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• ax ≡ b mod (n) has unique solution mod(n) if gcd(a, n) = 1.

• If n is a prime, p, then gcd(a, p) is either 1 or p.

1 gcd(a, p) = 1 has a unique solution mod(p)
2 gcd(a, p) = p

• if p | b every x is a solution.
• if p 6 | b no x is a solution.

If the polynomial ax − b has degree d = 1 over Zp (that is, if
a 6≡ 0 mod (p)), then it has at most one root in Zp.

In algebra we learn that a polynomial of degree d has at most d
distinct roots.

Is this also true for number systems Zp (we have just seen it is true
for d = 1)?
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Lagrange’s Theorem

Theorem

Let p be prime, and let f (x) = adxd + · · ·+ a1x + a0 be a
polynomial with integer coefficients, where ai 6≡ 0 mod (p) for
some i. Then the congruence f (x) ≡ 0 mod (p) is satisfied by at
most d congruence classes [x ] ∈ Zp.



bg=whiteZp Pseudoprimes and Carmichael numbers Units Euler’s Function The Group of Units App. φ(n)

Example - Roots of f (x) = x2 + 1 in Zp

As an example, we consider the polynomial f (x) = x2 + 1 and find
the roots in Zp.

Let us consider the primes p ≤ 17.
p = 2; there is one class, [1] in Z2.
p = 3; there are no classes in Z3.
p = 5; there are two classes, ±[2] in Z5.
p = 7; there are no classes in Z7.
p = 11; there are no classes in Z11.
p = 13; there are two classes, ±[5] in Z13.
p = 17; there are two classes, ±[4] in Z17.
There are two roots if p ≡ 1 mod (4), none if p ≡ 3 mod (4), and
one if p = 2.
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Fermat’s Little Theorem

• If p is prime, the classes [a] 6= [0] in Zp are closed under
taking products and inverses,

• so they form a group under multiplication, with identity [1].

• If [a] 6= [0] then the congruence ax ≡ 1 mod (p) has unique
solution [x ] 6= [0] in (Z)p.

• This class is the inverse of [a].

• This group of non-zero classes has order p − 1 (it contains
p − 1 elements).

• If g is any element of a group of finite order n, then gn is the
identity element in that group.

• Therefore, each class [a] 6= [0] satisfies [a]p−1 = [1], so
ap−1 ≡ 1.
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Fermat’s Little Theorem

Theorem

If p is prime and a 6≡ 0 mod (p), then ap−1 ≡ 1 mod (p)
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Fermat’s Little Theorem

If a 6≡ 0 then Fermat’s Little Theorem gives ap−1 ≡ 1, multiplying
both sides by a gives the following corollary.

Corollary

If p is prime then ap ≡ a mod (p) for every integer a.
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Example

Let us find the least non-negative reside of 268 mod (19).

Since 19
is prime and 2 is not divisible by 19, we can apply Fermat’s little
theorem with p = 19 and a = 2, so that 218 ≡ 1 mod (19).

268 = (218)3 × 214 ≡ 13 × 214 ≡ 214 mod (19)

Since 24 = 16 ≡ −3 mod (19), we can write 14 = 4× 3 + 2 and
deduce that

214 = (24)3 × 22 ≡ (−3)3 × 22 ≡ −27× 4 ≡ −8× 4 ≡ −32

so that 268 ≡ 6 mod (19)
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Example

Let us find all the roots of the congruence

f (x) = x17 + 6x14 + 2x5 + 1 ≡ 0 mod (5)

Here, p = 5 so replacing x5 with x we can replace x17 = (x5)3x2

with x3x2 = x5 and hence with x . Similarly we can replace x14

with x2 and x5 with x . This gives the polynomial 6x2 + 3x + 1,
which is a mush simpler congruence to deal with.
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Wilson’s theorem

Theorem

An integer n is prime if and only if (n − 1)! ≡ −1 mod (n)
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Another theorem...

Theorem

Let p be an odd prime. Then the quadratic congruence
x2 + 1 ≡ 0 mod (p) has a solution if and only if p ≡ 1 mod (4)
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• If we are given an integer n to test for primality, we chose an
integer a and compute an mod (n).

• n passes the base a test if an ≡ a mod (n).

• n fails the base a test if an 6≡ a mod (n), if n fails the test for
any a then n must be composite (i.e. not prime).

• If n passes the base 2 test, and n is not prime, n is called
pseudoprime
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Example - pseudoprime

n = 341. By noting 210 = 1024 ≡ 1 mod (341), so

2314 = (210)34 × 2 ≡ 2 mod (341)

and 341 has passed the test. However 341 = 11× 13, so it is not
prime but a pseudoprime. 341 is in fact the smallest pseudoprime.
Although pseudoprimes are quite rare, we theorise that there are
infinitely many pseudoprimes.
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Example - simplification of powers

• Let n = 91. This is odd, so a91 = (a45)2a = g(a45).

• Similarly, 45 is odd, so a45 = g(a22).

• This gives a91 = g(g(a22)) = (g ◦ g)(a22).

• Since 22 is even a22 = (a11)2 = f (a11).

• This gives a91 = g(g(f (a11))) = (g ◦ g ◦ f )(a11).

• Continuing this we find a91 = (g ◦ g ◦ f ◦ g ◦ g ◦ f ◦ g)(a0).

f involves one multiplication, and g involves two, so the total
number of multiplications required is 12 (we can halt the iteration
a step earlier and reduce the number to 10). Since each
multiplication is performed in Z91, the number involved never
becomes excessively large.
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Example - simplification of powers

• Let n = 91. This is odd, so a91 = (a45)2a = g(a45).

• Similarly, 45 is odd, so a45 = g(a22).

• This gives a91 = g(g(a22)) = (g ◦ g)(a22).

• Since 22 is even a22 = (a11)2 = f (a11).

• This gives a91 = g(g(f (a11))) = (g ◦ g ◦ f )(a11).

• Continuing this we find a91 = (g ◦ g ◦ f ◦ g ◦ g ◦ f ◦ g)(a0).

f involves one multiplication, and g involves two, so the total
number of multiplications required is 12 (we can halt the iteration
a step earlier and reduce the number to 10). Since each
multiplication is performed in Z91, the number involved never
becomes excessively large.
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Example - simplification of powers

• Any integer n can easily be represented in binary.

• We can apply f or g whenever we have 0 or 1, respectively.

• 91 = 1011011, since we write functions from left to write, we
reverse the order

• 1011011→ g ◦ g ◦ f ◦ g ◦ g ◦ f ◦ g

Theorem

This argument implies that, for any n, the number of
multiplications required to compute an is at most twice the number
of digits in the binary expansion of n, that is, at most 2(1 + blgnc)
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Carmichael Numbers

Definition

Carmicheal numbers are composite integers n with the property
that an ≡ a mod (n) for all integers a

• The smallest Carmicheal number is 561 = 3× 11× 17.

• However, a561 ≡ a mod (561) for all integers a.

• The next few Carmicheal numbers are 1105, 1729, 2465.

Lemma

If n is square-free (a product of distinct primes) and if p − 1
divides n − 1 for each prime p dividing n, then n is either a prime
or a Carmichael number.
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Carmichael Numbers
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Definition

Definition

A multiplicative inverse for a class [a] ∈ Zn is a class [b] ∈ Zn such
that [a][b] = [1]. A class [a] ∈ Zn is a unit if it has a multiplicative
inverse in Zn.

Lemma

[a] ia a unit in Zn if and only if gcd(a, n) = 1.
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Example

The units of Z8 are [1], [3], [5] and [7]: in fact
[1][1] = [3][3] = [5][5] = [7][7] = [1], so each of these units is its
own multiplicative inverse. In Z9, the units are [1], [2], [4], [5], [7]
and [8]: for instance [2][5] = [1], so [2] and [5] are inverses of each
other.
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The Set of Units

We let Un denote the set of units in Zn. Thus
U8 = {[1], [3], [5], [7]} and U9 = {[1], [2], [4], [5], [7], [8]}.

Theorem

For each integer n ≥ 1, the set Un forms a group under
multiplication mod(n), with identity element [1].

Example (Un is Abelian)

[a][b] = [ab] and [b][a] = [ba]; since ab = ba for all a, b ∈ Z, we
have [a][b] = [b][a] for all [a], [b] ∈ Zn.
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Proof Un is a Group

The axioms that set out the constraints of a group are:

• Closure

• Associativity

• Identity

• Inverses
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Closure of Un

If [a] and [b] are units, they have inverse [u] and [v ] such that
[a][u] = [au] = [1] and [b][v ] = [bv ] = [1]; then
[ab][uv ] = [abuv ] = [aubv ] = [au][bv ] = [1]2 = [1], so [ab] has
inverse [uv ], and is therfore a unit. This proves closure.
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Associativity of Un

Associativity asserts that [a]([b][c]) = ([a][b])[c] for all [a], [b] and
[c]; the left and right classes are [a(bc)] and [(ab)c] so this follows
from the associativity property a(bc) = (ab)c in Z.
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Identity of Un

The identity element of Un is [1], since [a][1] = [a] = [1][a] for all
[a] ∈ Un.
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Inverses of Un

If [a] ∈ Un then by definition there exists [u] ∈ Zn such that
[a][u] = [1]; now [u] ∈ Un because [a] satisfies [u][a] = [1], so [u] is
the inverse of [a] in Un.
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Definition

Definition

We define φ(n) = |Un|, the number of units in Zn; the number of
integers a = 1, 2, . . . , n such that gcd(a, n) = 1. The function φ is
called Euler’s function (or Euler’s totient function). For small n,
its values are as follows:

n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . .

φ(n) = 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, . . .

We define a subset R of Z to be a reduced set of residues
mod(n) if it contains one element from each of the φ(n)
congruence classes in Un. For instance, {1, 3, 5, 7} and {±1,±3}
are both reduced sets of residues mod(8).
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Euler’s Theorem - A Generalisation of
Fermat’s Little Theorem

Theorem

If gcd(a, n) = 1 then aφ(n) ≡ 1 mod (n)
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A General Formula for φ(n)

Lemma

φ(n) = pe − pe−1 = pe−1(p − 1) = n

(
1− 1

p

)
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Lemma

Un is an abelian group under multiplication mod(n).

Lemma

If l and m are coprime positive integers, then 2l − 1 and 2m − 1 are
coprime.
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Mersenne numbers

Definition

Integers in the form 2p − 1, where p is prime, are called Mersenne
numbers.

Corollary

Distinct Mersenne numbers are coprime.
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Example

Find the last two decimal digits of 31492

• Equivalent to finding the least non-negative residue of
31492 mod (100).

• 3 is coprime to 100 so we can use aφ(n) ≡ 1 mod (n) where
gcd(a, n) = 1.

• gives 3φ(100) ≡ 1 mod (100), where the primes dividing 100
are 2 and 5.

• φ(100) = 100× (1/2)× (4/5) = 40, so 340 ≡ 1 mod (100).

• 1492 ≡ 12 mod (40), so 31492 ≡ 312 mod (100).

• 34 = 81 ≡ −19 mod (100) so 38 ≡ (−19)2 = 361 ≡ −39.

• therefore 312 ≡ −19×−39 = 741 ≡ 41. The last two digits
are therefore 41.
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Example

Using a similar method, check the consistancy of the above
calculation by finding only the last digit of 31492.
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Number theory and cryptography

If we represent letters as integers, say A = 0,B = 1, . . . ,Z = 25,
and then add 1 to each. To encode Z as A, we must add
mod(26), so that 25 + 1 ≡ 0. Similar codes are obtained by adding
some fixed integer k . To decode we subtract k mod (26). These
codes are easy to break: we could try all possible values of k , or
compare the most frequent letters (E and then T in English).

Example

Which mathematician is encoded in the above way as LBSLY , and
what is the value of k?
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Number theory and cryptography

A more secure class of codes uses transformations in the form
x → ax + b mod (26), for various integers a and b. To decode, we
need to find x from ax + b; this is possible if and only if a is a unit
mod(26). It turns out there are φ(26)× 26 = 12× 26 = 312 such
codes.

Example

If the encoding transformation is x → 7x + 3 mod (26), encode
GAUSS and decode MFSJDG .
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Number theory and cryptography

We can do better with codes based on Fermat’s Little Theorem.
Choose a large prime p, and an integer e coprime to p − 1. For
encoding we use the transformation Zp → Zp given by
x → xe mod (p). If 0 < x < p then x is coprime to p, so
xp−1 ≡ 1 mod (p). To decode, we first find the multiplicative
inverse f of e mod (p − 1), i.e. we solve the congruence
ef ≡ 1 mod (p − 1). Then ef = (p − 1)k + 1 for some integer k,
so (xe)f = x (p−1)k+1 = (xp−1)k .x ≡ x mod (p), thus we find x
and the message cane be decoded.

Example

Suppose p = 29, we choose e coprime to 28, and then find f such
that ef ≡ 1 mod (28). If we choose e = 5, the encoding would be
x → x5 mod (29), then f = 17 and decoding is given by
x → x17 mod (29). Encode 9 and decode 11 in this example
coding.
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