Simultaneous Linear, and Non-Linear Congruences

CIS002-2 Computational Alegrba and Number Theory

David Goodwin

david.goodwin@perisic.com

09:00, Friday $18^{\text {th }}$ November 2011

Outline

(1) Polynomials
(2) Linear Congruences
(3) Simultaneous Linear Congruences
(4) Simultaneous Non-Linear Congruences
(5) Chinese Remainder Theorem - An Extension

Outline

(1) Polynomials
(2) Linear Congruences
(3) Simultaneous Linear Congruences
(4) Simultaneous Non-Linear Congruences
(5) Chinese Remainder Theorem - An Extension

Polynomials

Lemma (5.4)

Let $f(x)$ be a polynomial with integer coefficients, and let $n \geq 1$. If $a \equiv b \bmod (n)$ then $f(a) \equiv f(b) \bmod (n)$.

- Suppose $f(x)$ is prime for all integers x, and is not constant.
- If we choose any integer a, then $f(a)$ is a prime p.
- For each $b \equiv a \bmod (p)$, Lemma 5.4 implies that $f(b) \equiv f(a) \bmod (p)$, so $f(b) \equiv 0 \bmod (p)$ and hence $p \mid f(b)$.
- By our hypothesis, $f(b)$ is prime, so $f(b)=p$.
- There are infinitely many integers $b \equiv a \bmod (p)$, so the polynomial $g(x)=f(x)-p$ has infinitely many roots.
- Having degree $d \geq 1, g(x)$ can have at most d roots, so such a polynomial $f(x)$ cannot exist.

Theorem (5.5)

There is no non-constant polynomial $f(x)$, with integer coefficients, such that $f(x)$ is prime for all integers x.

Outline

(1) Polynomials
(2) Linear Congruences
(3) Simultaneous Linear Congruences
(4) Simultaneous Non-Linear Congruences
(5) Chinese Remainder Theorem - An Extension

Theorem (5.6)

If $d=\operatorname{gcd}(a, n)$, then the linear congruence

$$
a x \equiv b \bmod (n)
$$

has a solution if and only if $d \mid b$. If does divide b, and if x_{0} is any solution, then the general solution is given by

$$
x=x_{0}+\frac{n t}{d}
$$

where $t \in \mathbb{Z}$; in particular, the solutions form exactly d congruence classes $\bmod (n)$, with representatives

$$
x=x_{0}, x_{0}+\frac{n}{d}, x_{0}+\frac{2 n}{d}, \ldots, x_{0}+\frac{(d-1) n}{d}
$$

Questions

Example
Consider the following congruences:
(1) $10 x \equiv 3 \bmod (12)$
(2) $10 x \equiv 6 \bmod (12)$

Questions

Example

Consider the following congruences:
(1) $10 x \equiv 3 \bmod (12)$ - Here $a=10, b=3, n=12$, so $d=\operatorname{gcd}(10,12)=2.2 \nmid 3$, so there are no solutions.
(2) $10 x \equiv 6 \bmod (12)$ - Here $a=10, b=6, n=12$, so $d=\operatorname{gcd}(10,12)=2.2 \mid 6$, so there are two classes of solutions. $x_{0}=3$ and $x=x_{0}+6 t$, where $t \in \mathbb{Z}$.

Lemma (5.7)

A Let $m \mid a, b, n$, and let $a^{\prime}=a / m, b^{\prime}=b / m$ and $n^{\prime}=n / m$; then

$$
a x \equiv b \bmod (n) \quad \text { if and only if } \quad a^{\prime} x \equiv b^{\prime} \bmod \left(n^{\prime}\right)
$$

B Let a and n be coprime, let $m \mid a, b$, and let $a^{\prime}=a / m$ and $b^{\prime}=b / m$; then

$$
a x \equiv b \bmod (n) \quad \text { if and only if } \quad a^{\prime} x \equiv b^{\prime} \bmod (n)
$$

ExERCISES

For each of the following congruences, decide whether a solution exists, and if it does exist, find the general solution:
(1) $3 x \equiv 5 \bmod (7)$
(2) $12 x \equiv 15 \bmod (22)$
(3) $19 x \equiv 42 \bmod (50)$
(4) $18 x \equiv 42 \bmod (50)$

Outline

(1) Polynomials
(2) Linear Congruences
(3) Simultaneous Linear Congruences
(4) Simultaneous Non-Linear Congruences
(5) Chinese Remainder Theorem - An Extension

Chinese Remainder Theorem

Theorem (5.8)

Let $n_{1}, n_{2}, \ldots, n_{k}$ be positive integers, with $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ whenever $i \neq j$, and let $a_{1}, a_{2}, \ldots, a_{k}$ be any integers. Then the solutions of the simultaneous congruences

$$
x \equiv a_{1} \bmod \left(n_{1}\right), \quad x \equiv a_{2} \bmod \left(n_{2}\right), \quad \ldots \quad x \equiv a_{k} \bmod \left(n_{k}\right)
$$

form a single congruence class $\bmod (n)$, where $n=n_{1} n_{2} \ldots n_{k}$.
Let $c_{i}=n / n_{i}$, then $c_{i} x \equiv 1 \bmod \left(n_{i}\right)$ has a single congruence class [d_{i}] of solutions $\bmod \left(n_{i}\right)$. We now claim that $x_{0}=a_{1} c_{1} d_{1}+a_{2} c_{2} d_{2}+\cdots+a_{k} c_{k} d_{k}$ simultaneously satisfies the given congruences.

Questions

EXAMPLE

Solve the following simultaneous congruence:
$x \equiv 2 \bmod (3), x \equiv 3 \bmod (5), x \equiv 2 \bmod (7)$

Questions

Example

Solve the following simultaneous congruence:
$x \equiv 2 \bmod (3), x \equiv 3 \bmod (5), x \equiv 2 \bmod (7)$
We have $n_{1}=3, n_{2}=5, n_{3}=7$, so $n=105 . c_{1}=35, c_{2}=21$, $c_{3}=15 . d_{1}=-1, d_{2}=1, d_{3}=2$ gives $x \equiv 23 \bmod (105)$.

Outline

(1) Polynomials
(2) Linear Congruences
(3) Simultaneous Linear Congruences
(4) Simultaneous Non-Linear Congruences
(5) Chinese Remainder Theorem - An Extension

Theorem (5.9)

Let $n=n_{1} \ldots n_{k}$ where the integers n_{i} are mutually coprime, and let $f(x)$ be a polynomial with integer coefficients. Suppose that for each $i=1, \ldots, k$ there are N_{i} congruence classes $x \in \mathbb{Z}_{n_{i}}$ such that $f(x) \equiv 0 \bmod \left(n_{i}\right)$. Then there are $N=N_{1} \ldots N_{k}$ classes $x \in \mathbb{Z}_{n}$ such that $f(x) \equiv 0 \bmod (n)$.

EXERCISES

How many classes of solutions are there for each of the following congruences?
(1) $x^{2}-1 \equiv 0 \bmod (168)$
(2) $x^{2}+1 \equiv 0 \bmod (70)$
(3) $x^{2}+x+1 \equiv 0 \bmod (91)$
(4) $x^{3}+1 \equiv 0 \bmod (140)$

Outline

(1) Polynomials
(2) Linear Congruences
(3) Simultaneous Linear Congruences
(4) Simultaneous Non-Linear Congruences
(5) Chinese Remainder Theorem - An Extension

Chinese Remainder Theorem - An Extension

Theorem (5.10)

Let $n=n_{1}, \ldots, n_{k}$ be positive integers, and let a_{1}, \ldots, a_{k} be any integers. Then the simultaneous congruences

$$
x \equiv a_{1} \bmod \left(n_{1}\right), \ldots, x \equiv a_{k} \bmod \left(n_{k}\right)
$$

have a solution x if and only if $\operatorname{gcd}\left(n_{i}, n_{j}\right)$ divides $a_{i}-a_{j}$ whenever $i \neq j$. When this condition is satisfied, the general solution forms a single congruence class $\bmod (n)$, where n is the least common multiple of n_{1}, \ldots, n_{k}.

ExERCISES

Determine which of the following sets of simultaneous congruences have solutions, and when they do, find the general solution:
(1) $x \equiv 1 \bmod (6), x \equiv 5 \bmod (14), x \equiv 4 \bmod (21)$.
(2) $x \equiv 1 \bmod (6), x \equiv 5 \bmod (14), x \equiv-2 \bmod (21)$.
(3) $x \equiv 13 \bmod (40), x \equiv 5 \bmod (44), x \equiv 38 \bmod (275)$.
(4) $x^{2} \equiv 9 \bmod (10), 7 x \equiv 19 \bmod (24), 2 x \equiv-1 \bmod (45)$.

