Congruences with a Prime-Power Modulus
 CIS002-2 Computational Alegrba and Number Theory

David Goodwin

david.goodwin@perisic.com

09:00, Tuesday 06 th December 2011
09:00, Tuesday $10^{\text {th }}$ January 2012

Outline

(1) Arithmetic of \mathbb{Z}_{p}
(2) Pseudoprimes and Carmichael numbers
(3) Units
(4) Euler's Function
(5) The Group of Units
(6 Applications of Euler's function

Outline

(1) Arithmetic of \mathbb{Z}_{p}
(2) Pseudoprimes and Carmichael numbers
(3) Units
(4) Euler's Function
(5) The Group of Units
(6) Applications of Euler's function

- $a x \equiv b \bmod (n)$ has unique solution $\bmod (n)$ if $\operatorname{gcd}(a, n)=1$.
- If n is a prime, p, then $\operatorname{gcd}(a, p)$ is either 1 or p.
(1) $\operatorname{gcd}(a, p)=1$ has a unique solution $\bmod (p)$
(2) $\operatorname{gcd}(a, p)=p$
- if $p \mid b$ every x is a solution.
- if $p \nmid b$ no x is a solution.

If the polynomial $a x-b$ has degree $d=1$ over \mathbb{Z}_{p} (that is, if $a \not \equiv 0 \bmod (p))$, then it has at most one root in \mathbb{Z}_{p}.

In algebra we learn that a polynomial of degree d has at most d distinct roots.

Is this also true for number systems \mathbb{Z}_{p} (we have just seen it is true for $d=1$)?

Lagrange's Theorem

Theorem

Let p be prime, and let $f(x)=a_{d} x^{d}+\cdots+a_{1} x+a_{0}$ be a polynomial with integer coefficients, where $a_{i} \not \equiv 0 \bmod (p)$ for some i. Then the congruence $f(x) \equiv 0 \bmod (p)$ is satisfied by at most d congruence classes $[x] \in \mathbb{Z}_{p}$.

Example - Roots of $f(x)=x^{2}+1$ in \mathbb{Z}_{p}

As an example, we consider the polynomial $f(x)=x^{2}+1$ and find the roots in \mathbb{Z}_{p}.

Example - Roots of $f(x)=x^{2}+1$ in \mathbb{Z}_{p}

As an example, we consider the polynomial $f(x)=x^{2}+1$ and find the roots in \mathbb{Z}_{p}.
Let us consider the primes $p \leq 17$.

Example - Roots of $f(x)=x^{2}+1$ in \mathbb{Z}_{p}

As an example, we consider the polynomial $f(x)=x^{2}+1$ and find the roots in \mathbb{Z}_{p}.
Let us consider the primes $p \leq 17$.
$p=2$; there is one class, [1] in \mathbb{Z}_{2}.

ExAmple - Roots of $f(x)=x^{2}+1$ IN \mathbb{Z}_{p}

As an example, we consider the polynomial $f(x)=x^{2}+1$ and find the roots in \mathbb{Z}_{p}.
Let us consider the primes $p \leq 17$.
$p=2$; there is one class, [1] in \mathbb{Z}_{2}.
$p=3$; there are no classes in \mathbb{Z}_{3}.

EXAMPLE - ROOTS OF $f(x)=x^{2}+1$ IN \mathbb{Z}_{p}

As an example, we consider the polynomial $f(x)=x^{2}+1$ and find the roots in \mathbb{Z}_{p}.
Let us consider the primes $p \leq 17$.
$p=2$; there is one class, [1] in \mathbb{Z}_{2}.
$p=3$; there are no classes in \mathbb{Z}_{3}.
$p=5$; there are two classes, $\pm[2]$ in \mathbb{Z}_{5}.

EXAMPLE - ROOTS OF $f(x)=x^{2}+1$ IN \mathbb{Z}_{p}

As an example, we consider the polynomial $f(x)=x^{2}+1$ and find the roots in \mathbb{Z}_{p}.
Let us consider the primes $p \leq 17$.
$p=2$; there is one class, [1] in \mathbb{Z}_{2}.
$p=3$; there are no classes in \mathbb{Z}_{3}.
$p=5$; there are two classes, $\pm[2]$ in \mathbb{Z}_{5}.
$p=7$; there are no classes in \mathbb{Z}_{7}.

Example - Roots of $f(x)=x^{2}+1$ in \mathbb{Z}_{p}

As an example, we consider the polynomial $f(x)=x^{2}+1$ and find the roots in \mathbb{Z}_{p}.
Let us consider the primes $p \leq 17$.
$p=2$; there is one class, [1] in \mathbb{Z}_{2}.
$p=3$; there are no classes in \mathbb{Z}_{3}.
$p=5$; there are two classes, $\pm[2]$ in \mathbb{Z}_{5}.
$p=7$; there are no classes in \mathbb{Z}_{7}.
$p=11$; there are no classes in \mathbb{Z}_{11}.

Example - Roots of $f(x)=x^{2}+1$ in \mathbb{Z}_{p}

As an example, we consider the polynomial $f(x)=x^{2}+1$ and find the roots in \mathbb{Z}_{p}.
Let us consider the primes $p \leq 17$.
$p=2$; there is one class, [1] in \mathbb{Z}_{2}.
$p=3$; there are no classes in \mathbb{Z}_{3}.
$p=5$; there are two classes, $\pm[2]$ in \mathbb{Z}_{5}.
$p=7$; there are no classes in \mathbb{Z}_{7}.
$p=11$; there are no classes in \mathbb{Z}_{11}.
$p=13$; there are two classes, $\pm[5]$ in \mathbb{Z}_{13}.

Example - Roots of $f(x)=x^{2}+1$ in \mathbb{Z}_{p}

As an example, we consider the polynomial $f(x)=x^{2}+1$ and find the roots in \mathbb{Z}_{p}.
Let us consider the primes $p \leq 17$.
$p=2$; there is one class, [1] in \mathbb{Z}_{2}.
$p=3$; there are no classes in \mathbb{Z}_{3}.
$p=5$; there are two classes, $\pm[2]$ in \mathbb{Z}_{5}.
$p=7$; there are no classes in \mathbb{Z}_{7}.
$p=11$; there are no classes in \mathbb{Z}_{11}.
$p=13$; there are two classes, $\pm[5]$ in \mathbb{Z}_{13}.
$p=17$; there are two classes, $\pm[4]$ in \mathbb{Z}_{17}.

Example - Roots of $f(x)=x^{2}+1$ in \mathbb{Z}_{p}

As an example, we consider the polynomial $f(x)=x^{2}+1$ and find the roots in \mathbb{Z}_{p}.
Let us consider the primes $p \leq 17$.
$p=2$; there is one class, [1] in \mathbb{Z}_{2}.
$p=3$; there are no classes in \mathbb{Z}_{3}.
$p=5$; there are two classes, $\pm[2]$ in \mathbb{Z}_{5}.
$p=7$; there are no classes in \mathbb{Z}_{7}.
$p=11$; there are no classes in \mathbb{Z}_{11}.
$p=13$; there are two classes, $\pm[5]$ in \mathbb{Z}_{13}.
$p=17$; there are two classes, $\pm[4]$ in \mathbb{Z}_{17}.
There are two roots if $p \equiv 1 \bmod (4)$, none if $p \equiv 3 \bmod (4)$, and one if $p=2$.

Fermat's Little Theorem

- If p is prime, the classes $[a] \neq[0]$ in \mathbb{Z}_{p} are closed under taking products and inverses,

Fermat's Little Theorem

- If p is prime, the classes $[a] \neq[0]$ in \mathbb{Z}_{p} are closed under taking products and inverses,
- so they form a group under multiplication, with identity [1].

Fermat's Little Theorem

- If p is prime, the classes $[a] \neq[0]$ in \mathbb{Z}_{p} are closed under taking products and inverses,
- so they form a group under multiplication, with identity [1].
- If $[a] \neq[0]$ then the congruence $a x \equiv 1 \bmod (p)$ has unique solution $[x] \neq[0]$ in $(\mathbb{Z})_{p}$.

Fermat's Little Theorem

- If p is prime, the classes $[a] \neq[0]$ in \mathbb{Z}_{p} are closed under taking products and inverses,
- so they form a group under multiplication, with identity [1].
- If $[a] \neq[0]$ then the congruence $a x \equiv 1 \bmod (p)$ has unique solution $[x] \neq[0]$ in $(\mathbb{Z})_{p}$.
- This class is the inverse of [a].

Fermat's Little Theorem

- If p is prime, the classes $[a] \neq[0]$ in \mathbb{Z}_{p} are closed under taking products and inverses,
- so they form a group under multiplication, with identity [1].
- If $[a] \neq[0]$ then the congruence $a x \equiv 1 \bmod (p)$ has unique solution $[x] \neq[0]$ in $(\mathbb{Z})_{p}$.
- This class is the inverse of [a].
- This group of non-zero classes has order $p-1$ (it contains $p-1$ elements).

Fermat's Little Theorem

- If p is prime, the classes $[a] \neq[0]$ in \mathbb{Z}_{p} are closed under taking products and inverses,
- so they form a group under multiplication, with identity [1].
- If $[a] \neq[0]$ then the congruence $a x \equiv 1 \bmod (p)$ has unique solution $[x] \neq[0]$ in $(\mathbb{Z})_{p}$.
- This class is the inverse of [a].
- This group of non-zero classes has order $p-1$ (it contains $p-1$ elements).
- If g is any element of a group of finite order n, then g^{n} is the identity element in that group.

Fermat's Little Theorem

- If p is prime, the classes $[a] \neq[0]$ in \mathbb{Z}_{p} are closed under taking products and inverses,
- so they form a group under multiplication, with identity [1].
- If $[a] \neq[0]$ then the congruence $a x \equiv 1 \bmod (p)$ has unique solution $[x] \neq[0]$ in $(\mathbb{Z})_{p}$.
- This class is the inverse of [a].
- This group of non-zero classes has order $p-1$ (it contains $p-1$ elements).
- If g is any element of a group of finite order n, then g^{n} is the identity element in that group.
- Therefore, each class $[a] \neq[0]$ satisfies $[a]^{p-1}=[1]$, so $a^{p-1} \equiv 1$.

Fermat's Little Theorem

Theorem

If p is prime and $a \not \equiv 0 \bmod (p)$, then $a^{p-1} \equiv 1 \bmod (p)$

Fermat's Little Theorem

If $a \not \equiv 0$ then Fermat's Little Theorem gives $a^{p-1} \equiv 1$, multiplying both sides by a gives the following corollary.

Corollary

If p is prime then $a^{p} \equiv \operatorname{amod}(p)$ for every integer a.

EXAMPLE

Let us find the least non-negative reside of $2^{68} \bmod (19)$.

EXAMPLE

Let us find the least non-negative reside of $2^{68} \bmod (19)$. Since 19 is prime and 2 is not divisible by 19, we can apply Fermat's little theorem with $p=19$ and $a=2$, so that $2^{18} \equiv 1 \bmod (19)$.

EXAMPLE

Let us find the least non-negative reside of $2^{68} \bmod (19)$. Since 19 is prime and 2 is not divisible by 19, we can apply Fermat's little theorem with $p=19$ and $a=2$, so that $2^{18} \equiv 1 \bmod (19)$.

$$
2^{68}=\left(2^{18}\right)^{3} \times 2^{14} \equiv 1^{3} \times 2^{14} \equiv 2^{14} \bmod (19)
$$

EXAMPLE

Let us find the least non-negative reside of $2^{68} \bmod (19)$. Since 19 is prime and 2 is not divisible by 19, we can apply Fermat's little theorem with $p=19$ and $a=2$, so that $2^{18} \equiv 1 \bmod (19)$.

$$
2^{68}=\left(2^{18}\right)^{3} \times 2^{14} \equiv 1^{3} \times 2^{14} \equiv 2^{14} \bmod (19)
$$

Since $2^{4}=16 \equiv-3 \bmod (19)$, we can write $14=4 \times 3+2$

EXAMPLE

Let us find the least non-negative reside of $2^{68} \bmod (19)$. Since 19 is prime and 2 is not divisible by 19, we can apply Fermat's little theorem with $p=19$ and $a=2$, so that $2^{18} \equiv 1 \bmod (19)$.

$$
2^{68}=\left(2^{18}\right)^{3} \times 2^{14} \equiv 1^{3} \times 2^{14} \equiv 2^{14} \bmod (19)
$$

Since $2^{4}=16 \equiv-3 \bmod (19)$, we can write $14=4 \times 3+2$ and deduce that

$$
2^{14}=\left(2^{4}\right)^{3} \times 2^{2} \equiv(-3)^{3} \times 2^{2} \equiv-27 \times 4 \equiv-8 \times 4 \equiv-32
$$

so that $2^{68} \equiv 6 \bmod (19)$

EXAMPLE

Let us find all the roots of the congruence

$$
f(x)=x^{17}+6 x^{14}+2 x^{5}+1 \equiv 0 \bmod (5)
$$

EXAMPLE

Let us find all the roots of the congruence

$$
f(x)=x^{17}+6 x^{14}+2 x^{5}+1 \equiv 0 \bmod (5)
$$

Here, $p=5$

EXAMPLE

Let us find all the roots of the congruence

$$
f(x)=x^{17}+6 x^{14}+2 x^{5}+1 \equiv 0 \bmod (5)
$$

Here, $p=5$ so replacing x^{5} with x we can replace $x^{17}=\left(x^{5}\right)^{3} x^{2}$

EXAMPLE

Let us find all the roots of the congruence

$$
f(x)=x^{17}+6 x^{14}+2 x^{5}+1 \equiv 0 \bmod (5)
$$

Here, $p=5$ so replacing x^{5} with x we can replace $x^{17}=\left(x^{5}\right)^{3} x^{2}$ with $x^{3} x^{2}=x^{5}$ and hence with x.

EXAMPLE

Let us find all the roots of the congruence

$$
f(x)=x^{17}+6 x^{14}+2 x^{5}+1 \equiv 0 \bmod (5)
$$

Here, $p=5$ so replacing x^{5} with x we can replace $x^{17}=\left(x^{5}\right)^{3} x^{2}$ with $x^{3} x^{2}=x^{5}$ and hence with x. Similarly we can replace x^{14} with x^{2} and x^{5} with x.

Example

Let us find all the roots of the congruence

$$
f(x)=x^{17}+6 x^{14}+2 x^{5}+1 \equiv 0 \bmod (5)
$$

Here, $p=5$ so replacing x^{5} with x we can replace $x^{17}=\left(x^{5}\right)^{3} x^{2}$ with $x^{3} x^{2}=x^{5}$ and hence with x. Similarly we can replace x^{14} with x^{2} and x^{5} with x. This gives the polynomial $6 x^{2}+3 x+1$, which is a mush simpler congruence to deal with.

WILSON'S THEOREM

Theorem
An integer n is prime if and only if $(n-1)!\equiv-1 \bmod (n)$

Another Theorem...

Theorem

Let p be an odd prime. Then the quadratic congruence $x^{2}+1 \equiv 0 \bmod (p)$ has a solution if and only if $p \equiv 1 \bmod (4)$

Outline

(1) Arithmetic of \mathbb{Z}_{p}
(2) Pseudoprimes and Carmichael numbers
(3) Units
(4) Euler's Function
© The Group of Units
(0 Applications of Euler's function

- If we are given an integer n to test for primality, we chose an integer a and compute $a^{n} \bmod (n)$.
- If we are given an integer n to test for primality, we chose an integer a and compute $a^{n} \bmod (n)$.
- n passes the base a test if $a^{n} \equiv a \bmod (n)$.
- If we are given an integer n to test for primality, we chose an integer a and compute $a^{n} \bmod (n)$.
- n passes the base a test if $a^{n} \equiv a \bmod (n)$.
- n fails the base a test if $a^{n} \not \equiv \operatorname{amod}(n)$, if n fails the test for any a then n must be composite (i.e. not prime).
- If we are given an integer n to test for primality, we chose an integer a and compute $a^{n} \bmod (n)$.
- n passes the base a test if $a^{n} \equiv a \bmod (n)$.
- n fails the base a test if $a^{n} \not \equiv \operatorname{amod}(n)$, if n fails the test for any a then n must be composite (i.e. not prime).
- If n passes the base 2 test, and n is not prime, n is called pseudoprime

EXAMPLE - PSEUDOPRIME

$n=341$. By noting $2^{10}=1024 \equiv 1 \bmod (341)$, so

$$
2^{314}=\left(2^{10}\right)^{34} \times 2 \equiv 2 \bmod (341)
$$

and 341 has passed the test. However $341=11 \times 13$, so it is not prime but a pseudoprime. 341 is in fact the smallest pseudoprime. Although pseudoprimes are quite rare, we theorise that there are infinitely many pseudoprimes.

EXAMPLE - SIMPLIFICATION OF POWERS

- Let $n=91$. This is odd, so $a^{91}=\left(a^{45}\right)^{2} a=g\left(a^{45}\right)$.

EXAMPLE - SIMPLIFICATION OF POWERS

- Let $n=91$. This is odd, so $a^{91}=\left(a^{45}\right)^{2} a=g\left(a^{45}\right)$.
- Similarly, 45 is odd, so $a^{45}=g\left(a^{22}\right)$.

EXAMPLE - SIMPLIFICATION OF POWERS

- Let $n=91$. This is odd, so $a^{91}=\left(a^{45}\right)^{2} a=g\left(a^{45}\right)$.
- Similarly, 45 is odd, so $a^{45}=g\left(a^{22}\right)$.
- This gives $a^{91}=g\left(g\left(a^{22}\right)\right)=(g \circ g)\left(a^{22}\right)$.

EXAMPLE - SIMPLIFICATION OF POWERS

- Let $n=91$. This is odd, so $a^{91}=\left(a^{45}\right)^{2} a=g\left(a^{45}\right)$.
- Similarly, 45 is odd, so $a^{45}=g\left(a^{22}\right)$.
- This gives $a^{91}=g\left(g\left(a^{22}\right)\right)=(g \circ g)\left(a^{22}\right)$.
- Since 22 is even $a^{22}=\left(a^{11}\right)^{2}=f\left(a^{11}\right)$.

EXAMPLE - SIMPLIFICATION OF POWERS

- Let $n=91$. This is odd, so $a^{91}=\left(a^{45}\right)^{2} a=g\left(a^{45}\right)$.
- Similarly, 45 is odd, so $a^{45}=g\left(a^{22}\right)$.
- This gives $a^{91}=g\left(g\left(a^{22}\right)\right)=(g \circ g)\left(a^{22}\right)$.
- Since 22 is even $a^{22}=\left(a^{11}\right)^{2}=f\left(a^{11}\right)$.
- This gives $a^{91}=g\left(g\left(f\left(a^{11}\right)\right)\right)=(g \circ g \circ f)\left(a^{11}\right)$.

EXAMPLE - SIMPLIFICATION OF POWERS

- Let $n=91$. This is odd, so $a^{91}=\left(a^{45}\right)^{2} a=g\left(a^{45}\right)$.
- Similarly, 45 is odd, so $a^{45}=g\left(a^{22}\right)$.
- This gives $a^{91}=g\left(g\left(a^{22}\right)\right)=(g \circ g)\left(a^{22}\right)$.
- Since 22 is even $a^{22}=\left(a^{11}\right)^{2}=f\left(a^{11}\right)$.
- This gives $a^{91}=g\left(g\left(f\left(a^{11}\right)\right)\right)=(g \circ g \circ f)\left(a^{11}\right)$.
- Continuing this we find $a^{91}=(g \circ g \circ f \circ g \circ g \circ f \circ g)\left(a^{0}\right)$.

EXAMPLE - SIMPLIFICATION OF POWERS

- Let $n=91$. This is odd, so $a^{91}=\left(a^{45}\right)^{2} a=g\left(a^{45}\right)$.
- Similarly, 45 is odd, so $a^{45}=g\left(a^{22}\right)$.
- This gives $a^{91}=g\left(g\left(a^{22}\right)\right)=(g \circ g)\left(a^{22}\right)$.
- Since 22 is even $a^{22}=\left(a^{11}\right)^{2}=f\left(a^{11}\right)$.
- This gives $a^{91}=g\left(g\left(f\left(a^{11}\right)\right)\right)=(g \circ g \circ f)\left(a^{11}\right)$.
- Continuing this we find $a^{91}=(g \circ g \circ f \circ g \circ g \circ f \circ g)\left(a^{0}\right)$.
f involves one multiplication, and g involves two, so the total number of multiplications required is 12 (we can halt the iteration a step earlier and reduce the number to 10). Since each multiplication is performed in \mathbb{Z}_{91}, the number involved never becomes excessively large.

EXAMPLE - SIMPLIFICATION OF POWERS

- Any integer n can easily be represented in binary.

EXAMPLE - SIMPLIFICATION OF POWERS

- Any integer n can easily be represented in binary.
- We can apply f or g whenever we have 0 or 1 , respectively.

EXAMPLE - SIMPLIFICATION OF POWERS

- Any integer n can easily be represented in binary.
- We can apply f or g whenever we have 0 or 1 , respectively.
- $91=1011011$, since we write functions from left to write, we reverse the order

EXAMPLE - SIMPLIFICATION OF POWERS

- Any integer n can easily be represented in binary.
- We can apply f or g whenever we have 0 or 1 , respectively.
- $91=1011011$, since we write functions from left to write, we reverse the order
- $1011011 \rightarrow g \circ g \circ f \circ g \circ g \circ f \circ g$

EXAMPLE - SIMPLIFICATION OF POWERS

- Any integer n can easily be represented in binary.
- We can apply f or g whenever we have 0 or 1 , respectively.
- $91=1011011$, since we write functions from left to write, we reverse the order
- $1011011 \rightarrow g \circ g \circ f \circ g \circ g \circ f \circ g$

Theorem

This argument implies that, for any n, the number of multiplications required to compute a^{n} is at most twice the number of digits in the binary expansion of n, that is, at most $2(1+\lfloor\operatorname{lgn}\rfloor)$

Carmichael Numbers

Definition

Carmicheal numbers are composite integers n with the property that $a^{n} \equiv a \bmod (n)$ for all integers a

- The smallest Carmicheal number is $561=3 \times 11 \times 17$.
- However, $a^{561} \equiv a \bmod (561)$ for all integers a.
- The next few Carmicheal numbers are 1105, 1729, 2465.

LEMMA

If n is square-free (a product of distinct primes) and if $p-1$ divides $n-1$ for each prime p dividing n, then n is either a prime or a Carmichael number.

Carmichael Numbers

Outline

(1) ARITHMETIC OF \mathbb{Z}_{p}
(2) Pseudoprimes and Carmichael numbers
(3) Units
(4) Euler's Function
(5) The Group of Units
(6) Applications of Euler's function

Definition

Definition

A multiplicative inverse for a class $[a] \in \mathbb{Z}_{n}$ is a class $[b] \in \mathbb{Z}_{n}$ such that $[a][b]=[1]$. A class $[a] \in \mathbb{Z}_{n}$ is a unit if it has a multiplicative inverse in \mathbb{Z}_{n}.

Lemma

[a] ia a unit in \mathbb{Z}_{n} if and only if $\operatorname{gcd}(a, n)=1$.

EXAMPLE

The units of \mathbb{Z}_{8} are [1], [3], [5] and [7]: in fact $[1][1]=[3][3]=[5][5]=[7][7]=[1]$, so each of these units is its own multiplicative inverse. In \mathbb{Z}_{9}, the units are [1], [2], [4], [5], [7] and [8]: for instance [2][5] $=[1]$, so [2] and [5] are inverses of each other.

The Set of Units

We let U_{n} denote the set of units in \mathbb{Z}_{n}. Thus $U_{8}=\{[1],[3],[5],[7]\}$ and $U_{9}=\{[1],[2],[4],[5],[7],[8]\}$.

Theorem

For each integer $n \geq 1$, the set U_{n} forms a group under multiplication $\bmod (n)$, with identity element [1].

The Set of Units

We let U_{n} denote the set of units in \mathbb{Z}_{n}. Thus $U_{8}=\{[1],[3],[5],[7]\}$ and $U_{9}=\{[1],[2],[4],[5],[7],[8]\}$.

Theorem

For each integer $n \geq 1$, the set U_{n} forms a group under multiplication $\bmod (n)$, with identity element [1].

Example (U_{n} is Abelian)
$[a][b]=[a b]$ and $[b][a]=[b a]$; since $a b=b a$ for all $a, b \in \mathbb{Z}$, we have $[a][b]=[b][a]$ for all $[a],[b] \in \mathbb{Z}_{n}$.

Proof U_{n} IS A Group

The axioms that set out the constraints of a group are:

- Closure
- Associativity
- Identity
- Inverses

Closure of U_{n}

If $[a]$ and $[b]$ are units, they have inverse $[u]$ and $[v]$ such that $[a][u]=[a u]=[1]$ and $[b][v]=[b v]=[1]$; then
$[a b][u v]=[a b u v]=[a u b v]=[a u][b v]=[1]^{2}=[1]$, so $[a b]$ has inverse [$u v$], and is therfore a unit. This proves closure.

Associativity of U_{n}

Associativity asserts that $[a]([b][c])=([a][b])[c]$ for all $[a],[b]$ and $[c]$; the left and right classes are $[a(b c)]$ and $[(a b) c]$ so this follows from the associativity property $a(b c)=(a b) c$ in \mathbb{Z}.

IDENTITY OF U_{n}

The identity element of U_{n} is [1], since $[a][1]=[a]=[1][a]$ for all $[a] \in U_{n}$.

Inverses of U_{n}

If $[a] \in U_{n}$ then by definition there exists $[u] \in \mathbb{Z}_{n}$ such that $[a][u]=[1]$; now $[u] \in U_{n}$ because [a] satisfies $[u][a]=[1]$, so $[u]$ is the inverse of [a] in U_{n}.

Outline

(1) ARITHMETIC OF \mathbb{Z}_{p}
(2) Pseudoprimes and CarmichaEl numbers
(3) Units
(4) Euler's Function
(5) The Group of Units
(6) Applications of Euler's function

University of

Definition

Definition

We define $\phi(n)=\left|U_{n}\right|$, the number of units in \mathbb{Z}_{n}; the number of integers $a=1,2, \ldots, n$ such that $\operatorname{gcd}(a, n)=1$. The function ϕ is called Euler's function (or Euler's totient function). For small n, its values are as follows:

$$
\begin{aligned}
n & =1,2,3,4,5,6,7,8,9,10,11,12, \ldots \\
\phi(n) & =1,1,2,2,4,2,6,4,6,4,10,4, \ldots
\end{aligned}
$$

We define a subset R of \mathbb{Z} to be a reduced set of residues $\bmod (n)$ if it contains one element from each of the $\phi(n)$ congruence classes in U_{n}. For instance, $\{1,3,5,7\}$ and $\{ \pm 1, \pm 3\}$ are both reduced sets of residues $\bmod (8)$.

Euler's Theorem - A Generalisation of Fermat's Little Theorem

Theorem
If $\operatorname{gcd}(a, n)=1$ then $a^{\phi(n)} \equiv 1 \bmod (n)$

A General Formula for $\phi(n)$

LEmma

$$
\phi(n)=p^{e}-p^{e-1}=p^{e-1}(p-1)=n\left(1-\frac{1}{p}\right)
$$

Outline

(1) Arithmetic of \mathbb{Z}_{p}
(2) Pseudoprimes and Carmichael numbers
(3) Units
(4) Euler's Function
(5) The Group of Units
(6) Applications of Euler's function

LEMMA

U_{n} is an abelian group under multiplication $\bmod (n)$.
Lemma
If I and m are coprime positive integers, then $2^{\prime}-1$ and $2^{m}-1$ are coprime.

Mersenne numbers

Definition
Integers in the form $2^{p}-1$, where p is prime, are called Mersenne numbers.

Corollary
Distinct Mersenne numbers are coprime.

Outline

(1) ARIthmetic of \mathbb{Z}_{p}
(2) Pseudoprimes and CarmichaEl numbers
(3) Units
(4) Euler's Function
(5) The Group of Units
(6) Applications of Euler's function

Example
Find the last two decimal digits of 3^{1492}

Example

Find the last two decimal digits of 3^{1492}

- Equivalent to finding the least non-negative residue of $3^{1492} \bmod (100)$.

Example

Find the last two decimal digits of 3^{1492}

- Equivalent to finding the least non-negative residue of $3^{1492} \bmod (100)$.
- 3 is coprime to 100 so we can use $a^{\phi(n)} \equiv 1 \bmod (n)$ where $\operatorname{gcd}(a, n)=1$.

Example

Find the last two decimal digits of 3^{1492}

- Equivalent to finding the least non-negative residue of $3^{1492} \bmod (100)$.
- 3 is coprime to 100 so we can use $a^{\phi(n)} \equiv 1 \bmod (n)$ where $\operatorname{gcd}(a, n)=1$.
- gives $3^{\phi(100)} \equiv 1 \bmod (100)$, where the primes dividing 100 are 2 and 5 .

Example

Find the last two decimal digits of 3^{1492}

- Equivalent to finding the least non-negative residue of $3^{1492} \bmod (100)$.
- 3 is coprime to 100 so we can use $a^{\phi(n)} \equiv 1 \bmod (n)$ where $\operatorname{gcd}(a, n)=1$.
- gives $3^{\phi(100)} \equiv 1 \bmod (100)$, where the primes dividing 100 are 2 and 5 .
- $\phi(100)=100 \times(1 / 2) \times(4 / 5)=40$, so $3^{40} \equiv 1 \bmod (100)$.

Example

Find the last two decimal digits of 3^{1492}

- Equivalent to finding the least non-negative residue of $3^{1492} \bmod (100)$.
- 3 is coprime to 100 so we can use $a^{\phi(n)} \equiv 1 \bmod (n)$ where $\operatorname{gcd}(a, n)=1$.
- gives $3^{\phi(100)} \equiv 1 \bmod (100)$, where the primes dividing 100 are 2 and 5 .
- $\phi(100)=100 \times(1 / 2) \times(4 / 5)=40$, so $3^{40} \equiv 1 \bmod (100)$.
- $1492 \equiv 12 \bmod (40)$, so $3^{1492} \equiv 3^{12} \bmod (100)$.

Example

Find the last two decimal digits of 3^{1492}

- Equivalent to finding the least non-negative residue of $3^{1492} \bmod (100)$.
- 3 is coprime to 100 so we can use $a^{\phi(n)} \equiv 1 \bmod (n)$ where $\operatorname{gcd}(a, n)=1$.
- gives $3^{\phi(100)} \equiv 1 \bmod (100)$, where the primes dividing 100 are 2 and 5 .
- $\phi(100)=100 \times(1 / 2) \times(4 / 5)=40$, so $3^{40} \equiv 1 \bmod (100)$.
- $1492 \equiv 12 \bmod (40)$, so $3^{1492} \equiv 3^{12} \bmod (100)$.
- $3^{4}=81 \equiv-19 \bmod (100)$ so $3^{8} \equiv(-19)^{2}=361 \equiv-39$.

Example

Find the last two decimal digits of 3^{1492}

- Equivalent to finding the least non-negative residue of $3^{1492} \bmod (100)$.
- 3 is coprime to 100 so we can use $a^{\phi(n)} \equiv 1 \bmod (n)$ where $\operatorname{gcd}(a, n)=1$.
- gives $3^{\phi(100)} \equiv 1 \bmod (100)$, where the primes dividing 100 are 2 and 5 .
- $\phi(100)=100 \times(1 / 2) \times(4 / 5)=40$, so $3^{40} \equiv 1 \bmod (100)$.
- $1492 \equiv 12 \bmod (40)$, so $3^{1492} \equiv 3^{12} \bmod (100)$.
- $3^{4}=81 \equiv-19 \bmod (100)$ so $3^{8} \equiv(-19)^{2}=361 \equiv-39$.
- therefore $3^{12} \equiv-19 \times-39=741 \equiv 41$. The last two digits are therefore 41 .

Example

Using a similar method, check the consistancy of the above calculation by finding only the last digit of 3^{1492}.

Number theory and cryptography

If we represent letters as integers, say $A=0, B=1, \ldots, Z=25$, and then add 1 to each. To encode Z as A, we must add $\bmod (26)$, so that $25+1 \equiv 0$. Similar codes are obtained by adding some fixed integer k. To decode we subtract $k \bmod (26)$. These codes are easy to break: we could try all possible values of k, or compare the most frequent letters (E and then T in English).

EXAMPLE

Which mathematician is encoded in the above way as LBSLY, and what is the value of k ?

Number theory and cryptography

A more secure class of codes uses transformations in the form $x \rightarrow a x+b \bmod (26)$, for various integers a and b. To decode, we need to find x from $a x+b$; this is possible if and only if a is a unit $\bmod (26)$. It turns out there are $\phi(26) \times 26=12 \times 26=312$ such codes.

Example

If the encoding transformation is $x \rightarrow 7 x+3 \bmod (26)$, encode GAUSS and decode MFSJDG.

Number theory and cryptography

We can do better with codes based on Fermat's Little Theorem. Choose a large prime p, and an integer e coprime to $p-1$. For encoding we use the transformation $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ given by $x \rightarrow x^{e} \bmod (p)$. If $0<x<p$ then x is coprime to p, so $x^{p-1} \equiv 1 \bmod (p)$. To decode, we first find the multiplicative inverse f of $e \bmod (p-1)$, i.e. we solve the congruence ef $\equiv 1 \bmod (p-1)$. Then ef $=(p-1) k+1$ for some integer k, so $\left(x^{e}\right)^{f}=x^{(p-1) k+1}=\left(x^{p-1}\right)^{k} \cdot x \equiv x \bmod (p)$, thus we find x and the message cane be decoded.

Example

Suppose $p=29$, we choose e coprime to 28 , and then find f such that $e f \equiv 1 \bmod (28)$. If we choose $e=5$, the encoding would be $x \rightarrow x^{5} \bmod (29)$, then $f=17$ and decoding is given by $x \rightarrow x^{17} \bmod (29)$. Encode 9 and decode 11 in this example coding.

