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Introduction
In quantum mechanics a popular formulation is to specify the desired state vector of the 
system and maximise the following fidelity functional with respect to the instrumentally con-
trollable part of the Hamiltonian H1(t):

where exp(O) indicates a time-ordered exponential, H0 is the part of the system Hamiltonian 
that cannot be controlled, R is the relaxation operator, ρ0 is the initial state vector and JRF is a 
penalty functional. The gradient ascent pulse engineering (GRAPE) method [1,2] proceeds 
by splitting the Hamiltonian into the uncontrollable part and a number of control operators 
with time-dependent coefficients:

The control coefficients are then discretized on a finite grid of time points: 

With a piecewise-constant Hamiltonian, the time-ordered exponential becomes

with a time-ordered product, and the equation itself acquires the following form:

where the k index runs over the control channels and the n index runs over the time steps. A 
particular strength of the GRAPE method is that the gradient of the fidelity functional

has the same numerical complexity scaling as the fidelity functional itself [1]. This also ap-
plies to the Hessian [3]:
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Hessian Regularisation
Hessians are normally expensive to compute, with computational complexity O(n2). The 
recent quasi-Newton BFGS-GRAPE algorithm [2] avoids their calculation by recovering ap-
proximate second derivative information from the gradient history, scaling with O(n). The fact 
that the Hessian is cheap [3] suggests that Newton-Raphson type algorithms with the control 
sequence update rule at step s,         , (gradient ∇J and Hessian ∇2J of the 
fidelity functional J(c)) should be the next logical step.
Newton-Raphson and quasi-Newton methods (minimisation is assumed here) rely on the nec-
essary conditions for Taylor’s theorem and use a local quadratic approximation:

First order necessary condition requires any minimiser    to be a stationary point (             ). 
The second order necessary condition is that the Hessian ∇2J should be positive definite at   .
Far away from a minimiser, the Hessian is not actually expected to be positive definite. Small 
Hessian eigenvalues are also problematic, resulting in overly long steps (most fidelity func-
tionals are not actually quadratic). A cheap way to detect an indefinite Hessian is to attempt 
Cholesky factorisation, which exists for any invertible positive definite matrix.
An eigenvalue shifting method (aka trust region method, TRM) can shift the eigenspectrum 
enough to ensure the Hessian is not near-singular. This method needs an explicit eigendecom-
position [4], to make a precise estimate of the shifting value σ:

where Λ is a diagonal matrix containing the eigenvalues of ∇2J and Q is the matrix with col-
umns made up of corresponding eigenvectors. A user-specified positive value of δ is included 
 to  make the  Hessian  positive  definite. A problem  with  this method  is that the  regularisation
 proceedure destroys much of the curvature information
The method that was found to perform best in our practical testing is known as rational func-
tion optimization (RFO) [5,6,7]. It replaces the Taylor expansion with a Padé approximant: 

where S is a symmetric scaling matrix. This preserves derivative information, leaving the nec-
essary conditions unchanged. The first order necessary condition with a uniform scaling 
matrix [7] S=α-21, where 0 < α < 1, gives

Rational function optimiSation proceeds in a similar way to eigenvalue shifting methods de-
scribed above, except the shifting is applied to the augmented Hessian:

The top left corner block of the regulariSed augmented Hessian is then used for the Newton-
Raphson step [5,6,7]. Our practical experience with the scaling constant  α  indicates  that  it
 should be allowed to vary, for example:

where ε is machine precision and α0=1. The factor ф is used to iteratively decrease the condi-
tion number of the Hessian. The n root of ε appearing is the strict limit for a line search method 
using polynomial interpolation of degree n.
In practice, at each optimisation step the function code attempts to compute the Cholesky de-
composition. If that is successful then no regularisation is needed, otherwise the function pro-
oceeds to regularizs with the methods described above.
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Hashing and Caching can become very useful in 
optimisation, particularly when many similar 
evaluations are made of a particular function. A 
hash code is used as an identifier to be able to 
quickly retrieve results from a calculation that 
has already been evaluated.

Above is the wall clock time consumed by the 
simulation of the CN2D solid state NMR experi-
ment for a 14N–13C spin pair in glycine with dif-
ferent matrix exponential caching settings.

Parallelisation
Our numerical implementations of gradient and Hessian calculations are parallelised 
with respect to the number of time. Gradient calculation uses 2 × 2 augmented exponen-
tials [3] and Hessian calculation uses a 3 × 3 augmented exponential. The Hessian func-
tion has a further parallel loop when calculating n ≠ m blocks. At that stage, the first de-
rivatives have already been calculated with the 3 × 3 augmented exponential and they 
are recycled.
The scaling depends on the number of time slices in the control sequence and the paral-
lelisation is efficient all the way to the 
number of CPU cores being half the 
number of time slices (over which the 
parallel loop is running). Given the same
computing resources, a Hessian 
calculation takes approximately 10 times
longer than a gradient calculation. 
Because propagator derivatives are 
recycled during Hessian calculation, 
significant efficiency gains may be made 
by optimizing their storage and indexing 
(hashing and caching, left).

0.25 0.50 0.75
N(processor cores) / N(time slices)

x 2

x 3

x 4

x 5

x 6

x 7

x 8

sp
ee

du
p

Gradient Calculation

Hessian Calculation

50% parallel

70% parallel

80% parallel

90% parallel

10
0%

 p
ar

all
el

Amdahl’s law parallelisation efficiency analysis for a 
problem with 6 control operators and 144 time slices

(Directly Below): Convergence profiles for the transfer of longitudinal magnetization into the singlet state for the 
two-spin system described in the main text. The same line search method in the predicted descent direction was 
used in all cases. Memory store for limited-memory BFGS was set to 20 gradients.

State transfer from longitudinal polarization into a two-spin singlet state, while allowing for up to 20% miscalibra-
tion of the control channel power level. The spin system contains two 13C spins in a 14.1 T magnet with chemical 
shifts of 0.00 and 0.25 ppm and a J-coupling of 60 Hz. The system is prepared with 50 time discretization points, 
the nominal power of 60 Hz and the duration of 50 ms is optimized simultaneously for ten different power levels 
spaced equally between 80% and 120% of the nominal power. Weighted norm squared penalty functional was 
used with equal weights for all time points. The infidelity measure refers to the distance from the best possible 
magnetization transfer fidelity for the system in question. Trajectory analysis diagrams and the optimal control
sequences are presented below the convergence profiles

(Directly Below): Convergence profiles for the state transfer within the 1H–13C–19F three-spin system described 
in the main text for the BFGS quasi-Newton method and the Newton-Raphson method using TRM or RFO Hes-
sian regularization techniques. The same line search method in the predicted descent direction was used in all 
cases.

State transfer in a H–C–F group in a 9.4 T magnet with 1H isotope for hydrogen, 13C isotope for carbon and 19F 
isotope for fluorine, with the 1H–13C J-coupling of 140 Hz, 13C–19F J-coupling of −160 Hz and all three signals 
assumed to be on resonance with the transmitters on the corresponding NMR spectrometer channels. A six-
channel (HX, HY, CX, CY, FX, FY) shaped pulse with a duration of 100 ms, a quadratic penalty for excursions out-
tside the 10 kHz power envelope and 50 time discretization points was optimized to perform longitudinal magnet-
ization transfer from 1H to 19F. This system was chosen because very high terminal fidelities are achievable with
 the parameters described above – it is a good test of terminal convergence behaviour for quadratic optimization
 algorithms in finite precision arithmetic


