Simultaneous Linear, and Non-Linear Congruences

CIS002-2 Computational Alegrba and Number Theory

David Goodwin

david.goodwin@perisic.com

University of
Bedfordshire

09:00, Friday $24^{\text {th }}$ November 2011 09:00, Tuesday $28^{\text {th }}$ November 2011 09:00, Friday 02 ${ }^{\text {nd }}$ December 2011

Outline

(1) Linear Congruences
(2) Simultaneous Linear Congruences
(3) Simultaneous Non-Linear Congruences
(4) Chinese Remainder Theorem - An Extension

Outline

(1) Linear Congruences

(2) Simultaneous Linear Congruences
(3) Simultaneous Non-Linear CongruencesChinese Remainder Theorem - An Extension

University of

Theorem (5.6)

If $d=\operatorname{gcd}(a, n)$, then the linear congruence

$$
a x \equiv b \bmod (n)
$$

has a solution if and only if $d \mid b$. If does divide b, and if x_{0} is any solution, then the general solution is given by

$$
x=x_{0}+\frac{n t}{d}
$$

where $t \in \mathbb{Z}$; in particular, the solutions form exactly d congruence classes $\bmod (n)$, with representatives

$$
x=x_{0}, x_{0}+\frac{n}{d}, x_{0}+\frac{2 n}{d}, \ldots, x_{0}+\frac{(d-1) n}{d}
$$

Lemma (5.7)

A Let $m \mid a, b, n$, and let $a^{\prime}=a / m, b^{\prime}=b / m$ and $n^{\prime}=n / m$; then

$$
a x \equiv b \bmod (n) \quad \text { if and only if } \quad a^{\prime} x \equiv b^{\prime} \bmod \left(n^{\prime}\right)
$$

B Let a and n be coprime, let $m \mid a, b$, and let $a^{\prime}=a / m$ and $b^{\prime}=b / m$; then

$$
a x \equiv b \bmod (n) \quad \text { if and only if } \quad a^{\prime} x \equiv b^{\prime} \bmod (n)
$$

Algorithm for solution

(1) Calculate $d=\operatorname{gcd}(a, n)$ and use $f^{\prime}=\frac{f}{d}$
(2) Use $a^{\prime} x \equiv b^{\prime} \bmod \left(n^{\prime}\right)$
(3) Find $m=\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)$ and use $f^{\prime \prime}=\frac{f}{d}$
(4) Use $a^{\prime \prime} x \equiv b^{\prime \prime} \bmod \left(n^{\prime}\right)$
(5) If $a^{\prime \prime}= \pm 1$ then $x_{0}= \pm b^{\prime \prime}$
(6) Else use $b^{\prime \prime \prime}=b^{\prime \prime}+k n^{\prime}$ so $\operatorname{gcd}\left(a^{\prime \prime}, b^{\prime \prime \prime}\right)>1$ and return to step 4 with $b^{\prime \prime \prime}$ instead of $b^{\prime \prime}$. Or use $c a^{\prime \prime} x \equiv c b^{\prime \prime} \bmod \left(n^{\prime}\right)$ in step 4, where the least absolute reside $a^{\prime \prime \prime}$ of $c a^{\prime \prime \prime}$ satisfies

$$
\left|a^{\prime \prime \prime}\right|<\left|a^{\prime \prime}\right|
$$

ExAmple: $10 x \equiv 6 \bmod (14)$

Example
$$
\operatorname{gcd}(10,14)=2
$$

(1) Calculate $d=\operatorname{gcd}(a, n)$ and use $f^{\prime}=\frac{f}{d}$

ExAmple: $10 x \equiv 6 \bmod (14)$

> EXAMPLE $\operatorname{gcd}(10,14)=2$, $5 x \equiv 3 \bmod (7)$
(2) Use $a^{\prime} x \equiv b^{\prime} \bmod \left(n^{\prime}\right)$

ExAmple: $10 x \equiv 6 \bmod (14)$

ExAMPLE
$\operatorname{gcd}(10,14)=2$, $5 x \equiv 3 \bmod (7)$, $\operatorname{gcd}(5,3)=1$,
(3) Find $m=\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)$ and use $f^{\prime \prime}=\frac{f}{d}$

ExAmple: $10 x \equiv 6 \bmod (14)$

$$
\begin{aligned}
& \text { Example } \\
& \operatorname{gcd}(10,14)=2, \\
& 5 x \equiv 3 \bmod (7), \\
& \operatorname{gcd}(5,3)=1 \\
& 5 x \equiv 3 \bmod (7)
\end{aligned}
$$

(c) Use $a^{\prime \prime} x \equiv b^{\prime \prime} \bmod \left(n^{\prime}\right)$

Example: $10 x \equiv 6 \bmod (14)$

$$
\begin{aligned}
& \text { Example } \\
& \operatorname{gcd}(10,14)=2, \\
& 5 x \equiv 3 \bmod (7), \\
& \operatorname{gcd}(5,3)=1 \\
& 5 x \equiv 3 \bmod (7) \\
& 5 \neq \pm 1,
\end{aligned}
$$

(5) If $a^{\prime \prime}= \pm 1$ then $x_{0}= \pm b^{\prime \prime}$

Example: $10 x \equiv 6 \bmod (14)$

```
Example
\(\operatorname{gcd}(10,14)=2\),
\(5 x \equiv 3 \bmod (7)\),
\(\operatorname{gcd}(5,3)=1\),
\(5 x \equiv 3 \bmod (7)\),
\(5 \neq \pm 1\),
\(10=3+(1 \times 7)\)
gives \(5 x \equiv 10 \bmod (7)\),
```

(6) Else use $b^{\prime \prime \prime}=b^{\prime \prime}+k n^{\prime}$ and return to step 4. Or use $c a^{\prime \prime} x \equiv c b^{\prime \prime} \bmod \left(n^{\prime}\right)$ and return to step 4.

Example: $10 x \equiv 6 \bmod (14)$

```
Example
\(\operatorname{gcd}(10,14)=2\),
\(5 x \equiv 3 \bmod (7)\),
\(\operatorname{gcd}(5,3)=1\),
\(5 x \equiv 3 \bmod (7)\),
\(5 \neq \pm 1\),
\(10=3+(1 \times 7)\)
gives \(5 x \equiv 10 \bmod (7)\),
\(\operatorname{gcd}(5,10)=5\),
```

(3) Find $m=\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)$ and use $f^{\prime \prime}=\frac{f}{d}$

ExAMPLE: $10 x \equiv 6 \bmod (14)$

```
Example
\(\operatorname{gcd}(10,14)=2\),
\(5 x \equiv 3 \bmod (7)\),
\(\operatorname{gcd}(5,3)=1\),
\(5 x \equiv 3 \bmod (7)\),
\(5 \neq \pm 1\),
\(10=3+(1 \times 7)\)
gives \(5 x \equiv 10 \bmod (7)\),
\(\operatorname{gcd}(5,10)=5\),
\(x \equiv 2 \bmod (7)\),
```

(4) Use $a^{\prime \prime} x \equiv b^{\prime \prime} \bmod \left(n^{\prime}\right)$

Example: $10 x \equiv 6 \bmod (14)$

```
Example
\(\operatorname{gcd}(10,14)=2\),
\(5 x \equiv 3 \bmod (7)\),
\(\operatorname{gcd}(5,3)=1\),
\(5 x \equiv 3 \bmod (7)\),
\(5 \neq \pm 1\),
\(10=3+(1 \times 7)\)
gives \(5 x \equiv 10 \bmod (7)\),
\(\operatorname{gcd}(5,10)=5\),
\(x \equiv 2 \bmod (7)\),
\(x_{0}=2\),
```

(5) If $a^{\prime \prime}= \pm 1$ then $x_{0}= \pm b^{\prime \prime}$

ExAMPLE: $10 x \equiv 6 \bmod (14)$

```
Example
\(\operatorname{gcd}(10,14)=2\),
\(5 x \equiv 3 \bmod (7)\),
\(\operatorname{gcd}(5,3)=1\),
\(5 x \equiv 3 \bmod (7)\),
\(5 \neq \pm 1\),
\(10=3+(1 \times 7)\)
gives \(5 x \equiv 10 \bmod (7)\),
\(\operatorname{gcd}(5,10)=5\),
\(x \equiv 2 \bmod (7)\),
\(x_{0}=2\),
```

So the general solution has the form

$$
x=2+7 t \quad(t \in \mathbb{Z})
$$

ExAmple: $4 x \equiv 13 \bmod (47)$

Example
 $\operatorname{gcd}(4,47)=1$,

(1) Calculate $d=\operatorname{gcd}(a, n)$ and use $f^{\prime}=\frac{f}{d}$

ExAmple: $4 x \equiv 13 \bmod (47)$

Example
$\operatorname{gcd}(4,47)=1$,
$4 x \equiv 13 \bmod (47)$,
(2) Use $a^{\prime} x \equiv b^{\prime} \bmod \left(n^{\prime}\right)$

ExAmple: $4 x \equiv 13 \bmod (47)$

Example
$\operatorname{gcd}(4,47)=1$,
(3) Find $m=\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)$ and use $f^{\prime \prime}=\frac{f}{d}$

ExAmple: $4 x \equiv 13 \bmod (47)$

> EXAMPLE
> $\operatorname{gcd}(4,47)=1$
> $4 x \equiv 13 \bmod (47)$
(4) Use $a^{\prime \prime} x \equiv b^{\prime \prime} \bmod \left(n^{\prime}\right)$

University of Bedfordshire

EXAMPLE: $4 x \equiv 13 \bmod (47)$

Example
$\operatorname{gcd}(4,47)=1$,
$4 x \equiv 13 \bmod (47)$,
$4 \neq \pm 1$,

(5) If $a^{\prime \prime}= \pm 1$ then $x_{0}= \pm b^{\prime \prime}$

ExAmple: $4 x \equiv 13 \bmod (47)$

```
Example
\(\operatorname{gcd}(4,47)=1\),
\(4 x \equiv 13 \bmod (47)\),
\(4 \neq \pm 1\),
\(4 \times 12=48 \equiv 1 \bmod (47)\)
\(x \equiv 12 \times 13 \bmod (47)\)
```

(6) Else use $b^{\prime \prime \prime}=b^{\prime \prime}+k n^{\prime}$ and return to step 4. Or use $c a^{\prime \prime} x \equiv c b^{\prime \prime} \bmod \left(n^{\prime}\right)$ and return to step 4.

ExAmple: $4 x \equiv 13 \bmod (47)$

$$
\begin{aligned}
& \text { EXAMPLE } \\
& \operatorname{gcd}(4,47)=1, \\
& 4 x \equiv 13 \bmod (47) \\
& 4 \neq \pm 1 \\
& 4 \times 12=48 \equiv 1 \bmod (47) \\
& x \equiv 12 \times 13 \bmod (47) \\
& x \equiv 3 \times 4 \times 13 \bmod (47)
\end{aligned}
$$

(5) If $a^{\prime \prime}= \pm 1$ then $x_{0}= \pm b^{\prime \prime}$

ExAmple: $4 x \equiv 13 \bmod (47)$

$$
\begin{aligned}
& \text { EXAMPLE } \\
& \operatorname{gcd}(4,47)=1 \\
& 4 x \equiv 13 \bmod (47) \\
& 4 \neq \pm 1 \\
& 4 \times 12=48 \equiv 1 \bmod (47) \\
& x \equiv 12 \times 13 \bmod (47) \\
& x \equiv 3 \times 4 \times 13 \bmod (47) \\
& x \equiv 3 \times 52 \bmod (47)
\end{aligned}
$$

(5) If $a^{\prime \prime}= \pm 1$ then $x_{0}= \pm b^{\prime \prime}$

Example: $4 x \equiv 13 \bmod (47)$

```
Example
\(\operatorname{gcd}(4,47)=1\),
\(4 x \equiv 13 \bmod (47)\),
\(4 \neq \pm 1\),
\(4 \times 12=48 \equiv 1 \bmod (47)\)
\(x \equiv 12 \times 13 \bmod (47)\)
\(x \equiv 3 \times 4 \times 13 \bmod (47)\),
\(x \equiv 3 \times 52 \bmod (47)\),
\(x \equiv 3 \times 5 \bmod (47)\),
```

(5) If $a^{\prime \prime}= \pm 1$ then $x_{0}= \pm b^{\prime \prime}$

Example: $4 x \equiv 13 \bmod (47)$

```
Example
\(\operatorname{gcd}(4,47)=1\),
\(4 x \equiv 13 \bmod (47)\),
\(4 \neq \pm 1\),
\(4 \times 12=48 \equiv 1 \bmod (47)\)
\(x \equiv 12 \times 13 \bmod (47)\)
\(x \equiv 3 \times 4 \times 13 \bmod (47)\),
\(x \equiv 3 \times 52 \bmod (47)\),
\(x \equiv 3 \times 5 \bmod (47)\),
\(x \equiv 15 \bmod (47)\),
```

(5) If $a^{\prime \prime}= \pm 1$ then $x_{0}= \pm b^{\prime \prime}$

ExAmple: $4 x \equiv 13 \bmod (47)$

```
Example
\(\operatorname{gcd}(4,47)=1\),
\(4 x \equiv 13 \bmod (47)\),
\(4 \neq \pm 1\),
\(4 \times 12=48 \equiv 1 \bmod (47)\)
\(x \equiv 12 \times 13 \bmod (47)\)
\(x \equiv 3 \times 4 \times 13 \bmod (47)\),
\(x \equiv 3 \times 52 \bmod (47)\),
\(x \equiv 3 \times 5 \bmod (47)\),
\(x \equiv 15 \bmod (47)\),
\(x_{0}=15\),
```

(5) If $a^{\prime \prime}= \pm 1$ then $x_{0}= \pm b^{\prime \prime}$

Example: $4 x \equiv 13 \bmod (47)$

```
Example
\(\operatorname{gcd}(4,47)=1\),
\(4 x \equiv 13 \bmod (47)\),
\(4 \neq \pm 1\),
\(4 \times 12=48 \equiv 1 \bmod (47)\)
\(x \equiv 12 \times 13 \bmod (47)\)
\(x \equiv 3 \times 4 \times 13 \bmod (47)\),
\(x \equiv 3 \times 52 \bmod (47)\),
\(x \equiv 3 \times 5 \bmod (47)\),
\(x \equiv 15 \bmod (47)\),
\(x_{0}=15\),
```

So the general solution has the form

$$
x=15+47 t \quad(t \in \mathbb{Z})
$$

ExERCISES

For each of the following congruences, decide whether a solution exists, and if it does exist, find the general solution:
(1) $3 x \equiv 5 \bmod (7)$
(2) $12 x \equiv 15 \bmod (22)$
(3) $19 x \equiv 42 \bmod (50)$
(4) $18 x \equiv 42 \bmod (50)$

Outline

(1) Linear Congruences
(2) Simultaneous Linear Congruences
(3) Simultaneous Non-Linear CongruencesChinese Remainder Theorem - An Extension

Chinese Remainder Theorem

Theorem (5.8)

Let $n_{1}, n_{2}, \ldots, n_{k}$ be positive integers, with $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ whenever $i \neq j$, and let $a_{1}, a_{2}, \ldots, a_{k}$ be any integers. Then the solutions of the simultaneous congruences

$$
x \equiv a_{1} \bmod \left(n_{1}\right), \quad x \equiv a_{2} \bmod \left(n_{2}\right), \quad \ldots \quad x \equiv a_{k} \bmod \left(n_{k}\right)
$$

form a single congruence class $\bmod (n)$, where $n=n_{1} n_{2} \ldots n_{k}$.
Let $c_{i}=n / n_{i}$, then $c_{i} x \equiv 1 \bmod \left(n_{i}\right)$ has a single congruence class [d_{i}] of solutions $\bmod \left(n_{i}\right)$. We now claim that $x_{0}=a_{1} c_{1} d_{1}+a_{2} c_{2} d_{2}+\cdots+a_{k} c_{k} d_{k}$ simultaneously satisfies the given congruences.

Questions

EXAMPLE

Solve the following simultaneous congruence:
$x \equiv 2 \bmod (3), x \equiv 3 \bmod (5), x \equiv 2 \bmod (7)$

Questions

Example

Solve the following simultaneous congruence:
$x \equiv 2 \bmod (3), x \equiv 3 \bmod (5), x \equiv 2 \bmod (7)$
We have $n_{1}=3, n_{2}=5, n_{3}=7$,
so $n=105$.
$c_{1}=35, c_{2}=21, c_{3}=15$.
$d_{1}=-1, d_{2}=1, d_{3}=1$.
$\left.\left.\left.x_{0}=(2 \times 35 \times-1)\right)+(3 \times 21 \times 1)\right)+(2 \times 15 \times 1)\right)=-70+63+30=23$.
So the solutions form the congruence class [23] $\bmod (105)$, that is, the general solution $x=23+105 t$ where $t \in \mathbb{Z}$.

Outline

(1) Linear Congruences
(2) Simultaneous Linear Congruences
(3) Simultaneous Non-Linear Congruences
(4) Chinese Remainder Theorem - An Extension

Simultaneous Non-Linear Congruences

It is sometimes possible to solve simultaneous congruences by Chinese Remainder Theorem when the congruences aren't all linear. We must inspect the non-linear congruences to give multiple simultaneous linear congruences.

An Example

Example

Consider the simultaneous congruences

$$
x^{2} \equiv 1 \bmod (3) \quad x \equiv 2 \bmod (4)
$$

An Example

Example

Consider the simultaneous congruences

$$
x^{2} \equiv 1 \bmod (3) \quad x \equiv 2 \bmod (4)
$$

By inspection we find $x^{2} \equiv 1 \bmod (3)$ can be written as $x \equiv \pm \sqrt{1} \bmod (3)$.

An Example

Example

Consider the simultaneous congruences

$$
x^{2} \equiv 1 \bmod (3) \quad x \equiv 2 \bmod (4)
$$

By inspection we find $x^{2} \equiv 1 \bmod (3)$ can be written as $x \equiv \pm \sqrt{1} \bmod (3)$.
So this first congruence can be $x \equiv 1$ or $-1 \bmod (3)$.

An Example

Example

Consider the simultaneous congruences

$$
x^{2} \equiv 1 \bmod (3) \quad x \equiv 2 \bmod (4)
$$

By inspection we find $x^{2} \equiv 1 \bmod (3)$ can be written as $x \equiv \pm \sqrt{1} \bmod (3)$.
So this first congruence can be $x \equiv 1$ or $-1 \bmod (3)$.

$$
x \equiv 1 \bmod (3) \text { and } x \equiv 2 \bmod (4)
$$

or

$$
x \equiv 2 \bmod (3) \text { and } x \equiv 2 \bmod (4)
$$

An Example

ExAMPLE

Consider the simultaneous congruences

$$
x^{2} \equiv 1 \bmod (3) \quad x \equiv 2 \bmod (4)
$$

By inspection we find $x^{2} \equiv 1 \bmod (3)$ can be written as $x \equiv \pm \sqrt{1} \bmod (3)$.
So this first congruence can be $x \equiv 1$ or $-1 \bmod (3)$.

$$
x \equiv 1 \bmod (3) \text { and } x \equiv 2 \bmod (4)
$$

or

$$
x \equiv 2 \bmod (3) \text { and } x \equiv 2 \bmod (4)
$$

Giving solutions $x \equiv \pm \sqrt{4} \bmod (12)$ which is $x^{2} \equiv 4 \bmod (12)$.

Theorem (5.9)

Let $n=n_{1} \ldots n_{k}$ where the integers n_{i} are mutually coprime, and let $f(x)$ be a polynomial with integer coefficients. Suppose that for each $i=1, \ldots, k$ there are N_{i} congruence classes $x \in \mathbb{Z}_{n_{i}}$ such that $f(x) \equiv 0 \bmod \left(n_{i}\right)$. Then there are $N=N_{1} \ldots N_{k}$ classes $x \in \mathbb{Z}_{n}$ such that $f(x) \equiv 0 \bmod (n)$.

Start with $f(x)=x^{2}-1$. We aim to find the number of classes $x \in \mathbb{Z}_{n}$ satisfying $x^{2} \equiv 1 \bmod (n)$.

Start with $f(x)=x^{2}-1$. We aim to find the number of classes $x \in \mathbb{Z}_{n}$ satisfying $x^{2} \equiv 1 \bmod (n)$.
If we set $n=p^{e}$, where p is prime, if $p>2$ then p^{e} divides $(x-1)$ or $(x+1)$, giving $x \equiv \pm 1$.

Start with $f(x)=x^{2}-1$. We aim to find the number of classes $x \in \mathbb{Z}_{n}$ satisfying $x^{2} \equiv 1 \bmod (n)$.
If we set $n=p^{e}$, where p is prime, if $p>2$ then p^{e} divides $(x-1)$ or $(x+1)$, giving $x \equiv \pm 1$.
If $p^{e}=2$ or 4 , there are one of two classes of solutions.

Start with $f(x)=x^{2}-1$. We aim to find the number of classes $x \in \mathbb{Z}_{n}$ satisfying $x^{2} \equiv 1 \bmod (n)$.
If we set $n=p^{e}$, where p is prime, if $p>2$ then p^{e} divides $(x-1)$ or $(x+1)$, giving $x \equiv \pm 1$.
If $p^{e}=2$ or 4 , there are one of two classes of solutions.
If $p^{e}=2^{e} \geq 8$, there are four classes of solutions given by $x \equiv \pm 1$ and $x \equiv 2^{e-1} \pm 1$.

Start with $f(x)=x^{2}-1$. We aim to find the number of classes $x \in \mathbb{Z}_{n}$ satisfying $x^{2} \equiv 1 \bmod (n)$.
If we set $n=p^{e}$, where p is prime, if $p>2$ then p^{e} divides $(x-1)$ or $(x+1)$, giving $x \equiv \pm 1$.
If $p^{e}=2$ or 4 , there are one of two classes of solutions.
If $p^{e}=2^{e} \geq 8$, there are four classes of solutions given by $x \equiv \pm 1$ and $x \equiv 2^{e-1} \pm 1$.
Let n be a prime power factorisation $n_{1} \ldots n_{k}$, where $n_{i}=p_{i}^{e_{i}}$ for each $e_{1} \geq 1$.

Start with $f(x)=x^{2}-1$. We aim to find the number of classes $x \in \mathbb{Z}_{n}$ satisfying $x^{2} \equiv 1 \bmod (n)$.
If we set $n=p^{e}$, where p is prime, if $p>2$ then p^{e} divides $(x-1)$ or $(x+1)$, giving $x \equiv \pm 1$.
If $p^{e}=2$ or 4 , there are one of two classes of solutions.
If $p^{e}=2^{e} \geq 8$, there are four classes of solutions given by $x \equiv \pm 1$ and $x \equiv 2^{e-1} \pm 1$.
Let n be a prime power factorisation $n_{1} \ldots n_{k}$, where $n_{i}=p_{i}^{e_{i}}$ for each $e_{1} \geq 1$.
If k is the number of distinct primes dividing n, we find

$$
N= \begin{cases}2^{k+1} & \text { if } n \equiv 0 \bmod (8) \\ 2^{k-1} & \text { if } n \equiv 2 \bmod (4) \\ 2^{k} & \text { otherwise }\end{cases}
$$

Example

Example

consider the congruence

$$
x^{2}-1 \equiv 0 \bmod (60)
$$

Here $n=60=2^{2} \times 3 \times 5$ is the prime-power factorisation, then $k=3$ and there are $2^{k}=8$ classes of solutions, namely
$x \equiv \pm 1, \pm 11, \pm 19, \pm 29 \bmod (60)$.

ExERCISES

How many classes of solutions are there for each of the following congruences?
(1) $x^{2}-1 \equiv 0 \bmod (168)$.
(2) $x^{2}+1 \equiv 0 \bmod (70)$.
(3) $x^{2}+x+1 \equiv 0 \bmod (91)$ 。
(4) $x^{3}+1 \equiv 0 \bmod (140)$.

ExERCISES

How many classes of solutions are there for each of the following congruences?
(1) $x^{2}-1 \equiv 0 \bmod (168)$.

Answer: $N=2^{4}=16$ since $168=2^{3} \times 3 \times 7$
(2) $x^{2}+1 \equiv 0 \bmod (70)$.
(3) $x^{2}+x+1 \equiv 0 \bmod (91)$ 。
(4) $x^{3}+1 \equiv 0 \bmod (140)$.

ExERCISES

How many classes of solutions are there for each of the following congruences?
(1) $x^{2}-1 \equiv 0 \bmod (168)$.

Answer: $N=2^{4}=16$ since $168=2^{3} \times 3 \times 7$
(2) $x^{2}+1 \equiv 0 \bmod (70)$.

Answer: $N=1 \times 2 \times 0=0$ since $70=2 \times 5 \times 7$
(3) $x^{2}+x+1 \equiv 0 \bmod (91)$.
(4) $x^{3}+1 \equiv 0 \bmod (140)$.

ExERCISES

How many classes of solutions are there for each of the following congruences?
(1) $x^{2}-1 \equiv 0 \bmod (168)$.

Answer: $N=2^{4}=16$ since $168=2^{3} \times 3 \times 7$
(2) $x^{2}+1 \equiv 0 \bmod (70)$.

Answer: $N=1 \times 2 \times 0=0$ since $70=2 \times 5 \times 7$
(3) $x^{2}+x+1 \equiv 0 \bmod (91)$.

Answer: $N=2 \times 2=4$ since $91=7 \times 13$
(4) $x^{3}+1 \equiv 0 \bmod (140)$.

ExERCISES

How many classes of solutions are there for each of the following congruences?
(1) $x^{2}-1 \equiv 0 \bmod (168)$.

Answer: $N=2^{4}=16$ since $168=2^{3} \times 3 \times 7$
(2) $x^{2}+1 \equiv 0 \bmod (70)$.

Answer: $N=1 \times 2 \times 0=0$ since $70=2 \times 5 \times 7$
(3) $x^{2}+x+1 \equiv 0 \bmod (91)$.

Answer: $N=2 \times 2=4$ since $91=7 \times 13$
(4) $x^{3}+1 \equiv 0 \bmod (140)$.

Answer: $N=1 \times 1 \times 3=3$ since $140=2^{2} \times 5 \times 7$

Outline

(1) Linear Congruences
(2) Simultaneous Linear Congruences
(3) Simultaneous Non-Linear Congruences
(4) Chinese Remainder Theorem - An Extension

University of Bedfordshire

Chinese Remainder Theorem - An Extension

Theorem (5.10)

Let $n=n_{1}, \ldots, n_{k}$ be positive integers, and let a_{1}, \ldots, a_{k} be any integers. Then the simultaneous congruences

$$
x \equiv a_{1} \bmod \left(n_{1}\right), \ldots, x \equiv a_{k} \bmod \left(n_{k}\right)
$$

have a solution x if and only if $\operatorname{gcd}\left(n_{i}, n_{j}\right)$ divides $a_{i}-a_{j}$ whenever $i \neq j$. When this condition is satisfied, the general solution forms a single congruence class $\bmod (n)$, where n is the least common multiple of n_{1}, \ldots, n_{k}.

ExERCISES

Determine which of the following sets of simultaneous congruences have solutions, and when they do, find the general solution:
(1) $x \equiv 1 \bmod (6), x \equiv 5 \bmod (14), x \equiv 4 \bmod (21)$.
(2) $x \equiv 1 \bmod (6), x \equiv 5 \bmod (14), x \equiv-2 \bmod (21)$.
(3) $x \equiv 13 \bmod (40), x \equiv 5 \bmod (44), x \equiv 38 \bmod (275)$.
(4) $x^{2} \equiv 9 \bmod (10), 7 x \equiv 19 \bmod (24), 2 x \equiv-1 \bmod (45)$.

ExERCISES

Determine which of the following sets of simultaneous congruences have solutions, and when they do, find the general solution:
(1) $x \equiv 1 \bmod (6), x \equiv 5 \bmod (14), x \equiv 4 \bmod (21)$.

Answer: No Solutions, since $5 \not \equiv 4 \bmod (7)$
(2) $x \equiv 1 \bmod (6), x \equiv 5 \bmod (14), x \equiv-2 \bmod (21)$.
(3) $x \equiv 13 \bmod (40), x \equiv 5 \bmod (44), x \equiv 38 \bmod (275)$.
(4) $x^{2} \equiv 9 \bmod (10), 7 x \equiv 19 \bmod (24), 2 x \equiv-1 \bmod (45)$.

ExERCISES

Determine which of the following sets of simultaneous congruences have solutions, and when they do, find the general solution:
(1) $x \equiv 1 \bmod (6), x \equiv 5 \bmod (14), x \equiv 4 \bmod (21)$.

Answer: No Solutions, since $5 \not \equiv 4 \bmod (7)$
(2) $x \equiv 1 \bmod (6), x \equiv 5 \bmod (14), x \equiv-2 \bmod (21)$.

Answer: $x \equiv 19 \bmod (42)$
(3) $x \equiv 13 \bmod (40), x \equiv 5 \bmod (44), x \equiv 38 \bmod (275)$.
(4) $x^{2} \equiv 9 \bmod (10), 7 x \equiv 19 \bmod (24), 2 x \equiv-1 \bmod (45)$.

ExERCISES

Determine which of the following sets of simultaneous congruences have solutions, and when they do, find the general solution:
(1) $x \equiv 1 \bmod (6), x \equiv 5 \bmod (14), x \equiv 4 \bmod (21)$.

Answer: No Solutions, since $5 \not \equiv 4 \bmod (7)$
(2) $x \equiv 1 \bmod (6), x \equiv 5 \bmod (14), x \equiv-2 \bmod (21)$.

Answer: $x \equiv 19 \bmod (42)$
(3) $x \equiv 13 \bmod (40), x \equiv 5 \bmod (44), x \equiv 38 \bmod (275)$.

Answer: $x \equiv 1413 \bmod (2200)$
(4) $x^{2} \equiv 9 \bmod (10), 7 x \equiv 19 \bmod (24), 2 x \equiv-1 \bmod (45)$.

ExERCISES

Determine which of the following sets of simultaneous congruences have solutions, and when they do, find the general solution:
(1) $x \equiv 1 \bmod (6), x \equiv 5 \bmod (14), x \equiv 4 \bmod (21)$.

Answer: No Solutions, since $5 \not \equiv 4 \bmod (7)$
(2) $x \equiv 1 \bmod (6), x \equiv 5 \bmod (14), x \equiv-2 \bmod (21)$.

Answer: $x \equiv 19 \bmod (42)$
(3) $x \equiv 13 \bmod (40), x \equiv 5 \bmod (44), x \equiv 38 \bmod (275)$.

Answer: $x \equiv 1413 \bmod (2200)$
(4) $x^{2} \equiv 9 \bmod (10), 7 x \equiv 19 \bmod (24), 2 x \equiv-1 \bmod (45)$.

Answer: The congruences are equivalent to
$x \equiv 3$ or $7 \bmod (10), x \equiv 13 \bmod (24)$ and $x \equiv 22 \bmod (45)$, with solution $x \equiv 157 \bmod (360)$

