Optimal Control of Spin Systems

Southamplon

with Newton-Raphson Methods

David Goodwin, Ilya Kuprov.

Optimal Control - Gradient Ascent Pulse Engineering (GRAPE)

The evolution of a quantum system can be characterised by a Liouville $c_{n}^{(k)}$ equation with a vector representation of the density operator, $\frac{\partial}{\partial t}|\hat{\rho}(t)\rangle=-i \hat{\hat{\mathcal{L}}}(t)|\hat{\rho}(t)\rangle$, having the general solution,

$$
|\hat{\rho}(t)\rangle=\exp _{(0)}\left(-i \int_{0}^{t} \hat{\mathcal{L}}(t) \mathrm{d} t\right)|\hat{\rho}(t)\rangle
$$

A practical Magnetic Resonance system can be split into two parts; that is beyond experimental control, $\hat{\mathcal{L}}_{0}$, and a set of controllable electromagnetic pulses $\left\{\hat{\mathcal{L}}_{k}\right\}$:

$$
\hat{\mathcal{L}}(t)=\hat{\mathcal{L}}_{0}+\sum_{k} c^{(k)}(t) \hat{\mathcal{L}}_{k}
$$

The problem is simplified if the control sequences $\left\{c^{(k)}(t)\right\}$ are assumed to be piecewise constant. For a piecewise constant Hamiltonian, we sequentially multiply each of the, discrete in time, propagators into the initial conditions:

$$
\hat{\mathcal{P}}_{n}=\exp [-i(\hat{\mathcal{L}}_{0}+\sum_{k} \underbrace{c^{(k)}\left(t_{n}\right)}_{\substack{\| \\ c_{n}^{(k)}}} \hat{\mathcal{L}}_{k}) \Delta t]
$$

Simulation System

We prepare the Spinach software to find a pulse set to transfer magnetisation from ${ }^{1} \mathrm{H}$ atom to ${ }^{19} \mathrm{~F}$ atom with the following molecule:

Interaction parameters of a
molecular group used in state transfer simulations on a system characterising the fragment of a
fluorohydrocarbon molecule
(magnetic induction $=9.4$
Tesla).
In this case the set of control channels operators are $\left\{\hat{L}_{x}^{(H)}, \hat{L}_{y}^{(H)}, \hat{L}_{x}^{(C)}, \hat{L}_{y}^{(C)}, \hat{L}_{x}^{(F)}, \hat{L}_{y}^{(F)}\right\}$.
It is useful to visualise the set of optimal pulses by the population of their correlation subspaces and population of coherence local at

The Hessian Matrix:

Symmetric,
Non-singular,
Diagonally
dominant.

Regularise the Hessian, so it is non-singular and well conditioned; take the
eigendecomposition of an augmented Hessian matrix:

$$
\mathbf{H}_{a u g}=\left[\begin{array}{cc}
\delta^{2} \mathbf{H} & \delta \vec{g} \\
\delta \vec{g} & \mathbf{0}
\end{array}\right]=Q \wedge Q^{\dagger}
$$

where \vec{g} is the gradient, Λ is a diagonal matrix of eigenvalues and Q is a matrix of eigenvectors. We have introduced a constant δ, found iteratively; the region of a radius we trust to give a Hessian that is sufficiently positive definite

$$
\begin{aligned}
& \mathbf{H}_{\text {reg }}=Q\left(\Lambda+\lambda_{\min } \hat{l}\right) Q^{\dagger} \\
& \lambda_{\min }=\max [0,-\min (\Lambda)]
\end{aligned}
$$

mmetric,

The expression for fidelity, the overlap between the current state of the system ρ_{0} and the target state σ, is

$$
J=\operatorname{Re}\langle\sigma| \hat{\mathcal{P}}_{N} \hat{\hat{\mathcal{P}}}_{N-1} \ldots \hat{\hat{\mathcal{P}}}_{2} \hat{\hat{\mathcal{P}}}_{1}\left|\rho_{0}\right\rangle
$$

Since $\left\{c_{n}^{(k)}\right\}$ are vectors of finite dimension, we can use the standard non-linear numerical optimisation to find the maximum of J in their space (it is useful to note that the maximum of J is the same as the minimum of $1-J$).

Efficient Propagator Derivative Calculations

The numerical optimisation method simulated in the results section above require a gradient calculation. This is reduced to:

$$
J=\langle\sigma| \hat{\mathcal{P}}_{N} \hat{\mathcal{P}}_{N-1} \hat{\mathcal{P}}_{N-2} \hat{\hat{\mathcal{P}}}_{N-3} \underbrace{\hat{\mathcal{P}}_{N-4} \ldots \hat{\mathcal{P}}_{3} \hat{\mathcal{P}}_{2} \hat{\hat{\mathcal{P}}}_{1}\left|\rho_{0}\right\rangle}_{\text {(I) propagate forwards from source }}
$$

$$
J=\overbrace{\langle\sigma| \hat{\mathcal{P}}_{N} \hat{\mathcal{P}}_{N-1} \hat{\mathcal{P}}_{N-2}}^{\text {(II) propagate backwards from target }} \hat{\mathcal{P}}_{N-3} \hat{\mathcal{P}}_{N-4} \ldots \hat{\mathcal{P}}_{3} \hat{\mathcal{P}}_{2} \hat{\mathcal{P}}_{1}\left|\rho_{0}\right\rangle
$$

The total cost of the gradient of J is therefore one forward simulation, one backward simulation and (n steps) $\times(k$ controls) derivatives of matrix exponentials with respect to scalar parameters. The expectation of first order derivatives is

$$
\left\langle\frac{\partial J}{\partial c_{n=t}^{(k)}}\right\rangle=\langle\sigma| \hat{\mathcal{P}}_{N} \hat{\mathcal{P}}_{N-1} \ldots \frac{\partial}{\partial c_{n=t}^{(k)}} \hat{\hat{P}}_{n=t} \cdots \hat{\hat{\mathcal{P}}}_{2} \hat{\hat{\mathcal{P}}}_{1}\left|\rho_{0}\right\rangle
$$

Efficient calculation of the expectation of first order derivatives can be made utilising the work of C.Van Loan; using an augmented exponential in the following form

$$
\exp \left(\begin{array}{cc}
-i \hat{\mathcal{L}} \Delta t & -i \hat{\mathcal{L}}_{n}^{(k)} \Delta t \\
0 & -i \hat{\mathcal{L}} \Delta t
\end{array}\right)=\left(\begin{array}{cc}
e^{-i \hat{\mathcal{L}} \Delta t} & \frac{\partial}{\partial c_{n}^{(k)}} e^{-i \hat{\mathcal{L}} \Delta t} \\
\mathbf{0} & e^{-i \hat{\hat{L}} \Delta t}
\end{array}\right)
$$

- Kuprov; J. Mag. Res. 233, 107-112, (2013).

Floether, de Fouquieres, Schirmer,; New J. Phys. 14, 073023, (2012).
de Fouquieres, Schirmer, Glaser, Kuprov; J. Mag. Res. 212, 412-417, (2011).
extracting the derivative from the upper right block. In practice, the exponential is calculated using a two-point finite difference stencil with Krylov propagation. The Newton-Raphson method is a second order
method, additionally requiring the explicit calculation of the Hessian matrix. This requires the expectation of the second order derivatives:

$$
\begin{aligned}
\left\langle\frac{\partial^{2} J}{\partial c_{n}^{2}}\right\rangle & =\langle\sigma| \hat{\mathcal{P}}_{N} \cdots \hat{\mathcal{P}}_{n+1} \frac{\partial^{2} \hat{\mathcal{P}}_{n}}{\partial c_{n}^{2}} \hat{\mathcal{P}}_{n-1} \ldots \hat{\hat{\mathcal{P}}}_{1}\left|\rho_{0}\right\rangle \\
\left\langle\frac{\partial^{2} J}{\partial c_{n} \partial c_{n+1}}\right\rangle & =\langle\sigma| \hat{\mathcal{P}}_{N} \cdots \hat{\mathcal{P}}_{n+2} \frac{\partial \hat{\mathcal{P}}_{n+1}}{\partial c_{n+1}} \frac{\partial \hat{\mathcal{P}}_{n}}{\partial c_{n}} \hat{\mathcal{P}}_{n-1} \ldots \hat{\mathcal{P}}_{1}\left|\rho_{0}\right\rangle
\end{aligned}
$$

$$
\left\langle\frac{\partial^{2} J}{\partial c_{m} \partial c_{n}}\right\rangle=\langle\sigma| \hat{\mathcal{P}}_{N} \ldots \hat{\mathcal{P}}_{n+1} \frac{\partial \hat{\hat{\mathcal{P}}}_{n}}{\partial c_{n}} \hat{\mathcal{P}}_{n-1} \ldots \hat{\mathcal{P}}_{m+1} \frac{\partial \hat{\mathcal{P}}_{m}}{\partial c_{m}} \hat{\mathcal{P}}_{m-1} \ldots \hat{\mathcal{P}}_{1}\left|\rho_{0}\right\rangle
$$

- Computation to scale with $O(n \times k)$ by storing propagators from gradient calculation.
- Problem now reduces to finding $n \times k$ second-order derivatives on the block diagonal of the Hessian with a 3×3 augmented exponential:

Khaneja, Reiss, Kehlet, Schulte-Herbruggen, Glaser; J. Mag. Res. 172, 296-305, (2005). Nocedal, Wright; Numerical optimization, (1999). Najfeld, Havel; Adv. App. Math. 16, 321-375, (1995).

