Elementary Number Theory CIS002-2 Computational Alegrba and Number Theory

\author{
David Goodwin
 david.goodwin@perisic.com

09:00, Tuesday $25^{\text {th }}$ October 2011

Contents

(1) Some definitions
(2) Divisibility

Divisors
Euclid's Algorithm
Bezout's Identity
(3) Class Exercises

Some technical Language

- theorem - a statement that has been proven on the basis of previously established statements
- lemma - a proven statement used as a stepping-stone toward the proof of another statement
- proof - a convincing demonstration that some mathematical statement is necessarily true
- corollary - a statement that follows readily from a previous statement
L. Carroll
"Can you do Division? Divide a loaf by a knife - what's the answer to that?"

THEOREM (1.1)

If a and b are integers with $b>0$, then there is a unique pair of integers q and r such that

$$
a=q b+r \quad \text { and } 0 \leqslant r<b
$$

We call q the quotient and r the remainder.
q is the integer part of a / b and is symbolised by $[a / b]$.

Example (1.1)

If n is a square, then n leaves a remainder 0 or 1 when divided by 4

$$
\begin{array}{ll}
& n=(4 q+r)^{2}=16 q^{2}+8 q r+r^{2} \\
r=0 & n=4\left(4 q^{2}+2 q r\right)+0 \\
r=1 & n=4\left(4 q^{2}+2 q r\right)+1 \\
r=2 & n=4\left(4 q^{2}+2 q r+1\right)+0 \\
r=3 & n=4\left(4 q^{2}+2 q r+2\right)+1
\end{array}
$$

Definition

If a and b are any integers, and $a=q b$ for some integer q, then we say that b divides a (or b is a factor of a, or a is a multiple of b). When b divides a we write $b \mid a$ and we use $b \nmid a$ when b does not divide a.

Theorem (1.2)

(A) If $a \mid b$ and $b \mid c$ then $a \mid c$
(B) If $a \mid b$ and $c \mid d$ then $a c \mid b d$
(C) If $m \neq 0$, then $a \mid b$ if and only if ma $\mid m b$
(D) If $d \mid a$ and $a \neq 0$ then $|d| \leqslant|a|$
(E) If c divides a_{1}, \ldots, a_{k}, then c divides $a_{1} u_{1}+\cdots+a_{k} u_{k}$ for all integers u_{1}, \ldots, u_{k}
(F) $a \mid b$ and $b \mid a$ if and only if $a= \pm b$

Greatest common divisor

Definition

If $d \mid a$ and $d \mid b$ we say d is a common divisor (or common factor) of a and b. If a and b are both not 0 , we find from Theorem (1.2.d) that no common divisor is greater than $\max (|a|,|b|)$. This is the greatest common divisor (or highest common factor) and is denoted by $\operatorname{gcd}(a, b)$.

Euclid's Algorithm

Lemma (1.3)

If $a=q b+r$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$

Proof.

Any common divisor of b and r also divides $q b+r=a$ (from Theorem (1.2.e)), and since $r=a-q b$ it follows that and common divisor of a and b also divides r. Therefore the two pairs a, b and b, r have the same common divisors, and so the same greatest common divisor.

Bezout's Identity

We use Euclid's algorithm to give a simple expression for

$$
d=\operatorname{gcd}(a, b)
$$

Theorem (1.4)

If a and b are integers (not both 0), then there exists integers u and v such that

$$
\operatorname{gcd}(a, b)=a u+b v
$$

Theorem (1.5)

Let a and b be integers (both not 0) with greatest common divisor d. Then an integer c has the form $a x+$ by for some $x, y \in \mathbb{Z}$ if and only if c is a multiple of d. In particular, d is the least positive integer of the form $a x+$ by $(x, y \in \mathbb{Z})$.

Definition

Two integers a and b are coprime (or relatively prime) if $\operatorname{gcd}(a, b)=1$.
A set of integers are coprime if $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots\right)=1$ and are mutually coprime if $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ whenever $i \neq j$.

If a set of integers are mutually coprime then they are aslo coprime, but the converse if false.

Corollary (1.6)

Two integers a and b are coprime if and only if there exists integers x and y such that

$$
a x+b y=1
$$

Corollary (1.7)
If $\operatorname{gcd}(a, b)=d$ then

$$
\operatorname{gcd}(m a, m b)=m d
$$

for every integer $m>0$, and

$$
\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1
$$

Corollary (1.8)
Let a and b be coprime integers.
(A) If $a \mid c$ and $b \mid c$ then $a b \mid c$
(B) If $a \mid b c$ then $a \mid c$

Questions

(1) What are the possible remainders when a perfect square is divided by 3 , or by 5 , or by 6 ?
(2) If a divides b, and c divides d. must $a+c$ divide $b+d$?
(3) Calculate $\operatorname{gcd}(1485,1745)$ using Euclid's algorithm.
(4) Calculate $\operatorname{gcd}(1485,1745)$ using Bezout's Identity.

