Polynomial Evaluation and FACTORISATION

CIS002-2 Computational Alegrba and Number Theory

David Goodwin

david.goodwin@perisic.com

09:00, Friday $17^{\text {th }}$ February 20×12

Outline

(1) Polynomial functions
(2) Division
(3) Nesting Polynomial
(4) Class EXERSISES
(5) Remainder Theorem
(6) FACTOR THEOREM

Outline

(1) Polynomial functions (2) Division
(4) Class exersises
(3) Remainder Theorem
(6) FACTOR THEOREM

University of

Polynomial functions

- A polynomial function in x is an expression involving powers of x, normally arranged in decending powers.

Polynomial functions

- A polynomial function in x is an expression involving powers of x, normally arranged in decending powers.
- The degree of the polynomial is given by the highest power of x occurring in the expression.

Polynomial functions

- A polynomial function in x is an expression involving powers of x, normally arranged in decending powers.
- The degree of the polynomial is given by the highest power of x occurring in the expression.
- A polynomial of the first degree is a linear expression

Polynomial functions

- A polynomial function in x is an expression involving powers of x, normally arranged in decending powers.
- The degree of the polynomial is given by the highest power of x occurring in the expression.
- A polynomial of the first degree is a linear expression
- A polynomial of the second degree is a quadratic expression

Polynomial functions

- A polynomial function in x is an expression involving powers of x, normally arranged in decending powers.
- The degree of the polynomial is given by the highest power of x occurring in the expression.
- A polynomial of the first degree is a linear expression
- A polynomial of the second degree is a quadratic expression
- A polynomial of the third degree is a cubic expression

Polynomial functions

- A polynomial function in x is an expression involving powers of x, normally arranged in decending powers.
- The degree of the polynomial is given by the highest power of x occurring in the expression.
- A polynomial of the first degree is a linear expression
- A polynomial of the second degree is a quadratic expression
- A polynomial of the third degree is a cubic expression
- A polynomial of the fourth degree is a quartic expression

Polynomial functions

- A polynomial function in x is an expression involving powers of x, normally arranged in decending powers.
- The degree of the polynomial is given by the highest power of x occurring in the expression.
- A polynomial of the first degree is a linear expression
- A polynomial of the second degree is a quadratic expression
- A polynomial of the third degree is a cubic expression
- A polynomial of the fourth degree is a quartic expression
- etc

Outline

(1) Polynomial functions
(2) Division
(3) Nesting Polynomial
(4) CLASS EXERSISES
© Remainder Theorem
© FACTOR THEOREM

DIVISION OF ONE EXPRESSION BY ANOTHER

- Let us consider $\left(12 x^{3}-2 x^{2}-3 x+28\right)$ divided by $(3 x+4)$
- We set this out as for long division with numbers.
- To make $12 x^{3}, 3 x$ must be multiplied by $4 x^{2}$, so we insert this as the first term in the quotient
- we multiply the divisor $(3 x+4)$ by $4 x^{2}$ and subtract this from the first two terms.
- Perform the addition (here we add $-2 x^{2}$ and $-16 x^{2}$) and bring down the next term (here $-3 x$)
- To make $-18 x^{2}, 3 x$ must be multiplied by $-6 x$, so we insert this as the next term in the quotient
- etc,... until we come to the last term.

DIVISION OF ONE EXPRESSION BY ANOTHER

- Let us consider $\left(12 x^{3}-2 x^{2}-3 x+28\right)$ $3 x+4) \quad 12 x^{3}-2 x^{2}-3 x+28$ divided by $(3 x+4)$
- We set this out as for long division with numbers.
- To make $12 x^{3}, 3 x$ must be multiplied by $4 x^{2}$, so we insert this as the first term in the quotient
- we multiply the divisor $(3 x+4)$ by $4 x^{2}$ and subtract this from the first two terms.
- Perform the addition (here we add $-2 x^{2}$ and $-16 x^{2}$) and bring down the next term (here $-3 x$)
- To make $-18 x^{2}, 3 x$ must be multiplied by $-6 x$, so we insert this as the next term in the quotient
- etc,... until we come to the last term.

DIVISION OF ONE EXPRESSION BY ANOTHER

- Let us consider $\left(12 x^{3}-2 x^{2}-3 x+28\right)$
$3 x+4) \frac{4 x^{2}}{12 x^{3}-2 x^{2}-3 x+28}$ divided by $(3 x+4)$
- We set this out as for long division with numbers.
- To make $12 x^{3}, 3 x$ must be multiplied by $4 x^{2}$, so we insert this as the first term in the quotient
- we multiply the divisor $(3 x+4)$ by $4 x^{2}$ and subtract this from the first two terms.
- Perform the addition (here we add $-2 x^{2}$ and $-16 x^{2}$) and bring down the next term (here $-3 x$)
- To make $-18 x^{2}, 3 x$ must be multiplied by $-6 x$, so we insert this as the next term in the quotient
- etc,... until we come to the last term.

DIVISION OF ONE EXPRESSION BY ANOTHER

- Let us consider $\left(12 x^{3}-2 x^{2}-3 x+28\right)$ divided by $(3 x+4)$

$$
3 x+4) \frac{4 x^{2}}{\begin{array}{l}
12 x^{3}-2 x^{2}-3 x+28 \\
-12 x^{3}-16 x^{2}
\end{array}}
$$

- We set this out as for long division with numbers.
- To make $12 x^{3}, 3 x$ must be multiplied by $4 x^{2}$, so we insert this as the first term in the quotient
- we multiply the divisor $(3 x+4)$ by $4 x^{2}$ and subtract this from the first two terms.
- Perform the addition (here we add $-2 x^{2}$ and $-16 x^{2}$) and bring down the next term (here $-3 x$)
- To make $-18 x^{2}, 3 x$ must be multiplied by $-6 x$, so we insert this as the next term in the quotient
- etc,... until we come to the last term.

DIVISION OF ONE EXPRESSION BY ANOTHER

- Let us consider $\left(12 x^{3}-2 x^{2}-3 x+28\right)$ divided by $(3 x+4)$
- We set this out as for long division with

$$
3 x+4) \begin{gathered}
\frac{4 x^{2}}{12 x^{3}-2 x^{2}-3 x+28} \\
\frac{-12 x^{3}-16 x^{2}}{-18 x^{2}}-3 x
\end{gathered}
$$ numbers.

- To make $12 x^{3}, 3 x$ must be multiplied by $4 x^{2}$, so we insert this as the first term in the quotient
- we multiply the divisor $(3 x+4)$ by $4 x^{2}$ and subtract this from the first two terms.
- Perform the addition (here we add $-2 x^{2}$ and $-16 x^{2}$) and bring down the next term (here $-3 x$)
- To make $-18 x^{2}, 3 x$ must be multiplied by $-6 x$, so we insert this as the next term in the quotient
- etc,... until we come to the last term.

DIVISION OF ONE EXPRESSION BY ANOTHER

- Let us consider $\left(12 x^{3}-2 x^{2}-3 x+28\right)$ divided by $(3 x+4)$
- We set this out as for long division with

$$
3 x+4) \begin{aligned}
& \frac{4 x^{2}-6 x}{} \begin{array}{r}
12 x^{3}-2 x^{2}-3 x+28 \\
-12 x^{3}-16 x^{2} \\
-18 x^{2}
\end{array} \\
& \hline 3 x
\end{aligned}
$$ numbers.

- To make $12 x^{3}, 3 x$ must be multiplied by $4 x^{2}$, so we insert this as the first term in the quotient
- we multiply the divisor $(3 x+4)$ by $4 x^{2}$ and subtract this from the first two terms.
- Perform the addition (here we add $-2 x^{2}$ and $-16 x^{2}$) and bring down the next term (here $-3 x$)
- To make $-18 x^{2}, 3 x$ must be multiplied by $-6 x$, so we insert this as the next term in the quotient
- etc,... until we come to the last term.

DIVISION OF ONE EXPRESSION BY ANOTHER

- Let us consider $\left(12 x^{3}-2 x^{2}-3 x+28\right)$ divided by $(3 x+4)$
- We set this out as for long division with numbers.

$$
3 x+4) \begin{array}{r}
4 x^{2}-6 x \\
\begin{array}{c}
12 x^{3}-2 x^{2}-3 x+28 \\
-12 x^{3}-16 x^{2} \\
-18 x^{2}
\end{array}-3 x \\
18 x^{2}+24 x
\end{array}
$$

- To make $12 x^{3}, 3 x$ must be multiplied by $4 x^{2}$, so we insert this as the first term in the quotient
- we multiply the divisor $(3 x+4)$ by $4 x^{2}$ and subtract this from the first two terms.
- Perform the addition (here we add $-2 x^{2}$ and $-16 x^{2}$) and bring down the next term (here $-3 x$)
- To make $-18 x^{2}, 3 x$ must be multiplied by $-6 x$, so we insert this as the next term in the quotient
- etc,... until we come to the last term.

DIVISION OF ONE EXPRESSION BY ANOTHER

- Let us consider $\left(12 x^{3}-2 x^{2}-3 x+28\right)$ divided by $(3 x+4)$
- We set this out as for long division with numbers.

$$
3 x+4) \begin{gathered}
4 x^{2}-6 x \\
\frac{12 x^{3}-2 x^{2}-3 x+28}{-12 x^{3}-16 x^{2}} \\
\frac{-18 x^{2}}{}-3 x \\
\frac{18 x^{2}+24 x}{21 x}+28
\end{gathered}
$$

- To make $12 x^{3}, 3 x$ must be multiplied by $4 x^{2}$, so we insert this as the first term in the quotient
- we multiply the divisor $(3 x+4)$ by $4 x^{2}$ and subtract this from the first two terms.
- Perform the addition (here we add $-2 x^{2}$ and $-16 x^{2}$) and bring down the next term (here $-3 x$)
- To make $-18 x^{2}, 3 x$ must be multiplied by $-6 x$, so we insert this as the next term in the quotient
- etc,... until we come to the last term.

DIVISION OF ONE EXPRESSION BY ANOTHER

- Let us consider $\left(12 x^{3}-2 x^{2}-3 x+28\right)$ divided by $(3 x+4)$
- We set this out as for long division with numbers.

$$
3 x+4) \begin{array}{r}
4 x^{2}-6 x+7 \\
\frac{12 x^{3}-2 x^{2}-3 x+28}{-12 x^{3}-16 x^{2}} \\
\frac{-18 x^{2}}{}-3 x \\
\frac{18 x^{2}+24 x}{21 x}+28
\end{array}
$$

- To make $12 x^{3}, 3 x$ must be multiplied by $4 x^{2}$, so we insert this as the first term in the quotient
- we multiply the divisor $(3 x+4)$ by $4 x^{2}$ and subtract this from the first two terms.
- Perform the addition (here we add $-2 x^{2}$ and $-16 x^{2}$) and bring down the next term (here $-3 x$)
- To make $-18 x^{2}, 3 x$ must be multiplied by $-6 x$, so we insert this as the next term in the quotient
- etc,... until we come to the last term.

DIVISION OF ONE EXPRESSION BY ANOTHER

- Let us consider $\left(12 x^{3}-2 x^{2}-3 x+28\right)$ divided by $(3 x+4)$
- We set this out as for long division with numbers.
- To make $12 x^{3}, 3 x$ must be multiplied by $4 x^{2}$, so we insert this as the first term in the quotient
- we multiply the divisor $(3 x+4)$ by $4 x^{2}$ and subtract this from the first two terms.
- Perform the addition (here we add $-2 x^{2}$ and
$-16 x^{2}$) and bring down the next term (here $-3 x$)
- To make $-18 x^{2}, 3 x$ must be multiplied by $-6 x$, so we insert this as the next term in the quotient
- etc,... until we come to the last term.

$$
\begin{aligned}
f(x) & =\left(12 x^{3}-2 x^{2}-3 x+28\right) \\
& =(3 x+4)\left(4 x^{2}-6 x+7\right)
\end{aligned}
$$

$$
3 x+4) \begin{array}{r}
4 x^{2}-6 x+7 \\
\begin{array}{r}
12 x^{3}-2 x^{2}-3 x+28 \\
-12 x^{3}-16 x^{2}
\end{array} \\
\begin{array}{r}
-18 x^{2} \\
\frac{18 x^{2}+24 x}{21 x}+28 \\
-21 x-28
\end{array}
\end{array}
$$

Class Exercise

If an expression has a power missing, insert the power with zero coefficient. Determine the following:

$$
\left(4 x^{3}+13 x+33\right) \text { divided by }(2 x+3) \quad\left(6 x^{3}-7 x^{2}+1\right) \text { divided by }(3 x+1)
$$

Class Exercise

If an expression has a power missing, insert the power with zero coefficient. Determine the following:

$$
\begin{gathered}
\left(4 x^{3}+13 x+33\right) \text { divided by }(2 x+3) \\
2 x+3) \begin{array}{r}
\frac{2 x^{2}-3 x+11}{4 x^{3}+13 x+33} \\
\frac{-4 x^{3}-6 x^{2}}{-6 x^{2}+13 x} \\
\frac{6 x^{2}+9 x}{22 x}+33 \\
\frac{-22 x-33}{0}
\end{array}
\end{gathered}
$$

$$
\left(6 x^{3}-7 x^{2}+1\right) \text { divided by }(3 x+1)
$$

$$
\begin{aligned}
f(x) & =\left(4 x^{3}+13 x+33\right) \\
& =(2 x+3)\left(2 x^{2}-3 x+11\right)
\end{aligned}
$$

Class Exercise

If an expression has a power missing, insert the power with zero coefficient. Determine the following:

$$
\begin{gathered}
\left(4 x^{3}+13 x+33\right) \text { divided by }(2 x+3) \\
2 x+3) \begin{array}{r}
2 x^{2}-3 x+11 \\
\frac{4 x^{3}+4 x^{3}-6 x^{2}}{-6 x^{2}+13 x+33} \\
\frac{6 x^{2}+9 x}{22 x}+33 \\
\frac{-22 x-33}{0}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
f(x) & =\left(4 x^{3}+13 x+33\right) \\
& =(2 x+3)\left(2 x^{2}-3 x+11\right)
\end{aligned}
$$

$\left(6 x^{3}-7 x^{2}+1\right)$ divided by $(3 x+1)$

$$
3 x+1) \begin{array}{r}
\frac{2 x^{2}-3 x+1}{6 x^{3}-7 x^{2}+1} \\
\frac{-6 x^{3}-2 x^{2}}{-9 x^{2}} \\
\frac{9 x^{2}+3 x}{3 x}+1 \\
\frac{-3 x-1}{0}
\end{array}
$$

$$
\begin{aligned}
f(x) & =\left(6 x^{3}-7 x^{2}+1\right) \\
& =(3 x+1)\left(2 x^{2}-3 x+1\right)
\end{aligned}
$$

Outline

(1) POLYNOMIAL FUNCTIONS
(2) DIVISION
(3) Nesting Polynomial
(1) Class ExERSISES
(0) Remainder Theorem
© FACTOR THEOREM

University of

Evaluation of A POLYNOMIAL BY 'NESTING'

- Consider the polynomial $f(x)=5 x^{3}+2 x^{2}-3 x+6$.

Evaluation of a polynomial By 'NESTING'

- Consider the polynomial $f(x)=5 x^{3}+2 x^{2}-3 x+6$.
- To write this in 'nested' form, write down the coefficient and one factor x from the first term and add on the coefficient of the next term.

Evaluation of a polynomial By 'NESTING'

- Consider the polynomial $f(x)=5 x^{3}+2 x^{2}-3 x+6$.
- To write this in 'nested' form, write down the coefficient and one factor x from the first term and add on the coefficient of the next term.
- i.e. $5 x+2$

Evaluation of a Polynomial By 'NESTING'

- Consider the polynomial $f(x)=5 x^{3}+2 x^{2}-3 x+6$.
- To write this in 'nested' form, write down the coefficient and one factor x from the first term and add on the coefficient of the next term.
- i.e. $5 x+2$
- Enclose these in brackets, multiply by x and add on the next cofficient.

Evaluation of a polynomial By 'NESTING'

- Consider the polynomial $f(x)=5 x^{3}+2 x^{2}-3 x+6$.
- To write this in 'nested' form, write down the coefficient and one factor x from the first term and add on the coefficient of the next term.
- i.e. $5 x+2$
- Enclose these in brackets, multiply by x and add on the next cofficient.
- i.e. $(5 x+2) x-3$

Evaluation of a polynomial By 'NESting'

- Consider the polynomial $f(x)=5 x^{3}+2 x^{2}-3 x+6$.
- To write this in 'nested' form, write down the coefficient and one factor x from the first term and add on the coefficient of the next term.
- i.e. $5 x+2$
- Enclose these in brackets, multiply by x and add on the next cofficient.
- i.e. $(5 x+2) x-3$
- Repeat the process: enclose the whole of this in brackets, multiply by x and add on the next coefficient

Evaluation of a polynomial By 'NESTING'

- Consider the polynomial $f(x)=5 x^{3}+2 x^{2}-3 x+6$.
- To write this in 'nested' form, write down the coefficient and one factor x from the first term and add on the coefficient of the next term.
- i.e. $5 x+2$
- Enclose these in brackets, multiply by x and add on the next cofficient.
- i.e. $(5 x+2) x-3$
- Repeat the process: enclose the whole of this in brackets, multiply by x and add on the next coefficient
- i.e. $f(x)=((5 x+2) x-3) x+6$ in nested form.

Evaluation of a polynomial By 'Nesting'

- Consider the polynomial $f(x)=5 x^{3}+2 x^{2}-3 x+6$.
- To write this in 'nested' form, write down the coefficient and one factor x from the first term and add on the coefficient of the next term.
- i.e. $5 x+2$
- Enclose these in brackets, multiply by x and add on the next cofficient.
- i.e. $(5 x+2) x-3$
- Repeat the process: enclose the whole of this in brackets, multiply by x and add on the next coefficient
- i.e. $f(x)=((5 x+2) x-3) x+6$ in nested form.
- This nesting process allows exaluation of the expression with less operations.

Evaluation of a polynomial By 'NESting'

- Consider the polynomial $f(x)=5 x^{3}+2 x^{2}-3 x+6$.
- To write this in 'nested' form, write down the coefficient and one factor x from the first term and add on the coefficient of the next term.
- i.e. $5 x+2$
- Enclose these in brackets, multiply by x and add on the next cofficient.
- i.e. $(5 x+2) x-3$
- Repeat the process: enclose the whole of this in brackets, multiply by x and add on the next coefficient
- i.e. $f(x)=((5 x+2) x-3) x+6$ in nested form.
- This nesting process allows exaluation of the expression with less operations.
- Note: If any power is missing from the polynomial, it must be included with a zero coefficiant before nesting is carried out

Outline

(4) Class EXERSISES
© Remainder Theorem
(6) FACTOR THEOREM

Class Exersises

For each of the following cases, express the polynomial in nested form and evaluate the function for the given value of x.
(1) $f(x)=4 x^{3}+3 x^{2}+2 x-4$ evaluated for $[x=2]$.
(2) $f(x)=2 x^{4}+x^{3}-3 x^{2}+5 x-6$ evaluated for $[x=3]$.
(3) $f(x)=x^{4}-3 x^{3}+2 x-3$ evaluated for $[x=5]$.
(4) $f(x)=2 x^{4}-5 x^{3}-3 x^{2}+4$ evaluated for $[x=4]$.

Class Exersises

For each of the following cases, express the polynomial in nested form and evaluate the function for the given value of x.
(1) $f(x)=4 x^{3}+3 x^{2}+2 x-4$ evaluated for $[x=2] .((4 x+3) x+2) x-4$, $f(2)=44$
(2) $f(x)=2 x^{4}+x^{3}-3 x^{2}+5 x-6$ evaluated for $[x=3]$.
(3) $f(x)=x^{4}-3 x^{3}+2 x-3$ evaluated for $[x=5]$.
(4) $f(x)=2 x^{4}-5 x^{3}-3 x^{2}+4$ evaluated for $[x=4]$.

Class Exersises

For each of the following cases, express the polynomial in nested form and evaluate the function for the given value of x.
(1) $f(x)=4 x^{3}+3 x^{2}+2 x-4$ evaluated for $[x=2] .((4 x+3) x+2) x-4$, $f(2)=44$
(2) $f(x)=2 x^{4}+x^{3}-3 x^{2}+5 x-6$ evaluated for $[x=3]$.

$$
(((2 x+1) x-3) x+5) x-6, f(3)=171
$$

(3) $f(x)=x^{4}-3 x^{3}+2 x-3$ evaluated for $[x=5]$.
(4) $f(x)=2 x^{4}-5 x^{3}-3 x^{2}+4$ evaluated for $[x=4]$.

Class Exersises

For each of the following cases, express the polynomial in nested form and evaluate the function for the given value of x.
(1) $f(x)=4 x^{3}+3 x^{2}+2 x-4$ evaluated for $[x=2] .((4 x+3) x+2) x-4$, $f(2)=44$
(2) $f(x)=2 x^{4}+x^{3}-3 x^{2}+5 x-6$ evaluated for $[x=3]$.

$$
(((2 x+1) x-3) x+5) x-6, f(3)=171
$$

(3) $f(x)=x^{4}-3 x^{3}+2 x-3$ evaluated for $[x=5]$. $(((x-3) x+0) x+2) x-3, f(5)=257$
(4) $f(x)=2 x^{4}-5 x^{3}-3 x^{2}+4$ evaluated for $[x=4]$.

Class Exersises

For each of the following cases, express the polynomial in nested form and evaluate the function for the given value of x.
(1) $f(x)=4 x^{3}+3 x^{2}+2 x-4$ evaluated for $[x=2] .((4 x+3) x+2) x-4$, $f(2)=44$
(2) $f(x)=2 x^{4}+x^{3}-3 x^{2}+5 x-6$ evaluated for $[x=3]$.

$$
(((2 x+1) x-3) x+5) x-6, f(3)=171
$$

(3) $f(x)=x^{4}-3 x^{3}+2 x-3$ evaluated for $[x=5$].
$(((x-3) x+0) x+2) x-3, f(5)=257$
(4) $f(x)=2 x^{4}-5 x^{3}-3 x^{2}+4$ evaluated for $[x=4]$. $(((2 x-5) x-3) x+0) x+4, f(4)=148$

Outline

(1) Polynomial functions
(2) Division
(3) Nesting Polynomial
(4) Class exersises
(5) Remainder Theorem
© FACTOR THEOREM

University of

Remaineder Theorem

- The remainder theorem states that if a polynomial $f(x)$ is divided by $(x-a)$, the quotient will be a polynomial $g(x)$ of degree one less than that of $f(x)$, together with a remainder R still to be divided by $(x-a)$.

Remaineder Theorem

- The remainder theorem states that if a polynomial $f(x)$ is divided by $(x-a)$, the quotient will be a polynomial $g(x)$ of degree one less than that of $f(x)$, together with a remainder R still to be divided by $(x-a)$.
- i.e.

$$
\frac{f(x)}{x-a}=g(x)+\frac{R}{x-a}
$$

Remaineder Theorem

- The remainder theorem states that if a polynomial $f(x)$ is divided by $(x-a)$, the quotient will be a polynomial $g(x)$ of degree one less than that of $f(x)$, together with a remainder R still to be divided by $(x-a)$.
- i.e.

$$
\frac{f(x)}{x-a}=g(x)+\frac{R}{x-a}
$$

- therefore $f(x)=(x-a) g(x)+R$

Remaineder Theorem

- The remainder theorem states that if a polynomial $f(x)$ is divided by $(x-a)$, the quotient will be a polynomial $g(x)$ of degree one less than that of $f(x)$, together with a remainder R still to be divided by $(x-a)$.
- i.e.

$$
\frac{f(x)}{x-a}=g(x)+\frac{R}{x-a}
$$

- therefore $f(x)=(x-a) g(x)+R$
- When $x=a, f(a)=0 \cdot g(a)+R$ i.e. $R=f(a)$.

Remaineder Theorem

- The remainder theorem states that if a polynomial $f(x)$ is divided by $(x-a)$, the quotient will be a polynomial $g(x)$ of degree one less than that of $f(x)$, together with a remainder R still to be divided by $(x-a)$.
- i.e.

$$
\frac{f(x)}{x-a}=g(x)+\frac{R}{x-a}
$$

- therefore $f(x)=(x-a) g(x)+R$
- When $x=a, f(a)=0 \cdot g(a)+R$ i.e. $R=f(a)$.
- If $f(x)$ were to be divided by $(x-a)$, the remainder would be $f(a)$.

EXAMPLE

- If $\left(x^{3}+3 x^{2}-13 x-10\right)$ were divided by $(x-3)$ the remainder would be ...

EXAMPLE

- If $\left(x^{3}+3 x^{2}-13 x-10\right)$ were divided by $(x-3)$ the remainder would be
- $R=f(3)=5$, where it may be useful to use the nested form, $f(x)=((x+3) x-13) x-10$.

EXAMPLE

- If $\left(x^{3}+3 x^{2}-13 x-10\right)$ were divided by $(x-3)$ the remainder would be
- $R=f(3)=5$, where it may be useful to use the nested form, $f(x)=((x+3) x-13) x-10$.
- We can verify this by the long division:

EXAMPLE

- If $\left(x^{3}+3 x^{2}-13 x-10\right)$ were divided by $(x-3)$ the remainder would be
- $R=f(3)=5$, where it may be useful to use the nested form, $f(x)=((x+3) x-13) x-10$.
- We can verify this by the long division:

$$
x-3) \begin{array}{r}
x^{2}+6 x+5 \\
\frac{x^{3}+3 x^{2}-13 x-10}{-x^{3}+3 x^{2}} \begin{array}{r}
6 x^{2}-13 x \\
\frac{-6 x^{2}+18 x}{5 x}-10 \\
-5 x+15
\end{array}
\end{array}
$$

Outline

(1) Polynomial Functions
(2) Division
(3) Nesting Polynomial
(1) Class exersises

- Remainder Theorem
(6) FACTOR THEOREM

Factor Theorem

- If $f(x)$ is a polynomial and substituting $(x=a)$ gives a zero remainder i.e. $f(a)=0$, then $(x-a)$ is a factor of $f(x)$.

Factor Theorem

- If $f(x)$ is a polynomial and substituting $(x=a)$ gives a zero remainder i.e. $f(a)=0$, then $(x-a)$ is a factor of $f(x)$.
- For example, if $f(x)=x^{3}+2 x^{2}-14 x+12$ and we substitute $x=2$, then $f(2)=0$.

Factor Theorem

- If $f(x)$ is a polynomial and substituting $(x=a)$ gives a zero remainder i.e. $f(a)=0$, then $(x-a)$ is a factor of $f(x)$.
- For example, if $f(x)=x^{3}+2 x^{2}-14 x+12$ and we substitute $x=2$, then $f(2)=0$.
- Therefore $(x-2)$ is a factor of $f(x)$.

Factor Theorem

- If $f(x)$ is a polynomial and substituting $(x=a)$ gives a zero remainder i.e. $f(a)=0$, then $(x-a)$ is a factor of $f(x)$.
- For example, if $f(x)=x^{3}+2 x^{2}-14 x+12$ and we substitute $x=2$, then $f(2)=0$.
- Therefore $(x-2)$ is a factor of $f(x)$.
- The remaining factor can be found by long division:

Factor Theorem

- If $f(x)$ is a polynomial and substituting $(x=a)$ gives a zero remainder i.e. $f(a)=0$, then $(x-a)$ is a factor of $f(x)$.
- For example, if $f(x)=x^{3}+2 x^{2}-14 x+12$ and we substitute $x=2$, then $f(2)=0$.
- Therefore $(x-2)$ is a factor of $f(x)$.
- The remaining factor can be found by long division:

$$
x-2) \begin{array}{r}
x^{2}+4 x-6 \\
\frac{x^{3}+2 x^{2}-14 x+12}{-x^{3}+2 x^{2}} \begin{array}{r}
4 x^{2}-14 x \\
-4 x^{2}+8 x \\
-6 x+12 \\
-6 x-12
\end{array}
\end{array}
$$

Factor Theorem

- If $f(x)$ is a polynomial and substituting $(x=a)$ gives a zero remainder i.e. $f(a)=0$, then $(x-a)$ is a factor of $f(x)$.
- For example, if $f(x)=x^{3}+2 x^{2}-14 x+12$ and we substitute $x=2$, then $f(2)=0$.
- Therefore $(x-2)$ is a factor of $f(x)$.
- The remaining factor can be found by long division:
- $x-2) \frac{x^{2}+4 x-6}{x^{3}+2 x^{2}-14 x+12}$

$$
\begin{array}{r}
\frac{-x^{3}+2 x^{2}}{4 x^{2}-14 x} \\
-4 x^{2}+8 x \\
\hline-6 x+12 \\
6 x-12
\end{array}
$$

- The quadratic factor obtained may be factorised further into two linear factors.

Factor Theorem

- If $f(x)$ is a polynomial and substituting $(x=a)$ gives a zero remainder i.e. $f(a)=0$, then $(x-a)$ is a factor of $f(x)$.
- For example, if $f(x)=x^{3}+2 x^{2}-14 x+12$ and we substitute $x=2$, then $f(2)=0$.
- Therefore $(x-2)$ is a factor of $f(x)$.
- The remaining factor can be found by long division:
- $x-2) \frac{x^{2}+4 x-6}{x^{3}+2 x^{2}-14 x+12}$

$$
\begin{array}{r}
\frac{-x^{3}+2 x^{2}}{4 x^{2}-14 x} \\
-4 x^{2}+8 x \\
-6 x+12 \\
-6 x-12 \\
\hline 0
\end{array}
$$

- The quadratic factor obtained may be factorised further into two linear factors.
- We apply a $b^{2}-4 a c$ test, where $f(x)=a x^{2}+b x+c$, and if $b^{2}-4 a c$ is a perfect square, then further factorisation is possible,

Class Exersise

Factorise $f(x)=x^{3}-5 x^{2}-2 x+24$ as far as possible, $(f(3)=0)$

Class Exersise

Factorise $f(x)=x^{3}-5 x^{2}-2 x+24$ as far as possible, $(f(3)=0)$

$$
x-3) \begin{array}{r}
\frac{x^{2}-2 x-8}{x^{3}-5 x^{2}-2 x+24} \\
-x^{3}+3 x^{2} \\
\hline-2 x^{2}-2 x \\
2 x^{2}-6 x \\
-8 x+24 \\
8 x-24
\end{array}
$$

Class Exersise

Factorise $f(x)=x^{3}-5 x^{2}-2 x+24$ as far as possible, $(f(3)=0)$

$$
x-3) \begin{array}{r}
\frac{x^{2}-2 x-8}{x^{3}-5 x^{2}-2 x+24} \\
-x^{3}+3 x^{2} \\
-2 x^{2}-2 x \\
\frac{2 x^{2}-6 x}{-8 x+24} \\
\frac{8 x-24}{0}
\end{array}
$$

$b^{2}-4 a c=36=6^{2}$ so linear factors exist

Class Exersise

Factorise $f(x)=x^{3}-5 x^{2}-2 x+24$ as far as possible, $(f(3)=0)$

$$
\begin{aligned}
& x-3) \begin{array}{l}
\frac{x^{2}-2 x-8}{x^{3}-5 x^{2}-2 x+24} \\
\frac{-x^{3}+3 x^{2}}{-2 x^{2}-2 x} \\
\frac{2 x^{2}-6 x}{-8 x}+24 \\
\frac{8 x-24}{0} \\
b^{2}-4 a c=36=6^{2} \text { so linear factors } \\
\text { exist }
\end{array} \quad x=-2 \text { gives }\left(x^{2}-2 x-8\right)=0
\end{aligned}
$$

Class Exersise

Factorise $f(x)=x^{3}-5 x^{2}-2 x+24$ as far as possible, $(f(3)=0)$

$$
\begin{aligned}
& x-3) \frac{x^{2}-2 x-8}{x^{3}-5 x^{2}-2 x+24} \\
& \frac{-x^{3}+3 x^{2}}{-2 x^{2}}-2 x \\
& \frac{2 x^{2}-6 x}{-8 x}+24 \\
& \begin{array}{r}
8 x-24 \\
0
\end{array} \\
& \begin{array}{c}
x=-2 \text { gives }\left(x^{2}-2 x-8\right)=0 \\
x+2) \begin{array}{c}
\frac{x-4}{x^{2}-2 x-8} \\
\frac{-x^{2}-2 x}{-4 x-8} \\
\frac{4 x+8}{0}
\end{array}
\end{array} \\
& b^{2}-4 a c=36=6^{2} \text { so linear factors } \\
& \text { exist }
\end{aligned}
$$

Class Exersise

Factorise $f(x)=x^{3}-5 x^{2}-2 x+24$ as far as possible, $(f(3)=0)$

$$
\begin{aligned}
& x-3) \frac{x^{2}-2 x-8}{x^{3}-5 x^{2}-2 x+24} \\
& \frac{-x^{3}+3 x^{2}}{-2 x^{2}}-2 x \\
& \frac{2 x^{2}-6 x}{-8 x}+24 \\
& 8 x-24 \\
& x=-2 \text { gives }\left(x^{2}-2 x-8\right)=0 \\
& x-4 \\
& x+2) \quad x^{2}-2 x-8 \\
& \frac{-x^{2}-2 x}{-4 x-8} \\
& \begin{array}{r}
4 x+8 \\
0
\end{array} \\
& b^{2}-4 a c=36=6^{2} \text { so linear factors } \\
& \text { exist }
\end{aligned}
$$

Therefore

$$
f(x)=x^{3}-5 x^{2}-2 x+24=(x-3)\left(x^{2}-2 x-8\right)=(x-3)(x+2)(x-4)
$$

Class Exersise

Factorise $f(x)=x^{3}-6 x^{2}-7 x+60$ as far as possible, $(f(4)=0)$

Class Exersise

Factorise $f(x)=x^{3}-6 x^{2}-7 x+60$ as far as possible, $(f(4)=0)$

$$
x-4) \begin{array}{r}
x^{2}-2 x-15 \\
\begin{array}{r}
x^{3}-6 x^{2}-7 x+60 \\
-x^{3}+4 x^{2}
\end{array} \\
\hline-2 x^{2}-7 x \\
\frac{2 x^{2}-8 x}{} \\
\begin{array}{r}
-15 x+60 \\
15 x-60
\end{array}
\end{array}
$$

Class Exersise

Factorise $f(x)=x^{3}-6 x^{2}-7 x+60$ as far as possible, $(f(4)=0)$

$$
x-4) \begin{array}{r}
x^{2}-2 x-15 \\
\frac{x^{3}-6 x^{2}}{}-7 x+60 \\
-x^{3}+4 x^{2} \\
\frac{-2 x^{2}}{}-7 x \\
\frac{2 x^{2}-8 x}{} \\
-15 x+60 \\
15 x-60
\end{array}
$$

$b^{2}-4 a c=8^{2}$ so linear factors exist

Class Exersise

Factorise $f(x)=x^{3}-6 x^{2}-7 x+60$ as far as possible, $(f(4)=0)$

$$
x-4) \begin{array}{r}
\frac{x^{2}-2 x-15}{x^{3}-6 x^{2}-7 x+60} \\
\frac{-x^{3}+4 x^{2}}{-2 x^{2}-7 x} \\
\frac{2 x^{2}-8 x}{-15 x+60} \\
\frac{15 x-60}{0}
\end{array} \quad x=-3 \text { gives }\left(x^{2}-2 x-15\right)=0
$$

$b^{2}-4 a c=8^{2}$ so linear factors exist

Class Exersise

Factorise $f(x)=x^{3}-6 x^{2}-7 x+60$ as far as possible, $(f(4)=0)$

$$
\begin{array}{rc}
\left.\frac{x^{2}-2 x-15}{} x-4\right) & x=-3 \text { gives }\left(x^{2}-2 x-15\right)=0 \\
\frac{x^{3}-6 x^{2}-7 x+60}{-x^{3}+4 x^{2}} & x+3) \frac{x-5}{x^{2}-2 x-15} \\
\frac{-2 x^{2}-7 x}{2 x^{2}-8 x} \\
\hline-15 x+60 \\
-15 x-60 \\
0 & \frac{-x^{2}-3 x}{-5 x-15} \\
\hline \frac{5 x+15}{0}
\end{array}
$$

$b^{2}-4 a c=8^{2}$ so linear factors exist

Class Exersise

Factorise $f(x)=x^{3}-6 x^{2}-7 x+60$ as far as possible, $(f(4)=0)$

$$
\begin{aligned}
& x-4) \begin{array}{r}
x^{2}-2 x-15 \\
\begin{array}{r}
x^{3}-6 x^{2}-7 x+60 \\
-x^{3}+4 x^{2}
\end{array} \\
\hline \begin{aligned}
&-2 x^{2}-7 x \\
& \frac{2 x^{2}}{}-8 x \\
& \hline-15 x+60 \\
& 15 x-60 \\
& 0
\end{aligned}
\end{array} \\
& \begin{array}{c}
x=-3 \text { gives }\left(x^{2}-2 x-15\right)=0 \\
x+3) \begin{array}{c}
\frac{x-5}{x^{2}-2 x-15} \\
\frac{-x^{2}-3 x}{-5 x-15} \\
\frac{5 x+15}{0}
\end{array}
\end{array}
\end{aligned}
$$

$b^{2}-4 a c=8^{2}$ so linear factors exist

Therefore

$$
f(x)=x^{3}-6 x^{2}-7 x+60=(x-4)\left(x^{2}-2 x-15\right)=(x-4)(x+3)(x-5)
$$

