n)+ gl\/ﬁ(TZ,n—l))_l_ thn (TZ,n _Tl,n)
2,041 gl\/m m gl\/m

SECTION A.4- THE QUANTUM TRANSMISSION COEFFICIENT FROM AREA | TO AREA |1

(SEEFIG.2)
CASE 1: E > Qn

Continuity condition for wave function at x = -L;
T,.e" +R, e = Ae" +R e
X=-L=
Tlvne—iknL n szneiknL _ Ane—iknL " RlyneiknL
Discontinuity condition for gradient of the wave function at x =-L;

Integrate Schrodinger equation around x = -L #¢, limiting £é—0;
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hz al//n —L+e Lie L+s

Limit £ - 0 ;-J:LL_+wndx =0

= {%} = am [gzl//n (_I—)]

oX | . n
oy 2m
JA | =2 -L
|: 6X }L hz [gZWn( )]
Differentiate the wave functions at x < -L and -L < x < 0 and evaluate at -L+<and -L-¢;
dy, =ik, (Aneiknx _ Rlne—iknx)
dX -L-¢ '
dy, — ik, (Tlneiknx R, ne—iknx)
dX -L+e ’ ’
lime —>0
dy, =ikn(Ane‘ik"L _RlneiknL)
dx | .. ’
dy,| _ ik, (T, et —R, e™t)
dx | ., ’ ‘

A[d(;//nj — ik, (Tlne—iknL R, e"t A gl ¢ RlneiknL)
X ). ’ ' '
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5 ;T[gzyjn (L)) =ik, (T, et ~ R, e*t — A et R e™)

!//n (_L) — AnefiknL + RlvneikﬂL — TlvnefiknL + RzyneiknL

Rz,n :Tz,n _Tl,n
= l//n (_L) :Tl,neiiknL +T2,neiknL _Tl,neiknL
2img i i i S i i i
- hzknz (Tlvne N LITC “"L)z (lene “t_R, et —AeT" 4R e k"L)
RlyneiknL _ Rz’neiknL =T1vne—iknL _ Ane_iknL
2img ; : i r
- hzk 2 (Tl,ne ot +T2,ne ot _Tl,ne knL): 2e knL(Tl,n - An)
'mg img 2ik, L mg 2ik, L img, i
kz Tln :(An_Tl,n)+ hzkz( 2n_-|-1n}9 _An 2T e Tl,n[1+hzk:e ]
'mgz img, o2l |mgz 2ik, L
T, +T, |1+ + T,.e
h k 1n l,n( h k ] An
A+ |miz T, e2|k L
=T, =
' m m ;
i 292 +1_|_| 292 plil
nok, nok,

CASE 2: E < Qn

Continuity condition for wave function at x = -L;

KpX —KpX KnpX
Rl]ne _lene + Rzyne
X=-L=>
-x,L —x,L
Rl’ne _lene + R2 .e

Discontinuity condition for gradient of the wave function at x =-L;

Integrate Schrodinger equation around X = -L #¢, limiting £—0;

hz aWn hre —L+e —L+e
2m |: ox :|_L_g + gzl//n (_L) + ha)n,[L,g l//ndx - En J-,L,g l//ndx

Limit & - 0;- "y, dx =0

:{%} - = 2 gy, (-L)]

ox |, n
oy 2m
Al —* -L

Differentiate the wave functions at x < -L and -L < x < 0 and evaluate at -L+¢ and
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d
ﬂ — Kn RlneKnX
dx |, '
dy
n R ek _R. kX
dX s n (Tl,n 2,n )
lime—0
L7
dX . n'tn
d
ﬂ =K, (TlneKnL _RZ ne_KnL)
dX -L+ ’ Y
d
A(—(;//"j =K, (Tlvne""L +R, 67" - Rzyne"‘"L)
X L
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