Modular Arithmetic \& Congruences CIS002-2 Computational Alegrba and Number Theory

David Goodwin
david.goodwin@perisic.com

09:00, Tuesday $15^{\text {th }}$ November 2011

Contents

(1) Modular Arithmetic

A simple example Definition of a modulus Reflexivity, Symmetry and Transitivity Congruence Classes
(2) Questions

Introduction

Many problems involving large integers can be simplified by a technique called modular arithmetic, where we use congruences in place of equations. The general idea is to choose a particular integer n (depending on the problem), called the modulus, and replace evergy integer with its remainder when divided by n. This remainder is usually smaller that the origional integer, and hence easier to deal with.

A SIMPLE EXAMPLE

Example (What is the day of the week?)

What day of the week will it be 100 days from now? We could solve this by getting out a diary and counting 100 days ahead, but a simpler method is to use the fact that the days of the week recur in cycles of length 7 . Now $100=(7 \times 14)+2$, so the day of the week will be the same as it is 2 days ahead of now, Thursday (counting 2 days ahead of today instead of 100 . Here we have choose $n=7$ and replace 100 with its remainder on division by 7 , namely 2 .

Definition

Definition

Let n be a positive integer, and let a and b be any integers. We say that a is congruent to $b \bmod (n)$, or a is a residue of b $\bmod (n)$, written

$$
a \equiv b \quad \bmod (n)
$$

if a and b leave the same remainder when divided by n (other notations include $a \equiv(b \bmod n), a \equiv_{n} b$, or simply $a \equiv b$ if the value of n is understood).

Definition

To be more precise we use the division algorithm to put $a=q n+r$ with $0 \leq r<n$, and $b=q^{\prime} n+r^{\prime}$ with $0 \leq r^{\prime}<n$, and hence we say that $a \equiv b \bmod (n)$ if and only if $r=r^{\prime}$.

For the previous example we can say $100 \equiv 2 \bmod (7)$.
We use the notation $a \not \equiv b \bmod (n)$ to denote that a and b are not congruent $\bmod (n)$, that is, they leave different remainders when divided by n.

Some useful observations

If $a=q n+r$ and $b=q^{\prime} n+r^{\prime}$ as above

$$
a-b=\left(q-q^{\prime}\right) n+\left(r-r^{\prime}\right) \quad \text { with } \quad-n<r-r^{\prime}<n
$$

If $a \equiv b \bmod (n)$ then $r=r^{\prime}$ so $a-b=\left(q-q^{\prime}\right) n$.
Lemma (5.1)
For any fixed $n \geq 1$ we have $a \equiv b \bmod (n)$ if and only if $n \mid(a-b)$.

Some useful observations

Lemma (5.2)

for any fixed $n \geq 1$ we have:
(A) $a \equiv a \bmod (n)$ for all integers a [we have $n \mid(a-a)$ for all a]
(B) if $a \equiv b \bmod (n)$ then $b \equiv a \bmod (n)[i f n \mid(a-b)$ then $n \mid(b-a)]$
(c) if $a \equiv b \bmod (n)$ and $b \equiv c \bmod (n)$ then $a \equiv c \bmod (n)$ [if $n \mid(a-b)$ and $n \mid(b-c)$ then $n \mid(a-b)+(b-c)=a-c]$

These three properties are called the reflexivity, symmetry and transitivity axioms for an equivalence relation.

Congruence classes

It follows from the previous lemma, that for each fixed n, congruence $\bmod (n)$ is an equivalence relation on \mathbb{Z}. It also follows that \mathbb{Z} is partitioned into disjoint equivalence classes; these are congruence classes

$$
\begin{aligned}
{[a] } & =\{b \in \mathbb{Z} \mid a \equiv b \bmod (n)\} \\
& =\{\ldots, a-2 n, a-n, a, a+n, a+2 n, \ldots\}
\end{aligned}
$$

for $a \in \mathbb{Z}$ (to emphasise the particular value of n being used, we can use the notation $[a]_{n}$). Each class belongs to one of the n possible remainders on division by n.

Congruence classes

For a given $n \geq 1$, we denote the set of n equivalence classes $\bmod (n)$ by \mathbb{Z}_{n}. Our next aim is to show how to do arithmetic with these congruence classes, so that \mathbb{Z}_{n} becomes a number system with properties similar to those of \mathbb{Z}.

Operations on congruence classes

If $[a]$ and $[b]$ are elements of \mathbb{Z}_{n} (that is, congruence classes $\bmod (n)$), we define their sum, difference and product to be the classes

$$
\begin{aligned}
{[a]+[b] } & =[a+b] \\
{[a]-[b] } & =[a-b] \\
{[a][b] } & =[a b]
\end{aligned}
$$

containing the integers $a+b, a-b$ and $a b$ repectively.

Operations on congruence classes

If $a^{\prime} \equiv a$ then $a^{\prime}=a+k n$ for some integer k, and similarly we have $b^{\prime}=b+\ln$ for some integer l.

$$
\begin{aligned}
a^{\prime} \pm b^{\prime} & =(a \pm b)+(k \pm l) n \equiv a \pm b \\
a^{\prime} b^{\prime} & =(a b)+(a l+b k+k l n) n \equiv a b
\end{aligned}
$$

Lemma (5.3)

For any $n \geq 1$, if $a^{\prime} \equiv a$ and $b^{\prime} \equiv b$, then $a^{\prime} \pm b^{\prime} \equiv a \pm b$ and $a^{\prime} b^{\prime} \equiv a b$

Question

Prove by use of a counterexample, that $[a]^{[b]} \neq\left[a^{b}\right]$

Definition

A set of n integers, containing one representative from each of the n congruence classes \mathbb{Z}_{n}, is called a complete set of residues $\bmod (n)$.

If we divide a by n to give $a=q n+r$ giving some unique r satisfying $0 \leq r<n$, each class [a] $\in \mathbb{Z}_{n}$ contains a unique $r=0,1, \ldots, n-1$ forming a complete set of residues called least non-negative residues $\bmod (n)$. Similarly, the complete set of residues formed from $-n / 2<r \leq n / 2$ is called the least absolute residues $\bmod (n)$.

Polynomials

Lemma (5.4)

Let $f(x)$ be a polynomial with integer coefficients, and let $n \geq 1$. If $a \equiv b \bmod (n)$ then $f(a) \equiv f(b) \bmod (n)$.

Questions

Find the following without a calculator
(1) Calculate the least non-negative residue of $28 \times 33 \bmod (35)$.
(2) Calculate the least non-negative residue of $34 \times 17 \bmod (29)$.
(3) Calculate the least absolute residue of $15 \times 59 \bmod (75)$.
(4) Calculate the least absolute residue of $19 \times 14 \bmod (23)$.
(5) Calculate the least non-negative residue of $3^{8} \bmod (13)$.
(6) Find the remainder when 5^{10} is divided by 19 .
(7) Find the decimal digit of $1!+2!+, \ldots,+10$!

8 Prove that $a(a+1)(2 a+1)$ is divisible by 6 for every integer a.

Questions

Prove the following polynomials have no integer roots
(9) $x^{5}-x^{2}+x-3$
(10) $x^{3}-x+1$
(11) $x^{3}+x^{2}-x+1$
(12) $x^{3}+x^{2}-x+3$

