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POLYNOMIALS

POLYNOMIALS

LEMMA (5.4)

Let f(x) be a polynomial with integer coefficients, and let n > 1.
If a= b mod (n) then f(a) = f(b) mod (n).
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POLYNOMIALS

e Suppose f(x) is prime for all integers x, and is not constant.
e If we choose any integer a, then f(a) is a prime p.
e For each b= a mod (p), Lemma 5.4 implies that
f(b) = f(a) mod (p), so f(b) =0 mod (p) and hence p| f(b).
e By our hypothesis, f(b) is prime, so f(b) = p.
e There are infinitely many integers b = a mod (p), so the
polynomial g(x) = f(x) — p has infinitely many roots.

e Having degree d > 1, g(x) can have at most d roots, so such
a polynomial f(x) cannot exist.
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POLYNOMIALS

THEOREM (5.5)

There is no non-constant polynomial f(x), with integer
coefficients, such that f(x) is prime for all integers x.
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5 LINEAR CONGRUENCES SIMULIT

THEOREM (5.6)

If d = gcd(a, n), then the linear congruence
ax = b mod (n)

has a solution if and only if d | b. If d does divide b, and if xg is
any solution, then the general solution is given by
n nt
X =x9+ —
0" d
where t € 7Z; in particular, the solutions form exactly d congruence
classes mod(n), with representatives

2n (d—=1)n

n
X = X0,X0 + =, X0 + ., X0 + d

d d’
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LINEAR CONGRUENCES

(QUESTIONS

EXAMPLE

Consider the following congruences:
©® 10x =3 mod (12)
® 10x = 6 mod (12)
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LINEAR CONGRUENCES

(QUESTIONS

EXAMPLE
Consider the following congruences:
® 10x =3 mod (12) - Here a=10, b=3, n=12, so
d = ged(10,12) = 2. 2 } 3, so there are no solutions.
® 10x = 6 mod (12) - Here a =10, b=6, n =12, so
d = gcd(10,12) = 2. 2|6, so there are two classes of
solutions. xg = 3 and x = xg + 6t, where t € Z.
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LINEAR CONGRUENCES

LEMMA (5.7)

A Let m|a,b,n, and let 8 = a/m, b’ = b/m and n" = n/m; then

ax = b mod (n) if and only if a'’x=b' mod (n')

B Let a and n be coprime, let m| a, b, and let a = a/m and
b = b/m; then

ax = b mod (n) if and only if a'’x = b’ mod (n)
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LINEAR CONGRUENCES

EXERCISES

For each of the following congruences, decide whether a solution
exists, and if it does exist, find the general solution:

® 3x =5 mod (7)

® 12x = 15 mod (22)
® 19x = 42 mod (50)
© 18x = 42 mod (50)
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SIMULTANEOUS LINEAR CONGRUENCES
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SIMULTANEOUS LINEAR CONGRUENCES

CHINESE REMAINDER THEOREM

THEOREM (5.8)

Let ny, no, ..., ni be positive integers, with gcd(n;, nj) =1
whenever | # j, and let a1, ap, ..., ax be any integers. Then the
solutions of the simultaneous congruences

x = a; mod (ny), x =aymod (n2), ... x=a,mod (nk)

form a single congruence class mod(n), where n = niny ... ng.

o

Let ¢; = n/nj, then ¢cix = 1 mod (n;) has a single congruence class
[di] of solutions mod(n;). We now claim that

Xp = a1a1d1 + axcrdy + - - - + agcidi simultaneously satisfies the
given congruences.
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SIMULTANEOUS LINEAR CONGRUENCES

(QUESTIONS

EXAMPLE

Solve the following simultaneous congruence:
x =2 mod (3), x =3 mod (5), x =2 mod (7)
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SIMULTANEOUS LINEAR CONGRUENCES

(QUESTIONS

EXAMPLE

Solve the following simultaneous congruence:

x =2 mod (3), x =3 mod (5), x =2 mod (7)

We have ny =3, no =5, n3 =7, so n=105. ¢; = 35, ¢ = 21,
c3=15. dy = -1, d =1, d3 = 2 gives x = 23 mod (105).
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SIMULTANEOUS NON-LINEAR CONGRUENCES

THEOREM (5.9)

Let n = ny...ng where the integers n; are mutually coprime, and
let f(x) be a polynomial with integer coefficients. Suppose that for
each i =1,..., k there are N; congruence classes x € Z,, such
that f(x) = 0 mod (n;). Then there are N = Nj ... Ny classes

X € Zp such that f(x) = 0 mod (n).
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SIMULTANEOUS NON-LINEAR CONGRUENCES

EXERCISES

How many classes of solutions are there for each of the following
congruences?

©® x> —1=0mod (168)
® x>+ 1= 0mod (70)
® x°>+x+1=0mod (91)
0 x> +1 =0 mod (140)

".' Universty of
Bedfordshire



OUTLINE

® CHINESE REMAINDER THEOREM - AN EXTENSION

".' Universty of
Bedfordshire



CHINESE REMAINDER THEOREM - AN EXTENSION

THEOREM (5.10)

Let n = ny,...,ng be positive integers, and let ay,...,ax be any
integers. Then the simultaneous congruences

x = a; mod (ny),...,x = ax mod (nk)

have a solution x if and only if gcd(n;, nj) divides aj — aj whenever
i # j. When this condition is satisfied, the general solution forms a
single congruence class mod(n), where n is the least common
multiple of ny, ..., ng.
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EXERCISES

Determine which of the following sets of simultaneous congruences
have solutions, and when they do, find the general solution:

® x =1mod (6), x =5 mod (14), x = 4 mod (21).

® x =1mod (6), x =5 mod (14), x = —2 mod (21).

® x = 13 mod (40), x =5 mod (44), x = 38 mod (275).

© x> =9 mod (10), 7x = 19 mod (24), 2x = —1 mod (45).
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