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Polynomial functions Division Nesting Polynomial Class exersises Remainder Theorem factor theorem

Polynomial functions

• A polynomial function in x is an expression involving powers of x ,
normally arranged in decending powers.

• The degree of the polynomial is given by the highest power of x occurring
in the expression.

• A polynomial of the first degree is a linear expression

• A polynomial of the second degree is a quadratic expression

• A polynomial of the third degree is a cubic expression

• A polynomial of the fourth degree is a quartic expression

• etc
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Division of one expression by another

• Let us consider (12x3 − 2x2 − 3x + 28)
divided by (3x + 4)

• We set this out as for long division with
numbers.

• To make 12x3, 3x must be multiplied by 4x2,
so we insert this as the first term in the
quotient

• we multiply the divisor (3x + 4) by 4x2 and
subtract this from the first two terms.

• Perform the addition (here we add −2x2 and
−16x2) and bring down the next term (here
−3x)

• To make −18x2, 3x must be multiplied by
−6x , so we insert this as the next term in the
quotient

• etc,. . . until we come to the last term.
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Class Exercise

If an expression has a power missing, insert the power with zero coefficient.
Determine the following:

(4x3 + 13x + 33) divided by (2x + 3)

2x2 − 3x + 11

2x + 3
)

4x3 + 13x + 33
− 4x3 − 6x2

− 6x2 + 13x
6x2 + 9x

22x + 33
− 22x − 33

0

f (x) = (4x3 + 13x + 33)

= (2x + 3)(2x2 − 3x + 11)

(6x3 − 7x2 + 1) divided by (3x + 1)

2x2 − 3x + 1

3x + 1
)

6x3 − 7x2 + 1
− 6x3 − 2x2

− 9x2

9x2 + 3x

3x + 1
− 3x − 1

0

f (x) = (6x3 − 7x2 + 1)

= (3x + 1)(2x2 − 3x + 1)
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Polynomial functions Division Nesting Polynomial Class exersises Remainder Theorem factor theorem

Evaluation of a polynomial by ‘nesting’

• Consider the polynomial f (x) = 5x3 + 2x2 − 3x + 6.

• To write this in ‘nested’ form, write down the coefficient and one factor x
from the first term and add on the coefficient of the next term.

• i.e. 5x + 2

• Enclose these in brackets, multiply by x and add on the next cofficient.

• i.e. (5x + 2)x − 3

• Repeat the process: enclose the whole of this in brackets, multiply by x
and add on the next coefficient

• i.e. f (x) = ((5x + 2)x − 3)x + 6 in nested form.

• This nesting process allows exaluation of the expression with less
operations.

• Note: If any power is missing from the polynomial, it must be included
with a zero coefficiant before nesting is carried out
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Class Exersises

For each of the following cases, express the polynomial in nested form and
evaluate the function for the given value of x .

1 f (x) = 4x3 + 3x2 + 2x − 4 evaluated for [x = 2].

((4x + 3)x + 2)x − 4,
f (2) = 44

2 f (x) = 2x4 + x3 − 3x2 + 5x − 6 evaluated for [x = 3].

(((2x + 1)x − 3)x + 5)x − 6, f (3) = 171

3 f (x) = x4 − 3x3 + 2x − 3 evaluated for [x = 5].

(((x − 3)x + 0)x + 2)x − 3, f (5) = 257

4 f (x) = 2x4 − 5x3 − 3x2 + 4 evaluated for [x = 4].

(((2x − 5)x − 3)x + 0)x + 4, f (4) = 148
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Polynomial functions Division Nesting Polynomial Class exersises Remainder Theorem factor theorem

Remaineder Theorem

• The remainder theorem states that if a polynomial f (x) is divided by
(x − a), the quotient will be a polynomial g(x) of degree one less than
that of f (x), together with a remainder R still to be divided by (x − a).

• i.e.
f (x)

x − a
= g(x) +

R

x − a

• therefore f (x) = (x − a)g(x) + R

• When x = a, f (a) = 0 · g(a) + R i.e. R = f (a).

• If f (x) were to be divided by (x − a), the remainder would be f (a).
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Polynomial functions Division Nesting Polynomial Class exersises Remainder Theorem factor theorem

Example

• If (x3 + 3x2 − 13x − 10) were divided by (x − 3) the remainder would be
. . .

• R = f (3) = 5, where it may be useful to use the nested form,
f (x) = ((x + 3)x − 13)x − 10.

• We can verify this by the long division:

• x2 + 6x + 5

x − 3
)

x3 + 3x2 − 13x − 10
− x3 + 3x2

6x2 − 13x
− 6x2 + 18x

5x − 10
− 5x + 15

5
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Polynomial functions Division Nesting Polynomial Class exersises Remainder Theorem factor theorem

Factor Theorem

• If f (x) is a polynomial and substituting (x = a) gives a zero remainder
i.e. f (a) = 0, then (x − a) is a factor of f (x).

• For example, if f (x) = x3 + 2x2 − 14x + 12 and we substitute x = 2, then
f (2) = 0.

• Therefore (x − 2) is a factor of f (x).

• The remaining factor can be found by long division:

• x2 + 4x − 6

x − 2
)

x3 + 2x2 − 14x + 12
− x3 + 2x2

4x2 − 14x
− 4x2 + 8x

− 6x + 12
6x − 12

0

• The quadratic factor obtained may be factorised further into two linear
factors.

• We apply a b2 − 4ac test, where f (x) = ax2 + bx + c, and if b2 − 4ac is
a perfect square, then further factorisation is possible.
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Polynomial functions Division Nesting Polynomial Class exersises Remainder Theorem factor theorem

Class Exersise

Factorise f (x) = x3 − 5x2 − 2x + 24 as far as possible, (f (3) = 0)

x2 − 2x − 8

x − 3
)

x3 − 5x2 − 2x + 24
− x3 + 3x2

− 2x2 − 2x
2x2 − 6x

− 8x + 24
8x − 24

0

b2 − 4ac = 36 = 62 so linear factors
exist

x = −2 gives (x2 − 2x − 8) = 0
x − 4

x + 2
)

x2 − 2x − 8
− x2 − 2x

− 4x − 8
4x + 8

0

Therefore

f (x) = x3 − 5x2 − 2x + 24 = (x − 3)(x2 − 2x − 8) = (x − 3)(x + 2)(x − 4)
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