Class Tutorial - Divisibility and Primality

CIS002-2 Computational Alegrba and Number Theory

David Goodwin

david.goodwin@perisic.com

09:00, Tuesday 8th November 2011

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

- Let us define the height h(a) of an integer a ≥ 2 to be the greatest n such that Euclid's algorithm requires n steps to compute gcd(a, b) for some positive b < a (that is, gcd(a, b) = r_{n-1}). Show that h(a) = 1 if and only if a = 2, and find h(a) for all a ≤ 8.
- **2** The Fibonacci numbers $f_n = 1, 1, 2, 3, 5, ...$ are defined by $f_1 = f_2 = 1$ and $f_{n+2} = f_{n+1} + f_n$ for all $n \ge 1$. Show that $0 \le f_n < f_{n+1}$ for all $n \ge 2$. What happens if Euclid's algorithm is applied when *a* and *b* are a pair of consecutive Fibonacci numbers f_{n+2} and f_{n+1} ? Show that $h(f_{n+2}) \ge n$.

- 8 Suppose that a > b > 0, that Euclid's algorithm computes gcd(a, b) in n steps, and that a is the smallest integer with this property (that is, if a' > b' > 0 and gcd(a', b') requires n steps, then $a' \ge a$); show that a and b are consecutive Fibonacci numbers $a = f_{n+2}$ and $b = f_{n+1}$ (Lamé's Theorem, 1845).
- (1) Show that $h(f_{n+2}) = n$, and f_{n+2} is the smallest integer of this height.

QUESTIONS - DIVISIBILITY III

Show that f_n = (φⁿ - ψⁿ)/√5. where φ, ψ are the positive and negative roots of λ² = λ + 1. Deduce that f_n = {φⁿ/√5}, where {x} denotes the lowest integer closest to x. Hence obtain the approximate upper bound

$$\log_{\phi}(a\sqrt{5}) - 2 = \log_{\phi}(a) + \frac{1}{2}\log_{\phi}(5) - 2 \approx 4.785\log_{10}(a) - 0.328$$

for the number of steps required to compute gcd(a, b) by Euclid's algorithm, where $a \ge b > 0$.

Show that if a and b are integers with b ≠ 0, then there is a unique pair of integers q and r such that a = qb + r and - |b|/2 < r < |b|/2. Use this result to devise an alternative algorithm to Euclid's for calculating greatest common divisors (the least remainders algorithm).

- Use the least remainders algorithm to compute gcd(1066, 1492) and gcd(1485, 1745), and compare the numbers of steps required by this algorithm with those required by Euclid's algorithm.
- 8 What happens if the least remainders algorithm is applied to a pair of consecutive Fibonacci numbers?
- Show that if a and b are coprime positive integers, then every integer c ≥ ab has the form ax + by where x and y are non-negative integers. Show that the integer ab a b does not have this form.

QUESTIONS - PRIMALITY

- 1 For which prime p is $p^2 + 2$ also prime?
- 2 Show that if p > 1 and p divides (p-1)! + 1, then p is prime.
- 8 Extend the theorem of prime-power factorisation so that it describes the factorisation of all positive rational numbers.
- (1) Show that if $n, q \ge 1$ then the number of multiples of q among 1, 2, ..., n is $\lfloor n/q \rfloor$. Hence show that if p is prime and $p^e || n!$, then $e = \lfloor n/p \rfloor + \lfloor n/p^2 \rfloor + \lfloor n/p^3 \rfloor + ...$
- What is the relationship between the number of 0s at the end of the decimal expansion of an integer n, and the prime-power factorisation of n? Find the corresponding result for the base b expansions of n (where we write n = ∑_{i=0}^k a_ibⁱ with 0 ≤ a_i < b).
- 6 Show that $F_0F_1 \dots F_{n-1} = F_n 2$ for all $n \ge 1$.
- Second Secon

