CLASS TUTORIAL－DIVISIBILITY AND PRIMALITY
 CIS002－2 Computational Alegrba and Number Theory

David Goodwin

david．goodwin＠perisic．com

09：00，Tuesday $8^{\text {th }}$ November 2011

Questions - Divisibility I

(1) Let us define the height $h(a)$ of an integer $a \geqslant 2$ to be the greatest n such that Euclid's algorithm requires n steps to compute $\operatorname{gcd}(a, b)$ for some positive $b<a$ (that is, $\left.\operatorname{gcd}(a, b)=r_{n-1}\right)$. Show that $h(a)=1$ if and only if $a=2$, and find $h(a)$ for all $a \leqslant 8$.
(2) The Fibonacci numbers $f_{n}=1,1,2,3,5, \ldots$ are defined by $f_{1}=f_{2}=1$ and $f_{n+2}=f_{n+1}+f_{n}$ for all $n \geqslant 1$. Show that $0 \leqslant f_{n}<f_{n+1}$ for all $n \geqslant 2$. What happens if Euclid's algorithm is applied when a and b are a pair of consecutive Fibonacci numbers f_{n+2} and f_{n+1} ? Show that $h\left(f_{n+2}\right) \geqslant n$.

Questions - DivisibiLity II

(3) Suppose that $a>b>0$, that Euclid's algorithm computes $\operatorname{gcd}(a, b)$ in n steps, and that a is the smallest integer with this property (that is, if $a^{\prime}>b^{\prime}>0$ and $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)$ requires n steps, then $a^{\prime} \geqslant a$); show that a and b are consecutive Fibonacci numbers $a=f_{n+2}$ and $b=f_{n+1}$ (Lamé's Theorem, 1845).
(4) Show that $h\left(f_{n+2}\right)=n$, and f_{n+2} is the smallest integer of this height.

Questions - Divisibility III

(5) Show that $f_{n}=\left(\phi^{n}-\psi^{n}\right) / \sqrt{5}$. where ϕ, ψ are the positive and negative roots of $\lambda^{2}=\lambda+1$. Deduce that $f_{n}=\left\{\phi^{n} / \sqrt{5}\right\}$, where $\{x\}$ denotes the lowest integer closest to x. Hence obtain the approximate upper bound
$\log _{\phi}(a \sqrt{5})-2=\log _{\phi}(a)+\frac{1}{2} \log _{\phi}(5)-2 \approx 4.785 \log _{10}(a)-0.328$
for the number of steps required to compute $\operatorname{gcd}(a, b)$ by Euclid's algorithm, where $a \geqslant b>0$.
(6) Show that if a and b are integers with $b \neq 0$, then there is a unique pair of integers q and r such that $a=q b+r$ and $-|b| / 2<r<|b| / 2$. Use this result to devise an alternative algorithm to Euclid's for calculating greatest common divisors (the least remainders algorithm).

Questions - Divisibility IV

(7) Use the least remainders algorithm to compute $\operatorname{gcd}(1066,1492)$ and $\operatorname{gcd}(1485,1745)$, and compare the numbers of steps required by this algorithm with those required by Euclid's algorithm.
8 What happens if the least remainders algorithm is applied to a pair of consecutive Fibonacci numbers?
(9) Show that if a and b are coprime positive integers, then every integer $c \geqslant a b$ has the form $a x+$ by where x and y are non-negative integers. Show that the integer $a b-a-b$ does not have this form.

Questions - Primality

(1) For which prime p is $p^{2}+2$ also prime?
(2) Show that if $p>1$ and p divides $(p-1)!+1$, then p is prime.
(3) Extend the theorem of prime-power factorisation so that it describes the factorisation of all positive rational numbers.
(4) Show that if $n, q \geqslant 1$ then the number of multiples of q among $1,2, \ldots, n$ is $[n / q]$. Hence show that if p is prime and $p^{e}| | n!$, then $e=\lfloor n / p\rfloor+\left\lfloor n / p^{2}\right\rfloor+\left\lfloor n / p^{3}\right\rfloor+\ldots$
(5) What is the relationship between the number of $0 s$ at the end of the decimal expansion of an integer n, and the prime-power factorisation of n ? Find the corresponding result for the base b expansions of n (where we write $n=\sum_{i=0}^{k} a_{i} b^{i}$ with $\left.0 \leqslant a_{i}<b\right)$.
(6) Show that $F_{0} F_{1} \ldots F_{n-1}=F_{n}-2$ for all $n \geqslant 1$.
(7) Evaluate the Mersenne number M_{17}, and determine whether it is prime.

