# MODULAR ARITHMETIC & CONGRUENCES CIS002-2 Computational Alegrba and Number Theory

#### David Goodwin

david.goodwin@perisic.com



### 09:00, Tuesday 15<sup>th</sup> November 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# Contents

### **1** MODULAR ARITHMETIC

A simple example Definition of a modulus Reflexivity, Symmetry and Transitivity Congruence Classes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

## **2** QUESTIONS

# INTRODUCTION

Many problems involving large integers can be simplified by a technique called **modular arithmetic**, where we use **congruences** in place of equations. The general idea is to choose a particular integer n (depending on the problem), called the **modulus**, and replace evergy integer with its remainder when divided by n. This remainder is usually smaller that the origional integer, and hence easier to deal with.



# A SIMPLE EXAMPLE

#### EXAMPLE (WHAT IS THE DAY OF THE WEEK?)

What day of the week will it be 100 days from now? We could solve this by getting out a diary and counting 100 days ahead, but a simpler method is to use the fact that the days of the week recur in cycles of length 7. Now  $100 = (7 \times 14) + 2$ , so the day of the week will be the same as it is 2 days ahead of now, Thursday (counting 2 days ahead of today instead of 100. Here we have choose n = 7 and replace 100 with its remainder on division by 7, namely 2.



A D F A B F A B F A B F

# DEFINITION

#### DEFINITION

Let *n* be a positive integer, and let *a* and *b* be any integers. We say that *a* is *congruent* to *b* mod (n), or *a* is a *residue* of *b* mod (n), written

$$a \equiv b \mod(n)$$

if a and b leave the same remainder when divided by n (other notations include  $a \equiv (b \mod n)$ ,  $a \equiv_n b$ , or simply  $a \equiv b$  if the value of n is understood).



(日)、

## DEFINITION

To be more precise we use the division algorithm to put a = qn + r with  $0 \le r < n$ , and b = q'n + r' with  $0 \le r' < n$ , and hence we say that  $a \equiv b \mod (n)$  if and only if r = r'.

For the previous example we can say  $100 \equiv 2 \mod (7)$ .

We use the notation  $a \neq b \mod (n)$  to denote that a and b are not congruent  $\mod (n)$ , that is, they leave different remainders when divided by n.



## Some useful observations

If 
$$a = qn + r$$
 and  $b = q'n + r'$  as above

$$a - b = (q - q')n + (r - r')$$
 with  $-n < r - r' < n$ 

If 
$$a \equiv b \mod (n)$$
 then  $r = r'$  so  $a - b = (q - q')n$ .

#### LEMMA (5.1)

For any fixed  $n \ge 1$  we have  $a \equiv b \mod (n)$  if and only if  $n \mid (a - b)$ .



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

・ロット (雪) ( ) ( ) ( ) ( )

### Some useful observations

#### LEMMA (5.2)

for any fixed  $n \ge 1$  we have:

(A)  $a \equiv a \mod (n)$  for all integers a [we have  $n \mid (a - a)$  for all a]

(B) if  $a \equiv b \mod (n)$  then  $b \equiv a \mod (n)$  [if  $n \mid (a - b)$  then  $n \mid (b - a)$ ]

(C) if 
$$a \equiv b \mod (n)$$
 and  $b \equiv c \mod (n)$  then  $a \equiv c \mod (n)$  [if  $n \mid (a - b)$  and  $n \mid (b - c)$  then  $n \mid (a - b) + (b - c) = a - c$ ]

These three properties are called the reflexivity, symmetry and transitivity axioms for an equivalence relation.

# CONGRUENCE CLASSES

It follows from the previous lemma, that for each fixed n, congruence mod(n) is an equivalence relation on  $\mathbb{Z}$ . It also follows that  $\mathbb{Z}$  is partitioned into disjoint equivalence classes; these are **congruence classes** 

$$[a] = \{ b \in \mathbb{Z} \mid a \equiv b \mod (n) \}$$
  
=  $\{ \dots, a-2n, a-n, a, a+n, a+2n, \dots \}$ 

for  $a \in \mathbb{Z}$  (to emphasise the particular value of *n* being used, we can use the notation  $[a]_n$ ). Each class belongs to one of the *n* possible remainders on division by *n*.



(日) (個) (目) (目) (目) (目)

# CONGRUENCE CLASSES

For a given  $n \ge 1$ , we denote the set of *n* equivalence classes mod (*n*) by  $\mathbb{Z}_n$ . Our next aim is to show how to do arithmetic with these congruence classes, so that  $\mathbb{Z}_n$  becomes a number system with properties similar to those of  $\mathbb{Z}$ .



### **OPERATIONS ON CONGRUENCE CLASSES**

If [a] and [b] are elements of  $\mathbb{Z}_n$  (that is, congruence classes mod (n)), we define their sum, difference and product to be the classes

$$[a] + [b] = [a + b]$$
$$[a] - [b] = [a - b]$$
$$[a][b] = [ab]$$

containing the integers a + b, a - b and ab repectively.



### **OPERATIONS ON CONGRUENCE CLASSES**

If  $a' \equiv a$  then a' = a + kn for some integer k, and similarly we have b' = b + ln for some integer l.

$$egin{array}{lll} \mathsf{a}'\pm\mathsf{b}'=(\mathsf{a}\pm\mathsf{b})+(k\pm\mathsf{l})\mathsf{n}\equiv\mathsf{a}\pm\mathsf{b}\ \mathsf{a}'\mathsf{b}'=(\mathsf{a}\mathsf{b})+(\mathsf{a}\mathsf{l}+\mathsf{b}\mathsf{k}+\mathsf{k}\mathsf{l}\mathsf{n})\mathsf{n}\equiv\mathsf{a}\mathsf{b} \end{array}$$

LEMMA (5.3)

For any  $n \ge 1$ , if  $a' \equiv a$  and  $b' \equiv b$ , then  $a' \pm b' \equiv a \pm b$  and  $a'b' \equiv ab$ 





# Prove by use of a counterexample, that $[a]^{[b]} eq [a^b]$



### DEFINITION

A set of *n* integers, containing one representative from each of the *n* congruence classes  $\mathbb{Z}_n$ , is called a **complete set of residues** mod (n).

If we divide a by n to give a = qn + r giving some unique r satisfying  $0 \le r < n$ , each class  $[a] \in \mathbb{Z}_n$  contains a unique  $r = 0, 1, \ldots, n-1$  forming a complete set of residues called **least non-negative residues** mod (n). Similarly, the complete set of residues formed from  $-n/2 < r \le n/2$  is called the **least absolute residues** mod (n).



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

## Polynomials

# LEMMA (5.4) Let f(x) be a polynomial with integer coefficients, and let $n \ge 1$ . If $a \equiv b \mod (n)$ then $f(a) \equiv f(b) \mod (n)$ .



・ロット (雪) (日) (日) (日)



Find the following without a calculator

- **()** Calculate the least non-negative residue of  $28 \times 33 \mod (35)$ .
- **2** Calculate the least non-negative residue of  $34 \times 17 \mod (29)$ .
- **3** Calculate the least absolute residue of  $15 \times 59 \mod (75)$ .
- **④** Calculate the least absolute residue of  $19 \times 14 \mod (23)$ .
- **6** Calculate the least non-negative residue of  $3^8 \mod (13)$ .
- **6** Find the remainder when  $5^{10}$  is divided by 19.
- $\bigcirc$  Find the decimal digit of  $1! + 2! + \dots + 10!$
- 8 Prove that a(a+1)(2a+1) is divisible by 6 for every integer a.



Prove the following polynomials have no integer roots

(a) 
$$x^{5} - x^{2} + x - 3$$
  
(b)  $x^{3} - x + 1$   
(c)  $x^{3} + x^{2} - x + 1$   
(c)  $x^{3} + x^{2} - x + 3$ 

