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ABSTRACT  

Quantum coherent transport in nanostructures has been one of the 
most exciting topics in ‘mesoscopic physics’ over the past decade. 
Interference and quantisation effects determine electronic properties in 
many phenomena like quantum Hall effect or conductance oscillations in 
small metallic rings. Furthermore, time-dependant coherent phenomena 
like the suppression of tunneling by irradiation with light have become the 
focus of very recent research. 

In this project, we theoretically investigate the scattering of 
electrons from one-dimensional model potentials that change as a function 
of time and are of the form of a repulsive double delta function. We will 
perform calculations of the time-dependant Schrödinger equation to be 
solved numerically in a subsequent project, and compare with limiting 
cases that can be solved analytically. 

Our aim is to make predictions for experimentally relevant 
quantities like e.g. the time averaged transmission coefficient. 

The project is concluded upon finding the Fano resonance of the 
quantum dynamical case and the zero-channel transmission amplitude, 
involving a defined Green’s function and a recursively defined self-energy, 
for this quantum dynamical case. 
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Quantum mechanical 
scattering in a time-

dependant 1d potential. 
An investigation into the transmission through 

a double delta potential barrier. 
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CHAPTER 1-:-INTRODUCTION TO QUANTUM 

MECHANICS AND ITS APPLICATION TO THIS 

INVESTIGATION. 
SECTION 1.1- INTRODUCTION 

1.1.1 The Schrödinger wave equation 

 

In any introduction to quantum mechanics, Schrödinger’s wave equation must be the most 

important mathematical tool; Stationary Schrödinger equation;   ΕΨ=ΨΗ̂  

Where Ψ is the wave function corresponding to │Ψ│2 integrated over all dimensions being 

the representation of the probability density of the particle. Ψ completely describes the 

information of the particle at all points in space. 

 

Η̂ is the Hamiltonian operator and is functional when acting on an eigenfunction i.e. the wave 

function, Ψ. It contains the information of the total energy constraints on the particle and 

defines the idealized system of which the particle is a constituent. Consequentially, this gives 

an eigenvalue, E, which is usually defined in a sequence or series and is, as the physics of the 

microscopic world suggests, quantized into a discrete spectrum of values corresponding to the 

allowed energy values and is the expected value of the effect of the Hamiltonian of the system 

(for a simple example of energy quantization, refer to Einstein’s explanation of the 

photoelectric effect). 

 

1.1.2 Potential barriers, the transmission coefficient and the delta function 

 

The potential barrier function is included in the Hamiltonian of the system; 

)(
2

ˆ
2

22

xV
dx
d

m
+−=Η

 in one dimension. Where the first part of the Hamiltonian represents the 

effect of the kinetic energy of the incident particle wave function. 

 

V(x) includes all the information of the potential barrier and represents the form of the 

potential in normal coordinate space. For an in depth look at the form of the delta function 

(sometimes called the Dirac delta function), see Appendix 1 of Eugen Merzbacher’s Quantum 
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Mechanicsi (third edition, Wiley, 1998). The forms of the Dirac delta potentials in this project 

are repulsive potentials (for a further discussion of this see the aims section of this report). 

 

To get a grip on the problems in this project, I have chosen to point out a simple example of 

the effect of a repulsive square potential barrier on an incident wave function (this example is 

taken from chapter 2 of Franz Mandl’s Quantum Mechanicsii (Wiley, 2001). Refer to this 

book for derivations of the results quoted here. 

 

 

1.1.3 Simple potential barrier problem 

 

The potential in 1d shall have the form expressed opposite. 

The incident wave function, φ, can be expressed as a 

superposition of plane waves spanning from −∞ to +∞, where 

k represents the wave number:- 

2

2


mEk = for E > 0                                

ikx

ikxikx

Ceax
BeAeax

=>

+=−< −

)(
)(

φ

φ
 

 
ikxe represents a wave function traveling in the positive x 

direction and ikxe− represents a wave function traveling in the negative x direction (a reflected 

wave function). There are no waves of the form ikxe− at x > a, since there is nothing defined 

for the particle wave function to reflect from in this defined area of co-ordinate space. Read 

the first few chapters of A.P. French’s Vibrationsiii and wave for an introduction to the 

complex exponential form of a wave. 

 

A is a constant amplitude, A’ and C are constants related to A. A, A’ and C are related to the 

particles currents. The particle current density of the incident beam is given by:- 

flecteddTransmitteIncident jjA
m
kj Re

2 +==
  

Which is obeys a conservation of particles argument. This gives the reflection and 

transmission coefficients as:-  

axforxV

axforVxV

>=

<>=

.,0)(

.),0()( 0
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Incident

flected

j
j

R Re= and 
Incident

dTransmitte

j
j

T =  and also the relationship that 1=+ RT . 

 

For this case, in the inner region ax < , the wave function has oscillators or real exponential 

character depending on the energy: 

 
0

0

VE
VE

<
>

  
⇒
⇒

  
( )
( ) xx

iqxiqx

eBBeax

eBBeax
κκφ

φ

′+=<

′+=<
−

−

where )(2
02 EVm
−=



κ and )(2
02 VEmq −=



 

 

The resulting transmission coefficients are found by taking into account the fact that )(xφ and 

)(xφ ′  have to be continuous at x = ± a . The following transmission coefficient was derived 

from the above to give:- 

 

( )
( )

12.16 4
2

2

>>
+

= − κ
κ
κ κ awheree

k
kT a  

 

The following graph is a qualitative view of what is happening before and after the potential 

barrier: 

 
 

1.1.4 The Delta function and its propertiesiv 
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The delta function is the maths used to describe bitsiv. To gain an understanding of the 

properties of the delta function, we first need to define a functional distribution for it to be 

described by. An appropriate function to use would be the 

Gauβ function (in co-ordinate space), )(xg  and its Fourier 

transform (in phase space), )(~ kg : 

( )

2

2
2

22

2

2

)(~

2
1:)(

k

Lx

ekg

exg

σ

σ

πσ
−

+
−

=

=
 

Where σ is a measure of how broad the distribution is in the x plane. If we now use this fact 

and limit σ to zero, we have what is called the Delta function. In co-ordinate space, this would 

correspond to an extremely sharp wave packet around x = - L that could serve as a model for 

a particle located at x = - L. We define the Delta function: 
( )

2

2

2
20 2

1lim:)( σ
σ πσ

δ
Lx

eLx
+

−

→
=+  

If the limit in the Delta function does not reach 0, but is still a very, very small number in the 

context of the function, the delta function can be used to describe discrete data (i.e. quanta). 

Conversely, if the limit does reach zero, the function will become meaningless and just 

describes a normal continuous data set, which is adequately described without such a delta 

function. The formal definition of the delta function comes from its operation on a function.  

∫ ∫
∞

∞−

−∞

∞−→
== )0(

2
1)(lim)()( 2

2

2
20

fexdxfxfxdx
x
σ

σ πσ
δ  

Such an operation is called a functional, which is a mapping that puts a whole function to a 

(complex or real) numberiv. The function can, almost, be described in a piecewise way; the 

delta function is equal to infinity at x = 0 but is equal to zero at all other points. 

 

Some of the properties of the delta function used in this investigation are quoted from Dr 

Tobias Brandes’ lecture notes on Quantum Mechanics I, second year physics undergraduate 

course, UMIST 2003: 

∫
∫
∞

∞−

∞

∞−

=′−′′

=

)()()(

)0()()(

xfxxfxxd

fxfxdx

δ

δ
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The Fourier transform of the delta function is a superposition of all plane waves; the 

corresponding distribution of k-values in k-space is extremely broad, that is uniform from 

negative infinity to positive infinity. The corresponding transformation of the delta function 

defined by the Gauβ function gives: 

1)(~
=xδ  

i.e. this definition of the delta function is normalised. 

 

1.1.5 Harmonic oscillators 

 

The harmonic oscillator will allow me to introduce a quantum mechanical behaviour to the 

potential barrier. I will now, with the help of Franz Mandl, outline the basic physics of the 

harmonic oscillator. For more explicit derivations, see Franz Mandl’s Quantum Mechanicsii, 

chapter 12.5 (Wiley 2001). 

 

I have chosen this example as it introduces the Dirac formalisation, which is used in some 

parts of this report. Using this formalisation also makes neat proofs that are totally explicit, 

yet economical with ink and paper. 

The Hamiltonian for the harmonic oscillator is defined as;- 
2

2

2

22

22
2

1

22
ˆ

ˆ
2

ˆˆ

xm
dx
d

m

xm
m
p

ω

ω

+−=Η

+=Η



 

We now introduce two more operators that either raise or lower the state (state referring to the 

state function or wave function of the incident particle). These operators are named, 

unsurprisingly, the creation operator and the annihilation/destruction operator: 

p
m
ixma

p
m
ixma

ˆ
2

ˆ
2

ˆ

ˆ
2

ˆ
2

ˆ

ω
ω

ω
ω









−=

+=

+

, are the annihilation operator and the creation operator 

respectively. 

We will also define the Hermitian operator Ν≡+ ˆˆˆ aa . 

â and +â do not commute as [ ] 01ˆˆˆˆˆ,ˆ ≠=−= +++ aaaaaa  

The Hamiltonian for the system can be written as ( )2
1ˆˆ +=Η Nω  



 8 

To find the energy eigenvalues for the Hamiltonian, we need to find the eigenvalues of N̂ . 

This is clearly an eigenvalue problem. Now we use the eigenstate of N̂ as λ and the 

eigenvalue of N̂ asλ : 

λλλ =N̂ where λλ is defined to be equal to unity in a normalised situation. 

λλλ N̂= where λ is the complex conjugate of λ . 

0ˆˆ

ˆˆ

ˆˆ
*

≥=

=

=

+

+

λλ

λλ

λλλ

aa

aa

aa

i.e. eigenvalues of N̂ are non-negative and there must exist a smallest 

eigenvalue 0λ  

( )
( ) λλ

λ

λλ

+

++

+++

+=

+=

=

a

aaa

aaaaN

ˆ1

1ˆˆˆ

ˆˆˆˆˆ

and similarly: 
( ) λλ

λλ

a

aaaaN
ˆ1

ˆˆˆˆˆ

−=

= +

 

This shows that the operators â and +â destroy or create an eigenstate λ . 

There exists a lowest state 0λ , such that 0ˆ 0 =λa . There is no lower state that exists below the 

lowest state (ground state). 0ˆˆˆ
00 == + λλ aaN , so that 0λ belongs to the eigenvalue 

00 =λ  and the eigenvalues of N̂ are n = 0, 1, 2 … 

nnnN =⇒ ˆ , where n represents the nth state of the harmonic oscillator. 

 

Returning to our introduction to the quantum mechanics, we see that n is analogous to )(xψ . 

To take care of the quantisation previously derived, the wave function )()( xx nψψ → , where 

)(xnψ has a different harmonic form for each n = 0, 1, 2 … and for all of our 

applications, nxn =)(ψ . 

 

From the Schrödinger equation it can be seen that the quantisation of states also occurs in the 

energy eigenvalue of the system, nE . It can be derived from our Schrödinger equation that 

( )2
1+= nEn ω  for n = 0, 1, 2 … 

 

I think that this section of the introduction is best summed up by a quote from Franz Mandlii: 
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“… we can interpret n as a state with n quanta present, each with energy ω . We can see … 

that na +ˆ is a state with (n + 1) quanta i.e. +â creates a quantum, and that nâ is a state with 

(n – 1) quanta i.e. â absorbs a quantum. â  and +â are accordingly known as absorption (or 

annihilation) and creation operators respectively. The operator N̂ is called the occupation 

number operator; its eigenvalues n = 0, 1, 2 … specify the number of quanta in the state n .” 

 

SECTION 1.2- AIMS 

 

What is the δ(x) function? An infinite potential in the co-ordinate space. It seems to be a 

mirror infinitesimally thin, but still there, as to disrupt the probability amplitude of any 

incoming particle wave function, ψ(x). This could be visualized as ripples on a lake that has 

some kind of dam system analogous to the form of the δ(x) function. We would see this in the 

quantum world as ripples on the lake that seem to ignore the existence of the dam system, the 

only noticeable effect of the dam would be a distortion of the ripples. Considering the case 

 

Could this δ(x) function be a limiting case for a model? Maybe the model would consist of a 

region of space being a disallowed area, but since the wave function is a probability of the 

particle being there, it can pass the disallowed region without actually penetrating it. 

 

The aims of this theoretical project will be to find out what this δ(x) function is by measuring 

its effect on Fermion’s a probability wave function (a ‘particle’ that obeys Fermi-Dirac 

statistics).  

 

The effect of δ(x) on the probability wave function will be found by calculating the amount of 

the wave function that is reflected or transmitted through the delta potential. Finding the 

transmission coefficient of the whole system can do this. The method used to find this will be 

an aim of the project. 

 

The title of this project dictates a double delta potential barrier (see figure 1) as a previous 

project has already tackled a single delta potential in a classical and quantum case. For a 

better understanding of this project, read the report by John Robinsonvi with Tobias Brandes 

called Transmission through a Quantum Dynamical Delta Barrierv (umist, 2002). Many 
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analogies can and have been made to this case, but only as far as the method that was used. 

The rigorous mathematical techniques involved are obviously more complicated in this 

project. 

 

An aim of this project is to apply the method John Robinson used to find a static case for the 

system and hence the transmission coefficient. This can then be compared with a quantum 

case so that the quantum effect can be deduced. 

 

The static case will use the same boundaries and initial conditions as a square potential barrier 

(see section 1.1.3). this is because it has no bound solutions (a repulsive barrier) and is a 

similar arrangement to boundaries of my problem. This approach should allow me to find the 

transmission coefficient at each boundary and hence find the transmission coefficient of the 

whole system by multiplying the two together. 

 

To implement a quantum character to the static case, I will simulate a harmonic, oscillatory 

motion on one of the barriers. This will be of the form of a bosonic frequency (see figure 2) 

that is coupled to the incident particle wave function (see section 1.1.5). This will quantize the 

energy eigenvalues so that a recursive transmission coefficient can be found. Further 

representation of the transmission coefficient will also be implemented to make computation 

of these transmission coefficients the next obvious step after this project. 

 

These methods completed, comparisons between the static and quantum (oscillator) cases can 

be made and concluded upon. 
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SECTION 1.3- MODELED GRAPHIC DIAGRAMS 

 
Figure 1 

 

Figure 2 
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CHAPTER 2-:-THE STATIC CASE 
 

SECTION 2.1- BOUNDARY CONDITIONS 

These conditions set out the form of the wave functions in the separated zones (see figure 1) 

and are of the same exponential form as the simple square potential barrier in section 1.1.3. 

Conditions set out like these assume an incident particle bean from the left. ikxe represents 

wave functions traveling in the positive x direction and ikxe− represents waves traveling in the 

negative x directioniii. The superposition of these states describes the form of the total wave 

function at any position in the one-dimensional real space. 

 

( )
( )

( ) ikx

ikxikx

ikxikx

eTx
eReTxL
eRAeLx

2

21

1

0

0

=>Ψ

+=<<−Ψ

+=−<Ψ
−

−

 

 

 

Wave vector,  

 2

2


mEk =  

 

SECTION 2.2- THE HAMILTONIAN AND THE SCHRÖDINGER EQUATION 

The piecewise description of the bosonic potential energy variation is: 
( ) ( )
( ) ( )xV

LxLV
δ
δ

=
+=−

0
 

Where ( )Lx −δ  is the Dirac delta function at a position x = L, and L is the length of the gap 

between the two delta potential functions 

. 

The Schrödinger equation, with the applicable Hamiltonian operator inserted is: 

 [ ] [ ]( ) )()()(
2 2

22

xExxLxg
x

x
m

ψψδδψ
=+++

∂
∂

−
  

 

SECTION 2.3- CONTINUITY/DISCONTINUITY CONDITIONSi 
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2.3.1 Continuity conditions 

  

This is a standard condition that requires the wave function not to have any discontinuous 

jumps in any part of its form i.e. the wave function should be smooth and continuous. All that 

is needed to do this is to equate the wave functions that appear at each side of a boundary 

(delta potentials at x = 0 & x = -L), at the boundary position. 

 

Continuity condition for wave function at x = 0; 

⇒=
=+ −

0
221

x
eTeReT ikxikxikx

 221 TRT =+  

Continuity equation for wave function at x = -L; 

⇒−=
+=+ −−

Lx
eReTeRAe ikxikxikxikx

211  ikLikLikLikL eReTeRAe 211 +=+ −−  

 

2.3.2 Discontinuity conditions 

 

This is also from a standard condition that requires the derivative of the wave function with 

respect to x to be continuous at all points except where the potential is infinite. One can see 

that from this condition, it would be intuitive to say that this gradient should be discontinuous 

at the places where the potential is infinite. 

 

A method to apply this discontinuity condition is to integrate the Schrödinger equation around 

the delta potential position±ε, in the limiting case where ε is zero. This can then be equated to 

the small difference, ∆, in derivatives at each side of the delta potential position ±ε, where ε 

is, again, limited to zero. 

 

Discontinuity condition for gradient of wave function at x =0; 

[Integrate Schrödinger equation around x = ±ε, limiting ε→0] = [Differential of the wave 

functions at x > 0 and -L < x < 0 and evaluated at +ε and -ε, limiting ε→0] 

22212

2)(2 TmgRTmg
dx
d



=+=





∆
ψ  
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( )i
TT
β+

=
1

1
2  [

k
mgsay 2


=β ] 

Discontinuity condition for gradient of wave function at x = -L; 

[Integrate Schrödinger equation around x = -L±ε, limiting ε→0] = [Differential of the wave 

function at x< -L and -L< x< 0 and evaluated at –L+ε and –L-ε, limiting ε→0] 

 

( )ikLikLikLikL eReTmgeRAemg
dx
d

21212

2)(2
+=+=






∆ −−
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SECTION 2.4- THE TRANSMISSION COEFFICIENT 

The transmission coefficient of area II to area III is 2
1

2
2''

T

T
T =  

( )21
1''
β

Τ
+

=  

Transmission coefficient of area I to area II is 2

2
1'

A
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T =  
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
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Transmission coefficient of the whole system is simply the multiplication of successive 

transmission coefficients '''TTT =  

ikLeiikLei
T

243222432242221

1
−





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

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It would be useful to find this transmission coefficient in terms of the energy of the incident 

particle, T(E). 
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CHAPTER 3-:-DISCUSSION OF THE RESULTS 

OBTAINED FROM CHAPTER 2 
 

The transmission coefficient for the static case can clearly be solved analytically using a 

graph of T(E), since there is only a dependence of the transmission coefficient on the energy, 

E, of the electron and the potential constant, g. These results should be compared with the 

case of the single delta potential barriervi and the case of the square potential barrier (section 

1.1.3). 

 

Comparison with the single delta potential 

 

Results from reference (V) give the transmission coefficient though a Static 1d delta potential 

barrier to be: 

24
4

gE
ET
+

=  

We can see that the two differ by a variable, ξ (E), that is multiplied with g2. This can be 

expressed in the form of complex variables: 

)()(
2

)(
2

EE
E

gE ∗++= ςςξ  

Where )(E∗ς is the complex conjugate of )(Eς . The complex function of kinetic energy of 

the incident wave function and potential energy of the delta potential particles: 

ELie
E
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E
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
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This is the part of the transmission coefficient that depends on the distance L between the two 

delta potential barriers. When this distance is equal to zero; 

E
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Giving the transmission coefficient as 
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CHAPTER 4-:-THE OSCILLATORY (QUANTUM) 

CASE 
 

SECTION 4.1- BOUNDARY CONDITIONS 

 

These conditions are set out in analogy with chapter 2, but taking section 1.1.5 into account. It 

can be seen that the quantisation of the harmonic oscillator dictates a quantisation of states also 

occurs in the energy eigenvalue of the system, nE . Since the energy and wave vector, k, are 

related, the wave vector will also see a quantisation of states, corresponding to Fanovii type 

resonances. The mathematical theory behind this area of Quantum Dynamics can be found in 

Guido Fano’s bookvii, chapters 5.1-12 and 6.5. 

 

It should be clear, after section 1.1.3, that there will be two separate cases: 

When the energy is greater than the bosonic energy, Ωn; Real wave vector,  

 nkn Ω−Ε=  

When the energy is less than the bosonic energy; Imaginary wave vector,  

 Enn −Ω=κ

The case with the real wave vector is analogous to that of chapter 2. The case with the 

imaginary wave vector will need to be described by a decomposition into plane waves:

CASE 1: nΩ>Ε  

 

( )
( )

( ) xik
nn

xik
n

xik
nn

xik
n

xik
nn

n

nn

nn

eTx

eReTxL

eReAxL

,2

,2,1

,1

0

0

=<Ψ

+=<<−Ψ

+=>−Ψ
−

−

 

 

CASE 2: nΩ<Ε  
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SECTION 4.2- THE HAMILTONIAN AND THE SCHRÖDINGER EQUATION 

The electron energy Hamiltonian 2

22

0 2
ˆ

xm ∂
∂

−=Η
  
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The interaction (coupling) Hamiltonian [ ][ ] )()(ˆˆˆ
210 LxgxaaggINT ++++=Η + δδ  

The bosonic energy term  (harmonic oscillator creating or destroying a state with photon 

interaction in the defined integer increments of the creation and annihilation operators, see 

section 1.1.5) aaB ˆˆˆ +Ω=Η  

Where ω=Ω , and is the bosonic frequency of the photon. 

[Note that a factor of 2
Ω , the ground state of the boson, is neglected for convenience. However, 

it should be noted that a lowest state, the ground state, does exist and that no eigenstate can have 

a lower eigenvalue than E0] 

 

The sum of these Hamiltonians for kinetic, potential and interacting energies gives the total 

Hamiltonian of the system: 

[ ] aaLxgxaagxg
xm

ˆˆ)()(ˆˆ)(
2

ˆ
2102

22
++ Ω++++++

∂
∂

−=Η⇒ δδδ  

Creation and Annihilation operators (defined in section 1.1.5):
p

m
ixma

p
m
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Schrödinger equation (section 1.1.1); ΕΨ=ΨΗ̂  

Where the formation of the separation ansatz of the electron wave 

function, )()( xx ′=Ψ φψ involves the separation of variables. )(x′φ is the coupled bosonic wave 

function, corresponding to the interacting photon. 

Expand the electron wave function,Ψ , into a sum of component eigenkets, n , from the photon 

in the electron frame, as a sum over all resonant states, n : 

∑
∞

=

=Ψ⇒
0

)(
n

n nxψ  

Where n corresponds to )(xn ′φ  and is the photon wave function traveling in the positive x 

direction. Conversely, )(xm ′∗φ corresponds to m and is the photon wave function traveling in 

the negative x direction. 

Schrödinger equation as a summation over all resonant states; 
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Creation and Annihilation operator identities: 
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Change of summation indices so n can be taken out as a factor 
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Multiply through by the boson state of the interacting photon m , making use of the fact that 

nmnm ,δ= , where nm,δ  is the Kronecker delta, a mathematical tool that gives a “true of false” 

condition for the resonance of the photon wave function with the electron wave function:

 0, =nmδ for nm ≠  1, =nmδ for nm =  

 

This gives the Schrödinger equation as a recursive ψn equation: 

nnnnnnn
n nLxgnxgnxgxg

xm
ψψωψδψδψδψδ

ψ
Ε=+++++++

∂
∂

− +− 

 )(1)()()(
2 2111102

22
 

SECTION 4.3- CONTINUITY/DISCONTINUITY CONDITIONS 
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Continuity conditions 

 

These are exactly analogous to those used in chapter 2, except that there are two cases 

corresponding to the two different types of wave function, depending on the energy of the 

incident electron, see section 1.1.3.

CASE 1: nΩ>Ε  

Continuity condition for wave function at x = 0; 
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xik
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xik
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eTeReT nnn

,2,2,1

,2,2,1

0
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Continuity condition for wave function at x = -L; 
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CASE 2: nΩ<Ε  

Continuity condition for wave function at x = 0; 
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Continuity condition for wave function at x = -L; 

L
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Discontinuity conditions 

 

These are also exactly analogous to those used in chapter 2, except that there are again two 

cases corresponding to the two different types of wave function, depending on the energy of 

the incident electron, see section 1.1.3. Also, see section 1.1.4, for the properties of the delta 

function.



CASE 1: nΩ>Ε  

Discontinuity condition for gradient of the wave function at x =0; 

Integrate Schrödinger equation around x = ±ε, limiting ε→0; 

[ ])0(1)0()0(2
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Differentiate the wave functions at x > 0 and -L 

< x < 0 and evaluate at +ε and -ε; 
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Which can be written as a sequence: 
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Discontinuity condition for gradient of the wave function at x =-L; 

Integrate Schrödinger equation around x = -L±ε, limiting ε→0; 
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Differentiate the wave functions at x < -L and -L < x < 0 and evaluate at -L+ε and -L-ε; 
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CASE 2: nΩ<Ε  

Discontinuity condition for gradient of the wave function at x =0; 

Integrate Schrödinger equation around x = ±ε, limiting ε→0; 
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Differentiate the wave functions at x > 0 and -L < x < 0 and evaluate at +ε and -ε; 

( ) )(2 ,1,2,1,2,2 nnnnnnn
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Which can be written as a sequence: 
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Discontinuity condition for gradient of the wave function at x =-L; 

Integrate Schrödinger equation around x = -L±ε, limiting ε→0; 
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 Differentiate the wave functions at x < -L and -L < x < 0 and evaluate at -L+ε and     -L -ε; 
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Forming of two recursive relations 

 

The four relations above can be reduced to two separate recursive relation, corresponding to 

the two types of wave vector. 

 

 CASE 1: nΩ>Ε : 
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CASE 2: nΩ<Ε : 
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SECTION 4.4- ASSUMPTIONS OF THE INCIDENT ELECTRON BEAM 

 

A fundamental simplification must be made at this point, to make the previous equation the 

general statement that it seems. The constant amplitude for a specific state, An, must be simplified 

to make an calculations less complicated. Impose the condition that 0,nn AA δ= i.e. the boson is in 

its ground state for an electron incident from the left. We can also set A = A0= unity, 

corresponding to a knowledge of the incident bean intensity. 

 

If we let kn be real or imaginary for a given E and n, the two recursion relations can reduce to 

one. For simplicity, we will use 
m
kn

n

2


=γ , where γn can be either real or imaginary. Again, 

we set 12 == m , to put any measurements at the scale of the Bohr radius.  
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This is true for and E > E0 , where E0 corresponds to the ground state energy of the boson, 2
Ω , 

which was noted in section 4.2. Recall the definition of nkn Ω−Ε= . The above equation can 

now be expressed in terms of E. 
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SECTION 4.5- THE STATIC QUANTUM CASE (FANO RESONANCES)vii 

The above recursion relation can be compared with the static case from chapter 2 by equating 

g0 to g2 and g1 to zero. This should give the Fano resonancesvii, of this quantum dynamical 

case corresponding aa ˆˆ +Ω  of the harmonic oscillator without any electron interaction: 
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Using the definition of the transmission coefficient in section 1.1.3, and the assumption made 

in section 4.4, an expression for the transmission coefficient can be formulated: 
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Using the definition of nE
m

En Ω−=
2

)( γ and setting 122 == m and use the equation in 

it’s ground state (n = 0), the equation can be simplified to a similar form of the transmission 

coefficient found in chapter 2. 
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This should now be compared with the transmission coefficient found in chapter 2: 
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CHAPTER 5-:-DISCUSSION OF THE RESULTS 

OBTAINED FROM CHAPTER 4 

It will be useful from this point, to express the recursion relation as an infinite, tridiagonal 
matrixv, M: 
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Where MT=A if 
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An approximation to the solutions lay in truncating the matrix, M. alternatively one can solve 
this matrix recursively, with the introduction of a defined Greens function, G0(E)viii: 
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Using this, T0(E) can be defined: 

( ) 








Σ−










++
−=

)()(
1

1)(
)(

)( )1(
0

2
20

2
0

0 EEGeigE
Ei

ET
EiLγ

γ
 

Where )()( ENΣ is the recursively defined self energy (see page 129 of E.N. Economou’s 
Green’s functions in quantum physicsviii. 
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Using )()( 0 nEEn Ω−= γγ , the self-energy can be expressed as a continued fraction: 
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CHAPTER 6-:-CONCLUSION 

 

SECTION 6.1- THE DIFFERENCES BETWEEN THE STATIC AND QUANTUM CASES  

SECTION 6.2-POSSIBLE APPLICATIONS AND FUTURE PROSPECTS OF THIS INVESTIGATION. 
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APPENDIX-:-MATHEMATICAL DERIVATIONS 

 

SECTION A.1- THE STATIC TRANSMISSION COEFFICIENT FROM AREA II TO AREA III (SEE 

FIG.1) 

Continuity condition for wave function at x = 0; 
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Discontinuity condition for gradient of the wave function at x =0; 

Integrate Schrödinger equation around x = ±ε, limiting ε→0; 
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Differentiate the wave functions at x > 0 and -L < x < 0 and evaluate at +ε and -ε; 
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The transmission coefficient for area two to area three (through the delta potential at x = 
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SECTION A.2- THE STATIC TRANSMISSION COEFFICIENT FROM AREA I TO AREA II (SEE FIG.1) 

Continuity equation for wave function at x = -L; 
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Discontinuity condition for gradient of wave function at x = -L; 

Integrate Schrödinger equation around x = -L±ε, limiting ε→0; 
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Differentiate the wave function at x< -L and -L< x< 0 and evaluate at –L+ε and –L-ε; 
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Recall the following relationships: 
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Substitute into the above equation for T1; 
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SECTION A.3- THE QUANTUM TRANSMISSION COEFFICIENT FROM AREA II TO AREA III  
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(SEE FIG.2) 

CASE 1: nΩ>Ε  

 

Continuity condition for wave function at x = 0; 
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Discontinuity condition for gradient of the wave function at x =0; 

Integrate Schrödinger equation around x = ±ε, limiting ε→0; 

dxdxnngngg
xm nnnnnn

n ∫∫
+

−

+

−+−

+

−

Ε=+++++




∂
∂

−
ε

ε

ε

ε

ε

ε

ψψωψψψ
ψ



 )0(1)0()0(
2 11110

2

Limit 0→ε ;-

0=∫
+

−
dxnψ  

[ ]

[ ])0(1)0()0(2

)0(1)0()0(2

111102

111102

+−

+−

+

−

+++=




∂
∂

∆∴

+++=




∂
∂

⇒

nnn
n

nnn
n

ngnggm
x

ngnggm
x

ψψψ
ψ

ψψψ
ψ



  

Differentiate the wave functions at x > 0 and -L < x < 0 and evaluate at +ε and -ε; 
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Which can be written as a sequence: 
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CASE 2: nΩ<Ε  

Continuity condition for wave function at x = 0; 
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Discontinuity condition for gradient of the wave function at x =0; 

Integrate Schrödinger equation around x = ±ε, limiting ε→0; 
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Differentiate the wave functions at x > 0 and -L < x < 0 and evaluate at +ε and -ε; 
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SECTION A.4- THE QUANTUM TRANSMISSION COEFFICIENT FROM AREA I TO AREA II  

(SEE FIG.2) 

CASE 1: nΩ>Ε  

Continuity condition for wave function at x = -L; 
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Discontinuity condition for gradient of the wave function at x =-L; 

Integrate Schrödinger equation around x = -L±ε, limiting ε→0; 
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Differentiate the wave functions at x < -L and -L < x < 0 and evaluate at -L+ε and -L-ε; 

( )

( )

( )

( )

( )Lik
n

Lik
n

Lik
n

Lik
nn

L

n

Lik
n

Lik
nn

L

n

Lik
n

Lik
nn

L

n

xik
n

xik
nn

L

n

xik
n

xik
nn

L

n

nnnn

nn

nn

nn

nn

eReAeReTik
dx

d

eReTik
dx

d

eReAik
dx

d

eReTik
dx

d

eReAik
dx

d

,1,2,1

,2,1

,1

,2,1

,1

0lim

+−−=





∆

−=

−=

→

−=

−=

−−

−

−

+−

−

−−

−

+−

−

−−

ψ

ψ

ψ
ε

ψ

ψ

ε

ε

 

 



   

A Report and investigation by David Goodwin with Dr T. Brandes as the supervisor 

 
35 

[ ] ( )

( ) ( )

( ) ( )

( ) ( )

Lik

nn

Lik
n

n
n

n

Lik
n

n
n

Lik

n
nn

n

Lik

n
n

Lik
n

n
n

Lik
nn

n
nnn

n

nn
LikLik

n
Lik

n
Lik

n
n

Lik
n

Lik
n

Lik
n

Lik
n

Lik
n

Lik
n

Lik
n

Lik
n

Lik
n

Lik
n

Lik
n

n

Lik
n

Lik
n

Lik
nn

nnn

Lik
n

Lik
n

Lik
n

Lik
nn

Lik
n

Lik
n

Lik
n

Lik
nnn

n

n

nn

nnn

nnnn

nnnn

nnnnnnn

nnn

nnnn

nnnn

e
k

img
k

img

eT
k

imgA
T

eT
k

imgAe
k

imgTT
k

img

e
k

imgTeT
k

imgAeTT
k

imgTAT
k

img

ATeeTeTeT
k

img
eAeTeReR

eReAeReTeTeTeT
k

img
eTeTeTL

TTR
eReTeReAL

eReAeReTikLgm

2
2

2
2

2

2
,22

2

,1

2
,22

22
2

2
,1,12

2

2
2

2
,1

2
,22

22
,1,22

2
,1,12

2

,1,1,2,12
2

,1,2,1

,1,2,1,1,2,12
2

,1,2,1

,1,2,2

,2,1,1

,1,2,122

1

1

1

22

2
)(

)(

)(2















++

+
=⇒

+=







++⇒









+−+=−+−=⇒

−=−+−⇒

−=−

+−−=−+−⇒

−+=−⇒

−=

+=+=−

+−−=−⇒

−−

−−

−−−

−

−−

−−

ψ

ψ

ψ

 

CASE 2: nΩ<Ε  

Continuity condition for wave function at x = -L; 

L
n

L
n

L
n

x
n

x
n

x
n

nnn

nnn

eReTeR
Lx

eReTeR

κκκ

κκκ

−−

−

+=

⇒−=

+=

,2,1,1

,2,1,1

 

Discontinuity condition for gradient of the wave function at x =-L; 

Integrate Schrödinger equation around x = -L±ε, limiting ε→0; 
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Differentiate the wave functions at x < -L and -L < x < 0 and evaluate at -L+ε and     -L -ε; 
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