Simultaneous Linear, and Non-Linear Congruences

CIS002-2 Computational Alegrba and Number Theory

David Goodwin

david.goodwin@perisic.com

09:00, Friday 24th November 2011 09:00, Tuesday 28th November 2011 09:00, Friday 02nd December 2011

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

OUTLINE

1 LINEAR CONGRUENCES

2 Simultaneous Linear Congruences

3 Simultaneous Non-Linear Congruences

4 Chinese Remainder Theorem - An Extension

э

・ロト ・ 一下・ ・ ヨト・

OUTLINE

1 LINEAR CONGRUENCES

2 Simultaneous Linear Congruences

3 Simultaneous Non-Linear Congruences

() Chinese Remainder Theorem - An Extension

э

・ロト ・四ト ・ヨト ・ヨト

THEOREM (5.6)

If d = gcd(a, n), then the linear congruence

 $ax \equiv b \mod (n)$

has a solution if and only if $d \mid b$. If d does divide b, and if x_0 is any solution, then the general solution is given by

$$x = x_0 + \frac{nt}{d}$$

where $t \in \mathbb{Z}$; in particular, the solutions form exactly d congruence classes mod(n), with representatives

$$x = x_0, x_0 + \frac{n}{d}, x_0 + \frac{2n}{d}, \dots, x_0 + \frac{(d-1)n}{d}$$

University of Bedfordshire

(日)、

LEMMA (5.7)

A Let $m \mid a, b, n$, and let a' = a/m, b' = b/m and n' = n/m; then

 $ax \equiv b \mod (n)$ if and only if $a'x \equiv b' \mod (n')$

B Let a and n be coprime, let $m \mid a, b$, and let a' = a/m and b' = b/m; then

 $ax \equiv b \mod (n)$ if and only if $a'x \equiv b' \mod (n)$

(日)、

Algorithm for solution

1 Calculate
$$d = gcd(a, n)$$
 and use $f' = \frac{f}{d}$

- 2 Use $a'x \equiv b' \mod (n')$
- **8** Find m = gcd(a', b') and use $f'' = \frac{f}{d}$

6 If
$$a'' = \pm 1$$
 then $x_0 = \pm b''$

6 Else use b''' = b'' + kn' so gcd(a'', b''') > 1 and return to step 4 with b''' instead of b''. Or use $ca''x \equiv cb'' \mod (n')$ in step 4, where the least absolute reside a''' of ca''' satisfies |a'''| < |a''|

EXAMPLE

gcd(10, 14) = 2, $5x \equiv 3 \mod (7),$ gcd(5, 3) = 1, $5x \equiv 3 \mod (7),$ $5 \neq \pm 1,$ $10 = 3 + (1 \times 7)$ gives $5x \equiv 10 \mod (7),$ gcd(5, 10) = 5, $x \equiv 2 \mod (7),$ $x_0 = 2,$

So the general solution has the form

 $x = 2 + 7t \qquad (t$

1 Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

EXAMPLE

gcd(10, 14) = 2, $5x \equiv 3 \mod (7)$,

So the general solution has the form

 $x = 2 + 7t \qquad (t$

- Calculate *d* = gcd(*a*, *n*) and use *f'* = *f*/*d* Use *a'x* ≡ *b'* mod (*n'*)
 Find *m* = gcd(*a'*, *b'*) and use *f''* = *f*
- **6** If $a'' = \pm 1$ then $x_0 = \pm b''$
- **6** Else use b''' = b'' + kn' and return to step 4. Or use ca''x ≡ cb'' mod (n') and return to step 4.

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

EXAMPLE

```
gcd(10, 14) = 2,
5x \equiv 3 \mod (7),
gcd(5,3) = 1,
```

So the general solution has the form

 $x = 2 + 7t \qquad (t$

3 Find m = gcd(a', b') and use $f'' = \frac{f}{d}$

イロト 不得 トイヨト イヨト

EXAMPLE

```
gcd(10, 14) = 2,
5x \equiv 3 \mod (7),
gcd(5,3) = 1,
5x \equiv 3 \mod (7),
```

So the general solution has the form

 $x = 2 + 7t \qquad (t$

• Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$

- (3) Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- **b** If $a'' = \pm 1$ then $x_0 = \pm b''$
- **6** Else use b''' = b'' + kn' and return to step 4. Or use $ca''x \equiv cb'' \mod (n')$ and return to step 4.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

EXAMPLE

gcd(10, 14) = 2, $5x \equiv 3 \mod (7)$, gcd(5,3) = 1, $5x \equiv 3 \mod (7)$, $5 \neq \pm 1$,

So the general solution has the form

 $x = 2 + 7t \qquad (t$

• Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$

- Obse $a'x \equiv b' \mod (n')$
- (3) Find m = gcd(a', b') and use $f'' = \frac{f}{d}$

6 If $a'' = \pm 1$ then $x_0 = \pm b''$

6 Else use b''' = b'' + kn' and return to step 4. Or use $ca''x \equiv cb'' \mod (n')$ and return to step 4.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

EXAMPLE

```
gcd(10, 14) = 2,

5x \equiv 3 \mod (7),

gcd(5, 3) = 1,

5x \equiv 3 \mod (7),

5 \neq \pm 1,

10 = 3 + (1 \times 7)

gives 5x \equiv 10 \mod (7),

gcd(5, 10) = 5,

x \equiv 2 \mod (7),

x_0 = 2,
```

So the general solution has the form

x = 2 + 7t $(t \in$

- Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$
- Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- $I Use a''x \equiv b'' \mod (n')$
- **b** If $a'' = \pm 1$ then $x_0 = \pm b''$
- **6** Else use b''' = b'' + kn' and return to step 4. Or use $ca''x \equiv cb'' \mod (n')$ and return to step 4.

EXAMPLE

```
gcd(10, 14) = 2,
5x \equiv 3 \mod (7),
gcd(5,3) = 1,
5x \equiv 3 \mod (7),
5 \neq \pm 1,
10 = 3 + (1 \times 7)
gives 5x \equiv 10 \mod (7),
gcd(5, 10) = 5,
```

So the general solution has the form

 $x = 2 + 7t \qquad (t$

3 Find m = gcd(a', b') and use $f'' = \frac{f}{d}$

イロト 不得 トイヨト イヨト

EXAMPLE

```
gcd(10, 14) = 2,

5x \equiv 3 \mod (7),

gcd(5, 3) = 1,

5x \equiv 3 \mod (7),

5 \neq \pm 1,

10 = 3 + (1 \times 7)

gives 5x \equiv 10 \mod (7),

gcd(5, 10) = 5,

x \equiv 2 \mod (7),

\chi_0 = 2,
```

So the general solution has the form

 $x = 2 + 7t \qquad (t$

- Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$
- Obse $a'x \equiv b' \mod (n')$
- Solution Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- **) If** $a'' = \pm 1$ then $x_0 = \pm b''$
- **6** Else use b''' = b'' + kn' and return to step 4. Or use $ca'' x \equiv cb'' \mod (n')$ and return to step 4.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

EXAMPLE

```
gcd(10, 14) = 2,
5x \equiv 3 \mod (7),
gcd(5,3) = 1,
5x \equiv 3 \mod (7),
5 \neq \pm 1,
10 = 3 + (1 \times 7)
gives 5x \equiv 10 \mod (7),
gcd(5, 10) = 5,
x \equiv 2 \mod (7),
x_0 = 2,
```

So the general solution has the form

 $x = 2 + 7t \qquad (t$

• Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$

- $Ise a'x \equiv b' \mod (n')$
- Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- $I Use a''x \equiv b'' \mod (n')$

6 If $a'' = \pm 1$ then $x_0 = \pm b''$

B Else use b''' = b'' + kn' and return to step 4. Or use $ca''x \equiv cb'' \mod (n')$ and return to step 4.

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

EXAMPLE

```
gcd(10, 14) = 2,

5x \equiv 3 \mod (7),

gcd(5, 3) = 1,

5x \equiv 3 \mod (7),

5 \neq \pm 1,

10 = 3 + (1 \times 7)

gives 5x \equiv 10 \mod (7),

gcd(5, 10) = 5,

x \equiv 2 \mod (7),

x_0 = 2,
```

So the general solution has the form

 $x = 2 + 7t \qquad (t \in \mathbb{Z})$

• Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$

- Obse $a'x \equiv b' \mod (n')$
- () Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- $I Use a''x \equiv b'' \mod (n')$
- **()** If $a'' = \pm 1$ then $x_0 = \pm b''$
- **6** Else use b''' = b'' + kn' and return to step 4. Or use $ca'' x \equiv cb'' \mod (n')$ and return to step 4.

・ ロ マ ・ (雪 マ ・ (雪 マ ・)

EXAMPLE

gcd(4, 47) = 1,

So the general solution has the form

x = 15 + 47t

1 Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$

- Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- $I Use a''x \equiv b'' \bmod (n')$
- **6** If $a'' = \pm 1$ then $x_0 = \pm b''$
- **6** Else use b''' = b'' + kn' and return to step 4. Or use $ca'' x \equiv cb'' \mod (n')$ and return to step 4.

イロト 不得 トイヨト イヨト

EXAMPLE

gcd(4, 47) = 1, $4x \equiv 13 \mod (47),$

 $4 \neq \pm 1$, $4 \times 12 = 48 \equiv 1 \mod (47)$ $x \equiv 12 \times 13 \mod (47)$ $x \equiv 3 \times 4 \times 13 \mod (47)$, $x \equiv 3 \times 52 \mod (47)$, $x \equiv 3 \times 5 \mod (47)$, $x \equiv 15 \mod (47)$, $x_0 = 15$,

So the general solution has the form

x = 15 + 47t

- Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$
- 2 Use $a'x \equiv b' \mod (n')$
- (3) Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- **6** If $a'' = \pm 1$ then $x_0 = \pm b''$
- **Else** use b''' = b'' + kn' and return to step 4. Or use ca'' x ≡ cb'' mod (n') and return to step 4.

イロト 不得 トイヨト イヨト

EXAMPLE

gcd(4, 47) = 1,

So the general solution has the form

x = 15 + 47t

3 Find m = gcd(a', b') and use $f'' = \frac{f}{d}$

イロト 不得 トイヨト イヨト

EXAMPLE

gcd(4, 47) = 1, $4x \equiv 13 \mod (47),$

 $4 \neq \pm 1$, $4 \times 12 = 48 \equiv 1 \mod (47)$ $x \equiv 12 \times 13 \mod (47)$ $x \equiv 3 \times 4 \times 13 \mod (47)$, $x \equiv 3 \times 52 \mod (47)$, $x \equiv 3 \times 5 \mod (47)$, $x \equiv 15 \mod (47)$, $x_0 = 15$,

So the general solution has the form

x = 15 + 47t

- Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$
- (3) Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- **5** If $a'' = \pm 1$ then $x_0 = \pm b''$
- **6** Else use b''' = b'' + kn' and return to step 4. Or use $ca'' x \equiv cb'' \mod (n')$ and return to step 4.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

EXAMPLE

gcd(4, 47) = 1, $4x \equiv 13 \mod (47)$, $4 \neq \pm 1$,

So the general solution has the form

x = 15 + 47t

• Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$

- Obse $a'x \equiv b' \mod (n')$
- (3) Find m = gcd(a', b') and use $f'' = \frac{f}{d}$

6 If $a'' = \pm 1$ then $x_0 = \pm b''$

6 Else use b''' = b'' + kn' and return to step 4. Or use $ca'' x \equiv cb'' \mod (n')$ and return to step 4.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

EXAMPLE

gcd(4, 47) = 1, $4x \equiv 13 \mod (47)$, $4 \neq \pm 1$, $4 \times 12 = 48 \equiv 1 \mod (47)$ $x \equiv 12 \times 13 \mod (47)$

So the general solution has the form

x = 15 + 47t

- Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$
- Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- $I Use a''x \equiv b'' \mod (n')$
- **b** If $a'' = \pm 1$ then $x_0 = \pm b''$
- **6** Else use b''' = b'' + kn' and return to step 4. Or use $ca''x \equiv cb'' \mod (n')$ and return to step 4.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

EXAMPLE

gcd(4, 47) = 1, $4x \equiv 13 \mod (47)$, $4 \neq \pm 1$, $4 \times 12 = 48 \equiv 1 \mod (47)$ $x \equiv 12 \times 13 \mod (47)$ $x \equiv 3 \times 4 \times 13 \mod (47)$,

So the general solution has the form

x = 15 + 47t

- Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$
- $I Se a'x \equiv b' mod (n')$
- **8** Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- $I Use a''x \equiv b'' \mod (n')$

5 If $a'' = \pm 1$ then $x_0 = \pm b''$

6 Else use b''' = b'' + kn' and return to step 4. Or use $ca'' x \equiv cb'' \mod (n')$ and return to step 4.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

EXAMPLE

gcd(4, 47) = 1, $4x \equiv 13 \mod (47)$, $4 \neq \pm 1$, $4 \times 12 = 48 \equiv 1 \mod (47)$ $x \equiv 12 \times 13 \mod (47)$ $x \equiv 3 \times 4 \times 13 \mod (47)$, $x \equiv 3 \times 52 \mod (47)$,

So the general solution has the form

x = 15 + 47t

- Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$
- $I Se a'x \equiv b' mod (n')$
- **8** Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- $I Use a''x \equiv b'' \mod (n')$

5 If $a'' = \pm 1$ then $x_0 = \pm b''$

6 Else use b''' = b'' + kn' and return to step 4. Or use $ca'' x \equiv cb'' \mod (n')$ and return to step 4.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

EXAMPLE

gcd(4, 47) = 1, $4x \equiv 13 \mod (47),$ $4 \neq \pm 1,$ $4 \times 12 = 48 \equiv 1 \mod (47)$ $x \equiv 12 \times 13 \mod (47)$ $x \equiv 3 \times 4 \times 13 \mod (47),$ $x \equiv 3 \times 52 \mod (47),$ $x \equiv 3 \times 5 \mod (47),$ $x \equiv 15 \mod (47),$ $x_0 = 15,$

So the general solution has the form

x = 15 + 47t

- Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$
- $Ise a'x \equiv b' \mod (n')$
- **8** Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- $I Use a''x \equiv b'' \mod (n')$

5 If $a'' = \pm 1$ then $x_0 = \pm b''$

B Else use b''' = b'' + kn' and return to step 4. Or use $ca'' x \equiv cb'' \mod (n')$ and return to step 4.

イロト 不得 トイヨト イヨト

EXAMPLE

gcd(4, 47) = 1, $4x \equiv 13 \mod (47),$ $4 \neq \pm 1,$ $4 \times 12 = 48 \equiv 1 \mod (47)$ $x \equiv 12 \times 13 \mod (47)$ $x \equiv 3 \times 4 \times 13 \mod (47),$ $x \equiv 3 \times 52 \mod (47),$ $x \equiv 15 \mod (47),$

 $x_0 = 15$,

So the general solution has the form

x = 15 + 47t

• Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$

- Obse $a'x \equiv b' \mod (n')$
- **8** Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- $I Use a''x \equiv b'' \mod (n')$

5 If $a'' = \pm 1$ then $x_0 = \pm b''$

B Else use b''' = b'' + kn' and return to step 4. Or use $ca'' x \equiv cb'' \mod (n')$ and return to step 4.

イロト 不得 トイヨト イヨト

University of Bedfordshire

EXAMPLE

gcd(4, 47) = 1, $4x \equiv 13 \mod (47),$ $4 \neq \pm 1,$ $4 \times 12 = 48 \equiv 1 \mod (47)$ $x \equiv 12 \times 13 \mod (47)$ $x \equiv 3 \times 4 \times 13 \mod (47),$ $x \equiv 3 \times 52 \mod (47),$ $x \equiv 15 \mod (47),$ $x_0 = 15,$

So the general solution has the form

x = 15 + 47t

• Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$

- $Ise a'x \equiv b' \mod (n')$
- Solution Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- $I Use a''x \equiv b'' \mod (n')$

5 If $a'' = \pm 1$ then $x_0 = \pm b''$

B Else use b''' = b'' + kn' and return to step 4. Or use $ca'' x \equiv cb'' \mod (n')$ and return to step 4.

イロト 不得 トイヨト イヨト

University of Bedfordshire

Example

gcd(4, 47) = 1, $4x \equiv 13 \mod (47),$ $4 \neq \pm 1,$ $4 \times 12 = 48 \equiv 1 \mod (47)$ $x \equiv 12 \times 13 \mod (47)$ $x \equiv 3 \times 4 \times 13 \mod (47),$ $x \equiv 3 \times 52 \mod (47),$ $x \equiv 15 \mod (47),$ $x_0 = 15,$

So the general solution has the form

$$x = 15 + 47t$$

• Calculate d = gcd(a, n) and use $f' = \frac{f}{d}$

- (a) Find m = gcd(a', b') and use $f'' = \frac{f}{d}$
- $I Use a''x \equiv b'' \mod (n')$

 $(t \in \mathbb{Z})$

- **6** If $a'' = \pm 1$ then $x_0 = \pm b''$
- **6** Else use b''' = b'' + kn' and return to step 4. Or use $ca'' x \equiv cb'' \mod (n')$ and return to step 4.

・ロット (雪) (日) (日)

University of Bedfordshire For each of the following congruences, decide whether a solution exists, and if it does exist, find the general solution:

- $3x \equiv 5 \mod (7)$
- **2** $12x \equiv 15 \mod (22)$
- **3** $19x \equiv 42 \mod (50)$
- $4 18x \equiv 42 \mod (50)$

OUTLINE

1 LINEAR CONGRUENCES

2 Simultaneous Linear Congruences

3 Simultaneous Non-Linear Congruences

() Chinese Remainder Theorem - An Extension

э

ヘロン 人間 とくほとう ほとう

CHINESE REMAINDER THEOREM

Theorem (5.8)

Let $n_1, n_2, ..., n_k$ be positive integers, with $gcd(n_i, n_j) = 1$ whenever $i \neq j$, and let $a_1, a_2, ..., a_k$ be any integers. Then the solutions of the simultaneous congruences

 $x \equiv a_1 \mod (n_1), \qquad x \equiv a_2 \mod (n_2), \qquad \dots \qquad x \equiv a_k \mod (n_k)$

form a single congruence class mod(n), where $n = n_1 n_2 \dots n_k$.

Let $c_i = n/n_i$, then $c_i x \equiv 1 \mod (n_i)$ has a single congruence class $[d_i]$ of solutions $\mod(n_i)$. We now claim that $x_0 = a_1c_1d_1 + a_2c_2d_2 + \cdots + a_kc_kd_k$ simultaneously satisfies the given congruences.

・ロト ・ 日 ・ ・ 日 ・ ・ 日

QUESTIONS

EXAMPLE Solve the following simultaneous congruence: $x \equiv 2 \mod (3), x \equiv 3 \mod (5), x \equiv 2 \mod (7)$

QUESTIONS

EXAMPLE

Solve the following simultaneous congruence: $x \equiv 2 \mod (3), x \equiv 3 \mod (5), x \equiv 2 \mod (7)$ We have $n_1 = 3, n_2 = 5, n_3 = 7$, so n = 105. $c_1 = 35, c_2 = 21, c_3 = 15$. $d_1 = -1, d_2 = 1, d_3 = 1$. $x_0 = (2 \times 35 \times -1)) + (3 \times 21 \times 1)) + (2 \times 15 \times 1)) = -70 + 63 + 30 = 23$. So the solutions form the congruence class [23] mod (105), that is, the general solution x = 23 + 105t where $t \in \mathbb{Z}$.

э

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

OUTLINE

• LINEAR CONGRUENCES

2 Simultaneous Linear Congruences

3 SIMULTANEOUS NON-LINEAR CONGRUENCES

(1) Chinese Remainder Theorem - An Extension

SIMULTANEOUS NON-LINEAR CONGRUENCES

It is sometimes possible to solve simultaneous congruences by Chinese Remainder Theorem when the congruences aren't all linear. We must inspect the non-linear congruences to give multiple simultaneous linear congruences.

An Example

EXAMPLE

Consider the simultaneous congruences

$$x^2 \equiv 1 \mod (3)$$
 $x \equiv 2 \mod (4)$

By inspection we find $x^2 \equiv 1 \mod (3)$ can be written as $x \equiv \pm \sqrt{1} \mod (3)$. So this first congruence can be $x \equiv 1$ or $-1 \mod (3)$.

 $x \equiv 1 \mod (3)$ and $x \equiv 2 \mod (4)$

or

$$x \equiv 2 \mod (3)$$
 and $x \equiv 2 \mod (4)$

Giving solutions $x \equiv \pm \sqrt{4} \mod (12)$ which is $x^2 \equiv 4 \mod (12)$

hiversity of adfordshire

EXAMPLE

Consider the simultaneous congruences

$$x^2 \equiv 1 \mod (3)$$
 $x \equiv 2 \mod (4)$

By inspection we find $x^2 \equiv 1 \mod (3)$ can be written as $x \equiv \pm \sqrt{1} \mod (3)$.

So this first congruence can be $x \equiv 1$ or $-1 \mod (3)$.

 $x \equiv 1 \mod (3)$ and $x \equiv 2 \mod (4)$

or

```
x \equiv 2 \mod (3) and x \equiv 2 \mod (4)
```

Giving solutions $x \equiv \pm \sqrt{4} \mod (12)$ which is $x^2 \equiv 4 \mod (12)$

EXAMPLE

Consider the simultaneous congruences

$$x^2 \equiv 1 \mod (3)$$
 $x \equiv 2 \mod (4)$

By inspection we find $x^2 \equiv 1 \mod (3)$ can be written as $x \equiv \pm \sqrt{1} \mod (3)$. So this first congruence can be $x \equiv 1$ or $-1 \mod (3)$.

 $x \equiv 1 \mod (3)$ and $x \equiv 2 \mod (4)$

or

$$x \equiv 2 \mod (3)$$
 and $x \equiv 2 \mod (4)$

Giving solutions $x\equiv\pm\sqrt{4}$ mod (12) which is $x^2\equiv$ 4 mod (12

EXAMPLE

Consider the simultaneous congruences

$$x^2 \equiv 1 \mod (3)$$
 $x \equiv 2 \mod (4)$

By inspection we find $x^2 \equiv 1 \mod (3)$ can be written as $x \equiv \pm \sqrt{1} \mod (3)$. So this first congruence can be $x \equiv 1$ or $-1 \mod (3)$.

$$x \equiv 1 \mod (3)$$
 and $x \equiv 2 \mod (4)$

or

$$x \equiv 2 \mod (3)$$
 and $x \equiv 2 \mod (4)$

Giving solutions $x\equiv\pm\sqrt{4}$ mod (12) which is $x^2\equiv$ 4 mod (12

EXAMPLE

Consider the simultaneous congruences

$$x^2 \equiv 1 \mod (3)$$
 $x \equiv 2 \mod (4)$

By inspection we find $x^2 \equiv 1 \mod (3)$ can be written as $x \equiv \pm \sqrt{1} \mod (3)$. So this first congruence can be $x \equiv 1$ or $-1 \mod (3)$.

$$x \equiv 1 \mod (3)$$
 and $x \equiv 2 \mod (4)$

or

$$x \equiv 2 \mod (3)$$
 and $x \equiv 2 \mod (4)$

Giving solutions $x \equiv \pm \sqrt{4} \mod (12)$ which is $x^2 \equiv 4 \mod (12)$.

Theorem (5.9)

Let $n = n_1 \dots n_k$ where the integers n_i are mutually coprime, and let f(x) be a polynomial with integer coefficients. Suppose that for each $i = 1, \dots, k$ there are N_i congruence classes $x \in \mathbb{Z}_{n_i}$ such that $f(x) \equiv 0 \mod (n_i)$. Then there are $N = N_1 \dots N_k$ classes $x \in \mathbb{Z}_n$ such that $f(x) \equiv 0 \mod (n)$.

Start with $f(x) = x^2 - 1$. We aim to find the number of classes $x \in \mathbb{Z}_n$ satisfying $x^2 \equiv 1 \mod (n)$.

If we set $n = p^e$, where p is prime, if p > 2 then p^e divides (x - 1) or (x + 1), giving $x \equiv \pm 1$.

If $p^e = 2$ or 4, there are one of two classes of solutions.

If $p^e = 2^e \ge 8$, there are four classes of solutions given by $x \equiv \pm 1$ and $x \equiv 2^{e-1} \pm 1$.

Let *n* be a prime power factorisation $n_1 \dots n_k$, where $n_i = p_i^{e_i}$ for each $e_1 \ge 1$.

If k is the number of distinct primes dividing n, we find

$$N = \begin{cases} 2^{k+1} & \text{if } n \equiv 0 \mod (8) \\ 2^{k-1} & \text{if } n \equiv 2 \mod (4) \\ 2^k & \text{otherwise} \end{cases}$$

Start with $f(x) = x^2 - 1$. We aim to find the number of classes $x \in \mathbb{Z}_n$ satisfying $x^2 \equiv 1 \mod (n)$. If we set $n = p^e$, where p is prime, if p > 2 then p^e divides (x - 1) or (x + 1), giving $x \equiv \pm 1$.

If $p^e = 2$ or 4, there are one of two classes of solutions. If $p^e = 2^e \ge 8$, there are four classes of solutions given by $x \equiv \pm 1$ and $x \equiv 2^{e-1} \pm 1$.

Let *n* be a prime power factorisation $n_1 \dots n_k$, where $n_i = p_i^{e_i}$ for each $e_1 \ge 1$.

If k is the number of distinct primes dividing n, we find

$$N = \begin{cases} 2^{k+1} & \text{if } n \equiv 0 \mod (8) \\ 2^{k-1} & \text{if } n \equiv 2 \mod (4) \\ 2^k & \text{otherwise} \end{cases}$$

Start with $f(x) = x^2 - 1$. We aim to find the number of classes $x \in \mathbb{Z}_n$ satisfying $x^2 \equiv 1 \mod (n)$. If we set $n = p^e$, where p is prime, if p > 2 then p^e divides (x - 1) or (x + 1), giving $x \equiv \pm 1$. If $p^e = 2$ or 4, there are one of two classes of solutions.

If $p^e = 2^e \ge 8$, there are four classes of solutions given by $x \equiv \pm 1$ and $x \equiv 2^{e-1} \pm 1$.

Let *n* be a prime power factorisation $n_1 \dots n_k$, where $n_i = p_i^{e_i}$ for each $e_1 \ge 1$.

If k is the number of distinct primes dividing n, we find

$$N = \begin{cases} 2^{k+1} & \text{if } n \equiv 0 \mod (8) \\ 2^{k-1} & \text{if } n \equiv 2 \mod (4) \\ 2^k & \text{otherwise} \end{cases}$$

Start with $f(x) = x^2 - 1$. We aim to find the number of classes $x \in \mathbb{Z}_n$ satisfying $x^2 \equiv 1 \mod (n)$. If we set $n = p^e$, where p is prime, if p > 2 then p^e divides (x - 1) or (x + 1), giving $x \equiv \pm 1$. If $p^e = 2$ or 4, there are one of two classes of solutions. If $p^e = 2^e \ge 8$, there are four classes of solutions given by $x \equiv \pm 1$ and $x \equiv 2^{e-1} \pm 1$.

Let *n* be a prime power factorisation $n_1 \dots n_k$, where $n_i = p_i^{e_i}$ for each $e_1 \ge 1$.

If k is the number of distinct primes dividing n, we find

$$N = \begin{cases} 2^{k+1} & \text{if } n \equiv 0 \mod (8) \\ 2^{k-1} & \text{if } n \equiv 2 \mod (4) \\ 2^k & \text{otherwise} \end{cases}$$

Start with $f(x) = x^2 - 1$. We aim to find the number of classes $x \in \mathbb{Z}_n$ satisfying $x^2 \equiv 1 \mod (n)$. If we set $n = p^e$, where p is prime, if p > 2 then p^e divides (x - 1) or (x + 1), giving $x \equiv \pm 1$. If $p^e = 2$ or 4, there are one of two classes of solutions. If $p^e = 2^e \ge 8$, there are four classes of solutions given by $x \equiv \pm 1$ and $x \equiv 2^{e-1} \pm 1$. Let $p = 2^{e-1} \pm 1$.

Let *n* be a prime power factorisation $n_1 \dots n_k$, where $n_i = p_i^{e_i}$ for each $e_1 \ge 1$.

If k is the number of distinct primes dividing n, we find

$$N = \begin{cases} 2^{k+1} & \text{if } n \equiv 0 \mod (8) \\ 2^{k-1} & \text{if } n \equiv 2 \mod (4) \\ 2^k & \text{otherwise} \end{cases}$$

Start with $f(x) = x^2 - 1$. We aim to find the number of classes $x \in \mathbb{Z}_n$ satisfying $x^2 \equiv 1 \mod (n)$. If we set $n = p^e$, where p is prime, if p > 2 then p^e divides (x - 1) or (x + 1), giving $x \equiv \pm 1$. If $p^e = 2$ or 4, there are one of two classes of solutions. If $p^e = 2^e \ge 8$, there are four classes of solutions given by $x \equiv \pm 1$ and $x \equiv 2^{e-1} \pm 1$. Let $p = 2^{e-1} \pm 1$.

Let *n* be a prime power factorisation $n_1 \dots n_k$, where $n_i = p_i^{e_i}$ for each $e_1 \ge 1$.

If k is the number of distinct primes dividing n, we find

$$N = \begin{cases} 2^{k+1} & \text{if } n \equiv 0 \mod (8) \\ 2^{k-1} & \text{if } n \equiv 2 \mod (4) \\ 2^k & \text{otherwise} \end{cases}$$

EXAMPLE

EXAMPLE

consider the congruence

$$x^2 - 1 \equiv 0 \mod (60)$$

Here $n = 60 = 2^2 \times 3 \times 5$ is the prime-power factorisation, then k = 3 and there are $2^k = 8$ classes of solutions, namely $x \equiv \pm 1, \pm 11, \pm 19, \pm 29 \mod (60)$.

(日)

How many classes of solutions are there for each of the following congruences?

- $x^2 1 \equiv 0 \mod (168)$. Answer: $N = 2^4 = 16 \text{ since } 168 = 2^3 \times 3 \times 7$
- **2** $x^2 + 1 \equiv 0 \mod (70).$

Answer: $N = 1 \times 2 \times 0 = 0$ since $70 = 2 \times 5 \times 7$

3
$$x^2 + x + 1 \equiv 0 \mod (91).$$

Answer: $N = 2 \times 2 = 4$ since $91 = 7 \times 13$

$$x^3 + 1 \equiv 0 \mod (140).$$

Answer: $N = 1 \times 1 \times 3 = 3$ since $140 = 2^2 \times 5 \times 7$

How many classes of solutions are there for each of the following congruences?

• $x^2 - 1 \equiv 0 \mod (168)$. *Answer:* $N = 2^4 = 16$ since $168 = 2^3 \times 3 \times 7$

2 $x^2 + 1 \equiv 0 \mod (70)$.

3
$$x^2 + x + 1 \equiv 0 \mod (91)$$
.

Answer: $N = 2 \times 2 = 4$ since $91 = 7 \times 13$

$$x^3 + 1 \equiv 0 \mod (140).$$

Answer: $N = 1 \times 1 \times 3 = 3$ since $140 = 2^2 \times 5 \times 7$

How many classes of solutions are there for each of the following congruences?

1
$$x^2 - 1 \equiv 0 \mod (168)$$
.
Answer: $N = 2^4 = 16 \text{ since } 168 = 2^3 \times 3 \times 7$
2 $x^2 + 1 \equiv 0 \mod (70)$.
Answer: $N = 1 \times 2 \times 0 = 0 \text{ since } 70 = 2 \times 5 \times 7$
3 $x^2 + x + 1 \equiv 0 \mod (91)$.

Answer: $N = 2 \times 2 = 4$ since $91 = 7 \times 13$

$$4 x^3 + 1 \equiv 0 \mod (140).$$

Answer: $N = 1 \times 1 \times 3 = 3$ since $140 = 2^2 \times 5 \times 7$

æ

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

How many classes of solutions are there for each of the following congruences?

1 $x^2 - 1 \equiv 0 \mod (168)$. Answer: $N = 2^4 = 16 \operatorname{since} 168 = 2^3 \times 3 \times 7$ 2 $x^2 + 1 \equiv 0 \mod (70)$. Answer: $N = 1 \times 2 \times 0 = 0 \operatorname{since} 70 = 2 \times 5 \times 7$ 3 $x^2 + x + 1 \equiv 0 \mod (91)$. Answer: $N = 2 \times 2 = 4 \operatorname{since} 91 = 7 \times 13$ 1 $x^3 + 1 \equiv 0 \mod (140)$.

Answer: $N = 1 \times 1 \times 3 = 3$ since $140 = 2^2 \times 5 \times 7$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

How many classes of solutions are there for each of the following congruences?

1
$$x^2 - 1 \equiv 0 \mod (168)$$
.
Answer: $N = 2^4 = 16 \operatorname{since} 168 = 2^3 \times 3 \times 7$
2 $x^2 + 1 \equiv 0 \mod (70)$.
Answer: $N = 1 \times 2 \times 0 = 0 \operatorname{since} 70 = 2 \times 5 \times 7$
3 $x^2 + x + 1 \equiv 0 \mod (91)$.
Answer: $N = 2 \times 2 = 4 \operatorname{since} 91 = 7 \times 13$
4 $x^3 + 1 \equiv 0 \mod (140)$.

Answer: $N = 1 \times 1 \times 3 = 3$ since $140 = 2^2 \times 5 \times 7$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

OUTLINE

1 LINEAR CONGRUENCES

2 Simultaneous Linear Congruences

3 Simultaneous Non-Linear Congruences

4 Chinese Remainder Theorem - An Extension

э

ヘロン 人間 とくほとう ほとう

CHINESE REMAINDER THEOREM - AN EXTENSION

Theorem (5.10)

Let $n = n_1, ..., n_k$ be positive integers, and let $a_1, ..., a_k$ be any integers. Then the simultaneous congruences

$$x \equiv a_1 \mod (n_1), \ldots, x \equiv a_k \mod (n_k)$$

have a solution x if and only if $gcd(n_i, n_j)$ divides $a_i - a_j$ whenever $i \neq j$. When this condition is satisfied, the general solution forms a single congruence class mod(n), where n is the least common multiple of n_1, \ldots, n_k .

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Determine which of the following sets of simultaneous congruences have solutions, and when they do, find the general solution:

- $x \equiv 1 \mod (6), x \equiv 5 \mod (14), x \equiv 4 \mod (21).$ Answer: No Solutions, since $5 \not\equiv 4 \mod (7)$
- **2** $x \equiv 1 \mod (6), x \equiv 5 \mod (14), x \equiv -2 \mod (21).$ Answer: $x \equiv 19 \mod (42)$
- **3** $x \equiv 13 \mod (40), x \equiv 5 \mod (44), x \equiv 38 \mod (275).$ Answer: $x \equiv 1413 \mod (2200)$
- $x^2 \equiv 9 \mod (10), \ 7x \equiv 19 \mod (24), \ 2x \equiv -1 \mod (45).$ Answer: The congruences are equivalent to $x \equiv 3 \text{ or } 7 \mod (10), \ x \equiv 13 \mod (24) \text{ and } x \equiv 22 \mod (45),$ with solution $x \equiv 157 \mod (360)$

1

Determine which of the following sets of simultaneous congruences have solutions, and when they do, find the general solution:

• $x \equiv 1 \mod (6), x \equiv 5 \mod (14), x \equiv 4 \mod (21).$ Answer: No Solutions, since $5 \not\equiv 4 \mod (7)$

2
$$x \equiv 1 \mod (6), x \equiv 5 \mod (14), x \equiv -2 \mod (21).$$

Answer: $x \equiv 19 \mod (42)$

- **3** $x \equiv 13 \mod (40), x \equiv 5 \mod (44), x \equiv 38 \mod (275).$ Answer: $x \equiv 1413 \mod (2200)$
- $x^2 \equiv 9 \mod (10), 7x \equiv 19 \mod (24), 2x \equiv -1 \mod (45).$ Answer: The congruences are equivalent to $x \equiv 3 \text{ or } 7 \mod (10), x \equiv 13 \mod (24) \text{ and } x \equiv 22 \mod (45).$ with solution $x \equiv 157 \mod (360)$

Determine which of the following sets of simultaneous congruences have solutions, and when they do, find the general solution:

• $x \equiv 1 \mod (6), x \equiv 5 \mod (14), x \equiv 4 \mod (21).$ Answer: No Solutions, since $5 \not\equiv 4 \mod (7)$

2
$$x \equiv 1 \mod (6), x \equiv 5 \mod (14), x \equiv -2 \mod (21).$$

Answer: $x \equiv 19 \mod (42)$

- **3** $x \equiv 13 \mod (40), x \equiv 5 \mod (44), x \equiv 38 \mod (275).$ Answer: $x \equiv 1413 \mod (2200)$
- $x^2 \equiv 9 \mod (10), 7x \equiv 19 \mod (24), 2x \equiv -1 \mod (45).$ Answer: The congruences are equivalent to $x \equiv 3 \text{ or } 7 \mod (10), x \equiv 13 \mod (24) \text{ and } x \equiv 22 \mod (45),$ with solution $x \equiv 157 \mod (360)$

Determine which of the following sets of simultaneous congruences have solutions, and when they do, find the general solution:

• $x \equiv 1 \mod (6), x \equiv 5 \mod (14), x \equiv 4 \mod (21).$ Answer: No Solutions, since $5 \not\equiv 4 \mod (7)$

2
$$x \equiv 1 \mod (6), x \equiv 5 \mod (14), x \equiv -2 \mod (21).$$

Answer: $x \equiv 19 \mod (42)$

- **3** $x \equiv 13 \mod (40), x \equiv 5 \mod (44), x \equiv 38 \mod (275).$ *Answer:* $x \equiv 1413 \mod (2200)$
- $x^2 \equiv 9 \mod (10), 7x \equiv 19 \mod (24), 2x \equiv -1 \mod (45).$ Answer: The congruences are equivalent to $x \equiv 3 \text{ or } 7 \mod (10), x \equiv 13 \mod (24) \text{ and } x \equiv 22 \mod (45),$ with solution $x \equiv 157 \mod (360)$

Determine which of the following sets of simultaneous congruences have solutions, and when they do, find the general solution:

• $x \equiv 1 \mod (6), x \equiv 5 \mod (14), x \equiv 4 \mod (21).$ Answer: No Solutions, since $5 \not\equiv 4 \mod (7)$

2
$$x \equiv 1 \mod (6), x \equiv 5 \mod (14), x \equiv -2 \mod (21).$$

Answer: $x \equiv 19 \mod (42)$

3 $x \equiv 13 \mod (40), x \equiv 5 \mod (44), x \equiv 38 \mod (275).$ *Answer:* $x \equiv 1413 \mod (2200)$

(10), $7x \equiv 19 \mod (24)$, $2x \equiv -1 \mod (45)$. Answer: The congruences are equivalent to $x \equiv 3 \text{ or } 7 \mod (10)$, $x \equiv 13 \mod (24)$ and $x \equiv 22 \mod (45)$, with solution $x \equiv 157 \mod (360)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日