# Elementary Number Theory II CIS002－2 Computational Alegrba and Number Theory 

David Goodwin

david．goodwin＠perisic．com

09：00，Tuesday $1^{\text {st }}$ November 2011

## Contents

(1) Divisibility

Euclid's Algorithm \& Bezout's Identity II
Least Common Multiples
Linear Diophantine Equations
(2) Primality

Prime Number and Prime-Power Factorisation Distribution of Primes
(3) Class Question

## Example of Euclid's Algorithm

## Example (Euclid's Algorithm)

Calculate $\operatorname{gcd}(1485,1745)$ using Euclid's algorithm.
If $a=q b+r$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$. We use the equation $a=q b+r$ to find $r$, then to repeat using $g c d(b, r)$. Remember the constraints $\{q \mid q \in \mathbb{Z}\}$ and $\{r \mid r \in \mathbb{Z}$ and $r<b\}$.

$$
\begin{array}{rrr}
1745=1485 q+r & q=1 & r=260 \\
1485=260 q+r & q=5 & r=185 \\
260=185 q+r & q=1 & r=75 \\
185=75 q+r & q=2 & r=35 \\
75=35 q+r & q=2 & r=5 \\
35=5 q+r & q=7 & r=0
\end{array}
$$

Therefore $\operatorname{gcd}(1485,1745)=5$

## Example of Bezout's Identity

## Example (Bezout's Identity)

Express $\operatorname{gcd}(1485,1745)$ in the form $1485 u+1745 v$.
From the previous example we found $\operatorname{gcd}(1485,1745)=5$

$$
\begin{aligned}
5 & =75-(2 \times 35) \\
& =75-2 \times(185-(2 \times 75) \\
& =(5 \times 75)-(2 \times 185) \\
& =5 \times(260-(1 \times 185))-(2 \times 185) \\
& =(5 \times 260)-(7 \times 185) \\
& =(5 \times 260)-7 \times(1485-(5 \times 260)) \\
& =(40 \times 260)-(7 \times 1485) \\
& =40 \times(1745-(1 \times 1485))-(7 \times 1485) \\
& =(40 \times 1745)-(47 \times 1485)=69800-69795=5
\end{aligned}
$$

## Least Common Multiples

## Definition

If $a$ and $b$ are integers, then a common multiple of $a$ and $b$ is an integer $c$ such that $a \mid c$ and $b \mid c$. If $a$ and $b$ are both non-zero, then they have positive common multiples (such as $|a b|$ ), so by the well-ordered principle they have a least common multiple (to be more precise least positive common multiple). The least common multiple of two integers $a$ and $b$ is denoted by $\operatorname{Icm}(a, b)$.

## Least Common Multiples

Theorem (2.1)
Let $a$ and $b$ be positive integers, with $d=\operatorname{gcd}(a, b)$ and the least common multiple $I=\operatorname{lcm}(a, b)$. Then

$$
d l=a b \quad \text { since } a, b>0
$$

Example
Let $a=12$ and $b=8$, then $d=\operatorname{gcd}(12,8)=4$ and $I=\operatorname{lcm}(12,8)=24$.

$$
\begin{aligned}
d l & =a b \\
4 \times 24 & =12 \times 8=96
\end{aligned}
$$

## Diophantus of Alexandria

Diophantus of Alexandria (c. A.D. 250) carried out extensive studies of problems relating to indeterminate equations ${ }^{1}$. Although Diophantus accepted any solution in rational numbers, the name Diophantus equations today refers exclusively to equations with integer solutions.

## Linear Diophantine Equations

## Theorem (2.2)

Let $a, b$ and $c$ be integers with $a$ and $b$ not both zero, and let $d=\operatorname{gcd}(a, b)$. Then the equation

$$
a x+b y=c
$$

has an integer solution $x, y$ if and only if $d \mid c$, in which case there are infinitely many solutions. The following are the pairs of solutions

$$
x=x_{0}+\frac{b n}{d}, \quad y=y_{0}-\frac{a n}{d} \quad(n \in \mathbb{Z})
$$

note that if $c=1$ then $a$ and $b$ are coprime (corollary (1.7))

## METHOD OF SOLUTION TO LINEAR DIOPHANTINE EQUATIONS

We can find the solutions of any linear Diophantine equation $a x+b y=c$ by the following method:
(1) Calculate $d=\operatorname{gcd}(a, b)$ by Euclid's algorithm.
(2) Check if $d \mid c$ (if not then there are no solutions)
(3) Use Bezout's Identity to find integers $u$ and $v$ such that $a u+b v=d$. Then if $c=d e$, we find $x_{0}=u e$ and $y_{0}=v e$.
(4) Now use theorem (2.2) to find the general solution $x, y$ of the equation $a x+b y=c$.

## Example of a Linear Diophantine Equation

Find the positive integer values of $x$ and $y$ that satisfy the equation

$$
2 x+5 y=32
$$

Example (Linear Diophantine Equation)

$$
\begin{array}{lll}
5=2 q+r & q=2 & r=1 \\
2=1 q+r & q=2 & r=0
\end{array}
$$

$\operatorname{gcd}(2,5)=1$
1 | 32 therefore solutions exist.

$$
1=5-(2 \times 2)
$$

## Example (Linear Diophantine Equation (cont.))

$$
\begin{aligned}
d & =2 u+5 v \\
u & =-2 \\
v & =1
\end{aligned}
$$

If $c=32$ and $d=1$, then if $c=d e, e=32$.

$$
\begin{aligned}
& x_{0}=u e=-64 \\
& y_{0}=v e=32
\end{aligned}
$$

## Example (Linear Diophantine Equation (cont.))

Now we can find all solutions from the equation

$$
\begin{array}{rlr}
x=x_{0}+\frac{b n}{d}, & y=y_{0}-\frac{a n}{d} & (n \in \mathbb{Z}) \\
x=-64+\frac{5 n}{1}, & y=32-\frac{2 n}{1} &
\end{array}
$$

For this example, the paired solutions are (here for the integers $n=\ldots, 0,1,2,3,4, \ldots$ )

$$
\{\ldots,(-64,32),(-59,30),(-54,28),(-49,26),(-44,24), \ldots\}
$$

## Prime numbers

## Definition

An integer $p>1$ is said to be prime if the only positive divisors of $p$ are 1 and $p$ itself.

## Prime numbers

Lemma (2.3)
Let $p$ be prime, and let $a$ and $b$ be any integers
A either $p \mid a$, or $a$ and $p$ are coprime.
B if $p \mid a b$, then $p \mid a$ or $p \mid b$.

Corollary (2.4)
If $p$ is prime and $p$ divides $a_{1} \ldots a_{k}$ then $p$ divides $a_{i}$ for some integer $i$.

## Prime-Power Factorisation

The next result, known as the fundamental theorem of arithmetic, explains why prime numbers are so important: they are the basic building blocks out of which all integers can be constructed.

Theorem (2.5)
Each integer $n>1$ has a prime-power factorisation

$$
n=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}
$$

where $p_{1}, \ldots, p_{k}$ are distinct primes and $e_{1}, \ldots, e_{k}$ are positive integers; this factorisation is unique, apart from permutations of the factors.

## Prime-Power Factorisation

## Example

200 has the prime-power factorisation $2^{3} \times 5^{2}$, or alternatively $5^{2} \times 2^{3}$ if we permute the factors, but it has no other prime-power factorisations.

Example
1200 has the prime-power factorisation $2^{4} \times 3^{1} \times 5^{2}$.

## PRIME NUMBERS $<100$

$$
\begin{array}{r}
002,003,005,007, \\
11,13,017, \\
23, \\
31, \\
41, \\
43, \\
43, \\
53, \\
61,
\end{array}, 69,
$$

## Prime numbers < 1000

$2, ~ 3, ~ 5, ~ 7, ~ 11, ~ 13, ~ 17, ~ 19, ~ 23, ~ 29, ~ 31, ~ 37, ~ 41, ~ 43, ~ 47, ~ 53, ~ 59, ~ 61, ~ 67, ~ 71, ~ 73, ~ 79, ~ 83, ~ 89, ~ 97, ~$ $101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199$, $211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293$, $307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397$, $401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499$, $503,509,521,523,541,547,557,563,569,571,577,587,593,599$, $601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691$ $701,709,719,727,733,739,743,751,757,761,769,773,787,797$, $809,811,821,823,827,829,839,853,857,859,863,877,881,883,887$, $907,911,919,929,937,941,947,953,967,971,977,983,991,997$.

## Euclid's Theorem

THEOREM (2.6)
There are infinitely many primes

## A Proof of Euclid's Theorem

## Proof.

The proof is by contradiction: we assume that there are only finitely many primes, and then we obtain a contradiction from this, so it follows that there must be infinitely many primes.
Suppose then that the only primes are $p_{1}, p_{2}, \ldots, p_{k}$. Let

$$
m=p_{1} p_{2} \ldots p_{k}+1
$$

Since $n$ is an integer greater than 1, theorem (2.5) implies that it is divisible by some prime $p$ (this includes the possibility that $m=p$ ). By our assumption, this prime $p$ must be one of $p_{1}, p_{2}, \ldots, p_{k}$, so $p$ divides their product $p_{1} p_{2} \ldots p_{k}$. Since $p$ divides both $m$ and the product $p_{1} p_{2} \ldots p_{k}$ it divides $m-p_{1} p_{2} \ldots p_{k}=1$, which is impossible.

Prove the fundamental theorem of arithmatic to be true.

