Matrices II
 CIS002-2 Computational Alegrba and Number Theory

David Goodwin

david.goodwin@perisic.com

09:00, Tuesday $24^{\text {th }}$ January 2012

Outline

(1) Determinant of A Square Matrix
(2) Cofactors
(3) Adjoint of a Square Matrix
(4) Inverse of a square matrix
© Solution to a set of linear equations
© Gaussian elimination
(3) Coursework

Outline

(1) Determinant of a Square Matrix

CofactorsAdjoint of A Square MatrixInverse of a square matrixSolution to a set of Linear equationsGaussian EliminationCoursework

Determinant of a Square Matrix

- The determinant of a square matrix is the determinant having the same elements as those of the matrix.

Determinant of a Square Matrix

- The determinant of a square matrix is the determinant having the same elements as those of the matrix.
- i.e. the determinant of $\left[\begin{array}{lll}5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7\end{array}\right]$ is $\left|\begin{array}{lll}5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7\end{array}\right|$

Determinant of a Square Matrix

- The determinant of a square matrix is the determinant having the same elements as those of the matrix.
- i.e. the determinant of $\left[\begin{array}{lll}5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7\end{array}\right]$ is $\left|\begin{array}{lll}5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7\end{array}\right|$
- and the value of this determinant is

$$
5(42-12)-20(0-24)+1(0-48)=150 .
$$

Determinant of a Square Matrix

- The determinant of a square matrix is the determinant having the same elements as those of the matrix.
- i.e. the determinant of $\left[\begin{array}{lll}5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7\end{array}\right]$ is $\left|\begin{array}{lll}5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7\end{array}\right|$
- and the value of this determinant is $5(42-12)-20(0-24)+1(0-48)=150$.
- The transpose of the matrix is $\left[\begin{array}{lll}5 & 0 & 8 \\ 2 & 6 & 4 \\ 1 & 3 & 7\end{array}\right]$

Determinant of a Square Matrix

- The determinant of a square matrix is the determinant having the same elements as those of the matrix.
- i.e. the determinant of $\left[\begin{array}{lll}5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7\end{array}\right]$ is $\left|\begin{array}{lll}5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7\end{array}\right|$
- and the value of this determinant is $5(42-12)-20(0-24)+1(0-48)=150$.
- The transpose of the matrix is

$$
\left[\begin{array}{lll}
5 & 0 & 8 \\
2 & 6 & 4 \\
1 & 3 & 7
\end{array}\right]
$$

- and the determinant of this transpose has the same value $5(42-12)-0(14-4)+8(6-6)=150$.

Determinant of a Square Matrix

- The determinant of a square matrix is the determinant having the same elements as those of the matrix.
- i.e. the determinant of $\left[\begin{array}{lll}5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7\end{array}\right]$ is $\left|\begin{array}{lll}5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7\end{array}\right|$
- and the value of this determinant is $5(42-12)-20(0-24)+1(0-48)=150$.
- The transpose of the matrix is

$$
\left[\begin{array}{lll}
5 & 0 & 8 \\
2 & 6 & 4 \\
1 & 3 & 7
\end{array}\right]
$$

- and the determinant of this transpose has the same value $5(42-12)-0(14-4)+8(6-6)=150$.
- That is, the determinant of a square matrix has the same value as that of the determinant of the transposed matrix.

Determinant of a Square Matrix

- The determinant of a square matrix is the determinant having the same elements as those of the matrix.
- i.e. the determinant of $\left[\begin{array}{lll}5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7\end{array}\right]$ is $\left|\begin{array}{lll}5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7\end{array}\right|$
- and the value of this determinant is $5(42-12)-20(0-24)+1(0-48)=150$.
- The transpose of the matrix is

$$
\left[\begin{array}{lll}
5 & 0 & 8 \\
2 & 6 & 4 \\
1 & 3 & 7
\end{array}\right]
$$

- and the determinant of this transpose has the same value $5(42-12)-0(14-4)+8(6-6)=150$.
- That is, the determinant of a square matrix has the same value as that of the determinant of the transposed matrix.
- A matrix whose determinant is zero is called a singluar matrix.

Outline

(1) Determinant of a Square Matrix
(2) CofactorsAdjoint of a Square MatrixInverse of a square matrix
(5) SOLUTION TO A SET OF LINEAR EQUATIONS
(6) GAUSSIAN ELIMINATIONCoursework

University of Bedfordshire

Cofactors

- The determinant of a square matrix $\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0\end{array}\right]$ is

$$
\operatorname{det} \mathbf{A}=|\mathbf{A}|=\left|\begin{array}{lll}
2 & 3 & 5 \\
4 & 1 & 6 \\
1 & 4 & 0
\end{array}\right|=45
$$

Cofactors

- The determinant of a square matrix $\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0\end{array}\right]$ is

$$
\operatorname{det} \mathbf{A}=|\mathbf{A}|=\left|\begin{array}{lll}
2 & 3 & 5 \\
4 & 1 & 6 \\
1 & 4 & 0
\end{array}\right|=45
$$

- The minor of element 2 is $\left|\begin{array}{ll}1 & 6 \\ 4 & 0\end{array}\right|=0-24=-24$.

Cofactors

- The determinant of a square matrix $\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0\end{array}\right]$ is

$$
\operatorname{det} \mathbf{A}=|\mathbf{A}|=\left|\begin{array}{lll}
2 & 3 & 5 \\
4 & 1 & 6 \\
1 & 4 & 0
\end{array}\right|=45
$$

- The minor of element 2 is $\left|\begin{array}{ll}1 & 6 \\ 4 & 0\end{array}\right|=0-24=-24$.
- The place sign is + so the cofactor is $+(-24)=-24$.

Cofactors

- The determinant of a square matrix $\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0\end{array}\right]$ is

$$
\operatorname{det} \mathbf{A}=|\mathbf{A}|=\left|\begin{array}{lll}
2 & 3 & 5 \\
4 & 1 & 6 \\
1 & 4 & 0
\end{array}\right|=45
$$

- The minor of element 2 is $\left|\begin{array}{ll}1 & 6 \\ 4 & 0\end{array}\right|=0-24=-24$.
- The place sign is + so the cofactor is $+(-24)=-24$.
- The minor of element 3 is $\left|\begin{array}{ll}4 & 6 \\ 1 & 0\end{array}\right|=0-6=-6$.

Cofactors

- The determinant of a square matrix $\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0\end{array}\right]$ is

$$
\operatorname{det} \mathbf{A}=|\mathbf{A}|=\left|\begin{array}{lll}
2 & 3 & 5 \\
4 & 1 & 6 \\
1 & 4 & 0
\end{array}\right|=45
$$

- The minor of element 2 is $\left|\begin{array}{ll}1 & 6 \\ 4 & 0\end{array}\right|=0-24=-24$.
- The place sign is + so the cofactor is $+(-24)=-24$.
- The minor of element 3 is $\left|\begin{array}{ll}4 & 6 \\ 1 & 0\end{array}\right|=0-6=-6$.
- The place sign is - so the cofactor is $-(-6)=6$.

Cofactors

- The determinant of a square matrix $\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0\end{array}\right]$ is

$$
\operatorname{det} \mathbf{A}=|\mathbf{A}|=\left|\begin{array}{lll}
2 & 3 & 5 \\
4 & 1 & 6 \\
1 & 4 & 0
\end{array}\right|=45
$$

- The minor of element 2 is $\left|\begin{array}{ll}1 & 6 \\ 4 & 0\end{array}\right|=0-24=-24$.
- The place sign is + so the cofactor is $+(-24)=-24$.
- The minor of element 3 is $\left|\begin{array}{ll}4 & 6 \\ 1 & 0\end{array}\right|=0-6=-6$.
- The place sign is - so the cofactor is $-(-6)=6$.
- The place sign is worked from $\left[\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right]$

Outline

(1) Determinant of A Square Matrix
(2) Cofactors
(3) Adjoint of a Square Matrix
(4) Inverse of A sQuare matrix
(3) Solution to a set of linear EQuations
(6) Gaussian ELImination
(1) Coursework

Adjoint of a Square Matrix

- If we have a square matrix $\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0\end{array}\right]$, we can form a new matrix \mathbf{C} of the cofactors. What is this matrix?

Adjoint of a Square Matrix

- If we have a square matrix $\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0\end{array}\right]$, we can form a new matrix \mathbf{C} of the cofactors. What is this matrix?
- The matrix of the cofactors is $\mathbf{C}=\left[\begin{array}{ccc}-24 & 6 & 15 \\ 20 & -5 & -5 \\ 13 & 8 & -10\end{array}\right]$.

Adjoint of a Square Matrix

- If we have a square matrix $\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0\end{array}\right]$, we can form a new matrix \mathbf{C} of the cofactors. What is this matrix?
- The matrix of the cofactors is $\mathbf{C}=\left[\begin{array}{ccc}-24 & 6 & 15 \\ 20 & -5 & -5 \\ 13 & 8 & -10\end{array}\right]$.
- The transpose of this matrix of cofactors \mathbf{C}^{T} is called the adjoint of the origional matrix \mathbf{A} and is written $\operatorname{adj} \mathbf{A}$.

Adjoint of a Square Matrix

- If we have a square matrix $\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0\end{array}\right]$, we can form a new matrix \mathbf{C} of the cofactors. What is this matrix?
- The matrix of the cofactors is $\mathbf{C}=\left[\begin{array}{ccc}-24 & 6 & 15 \\ 20 & -5 & -5 \\ 13 & 8 & -10\end{array}\right]$.
- The transpose of this matrix of cofactors \mathbf{C}^{T} is called the adjoint of the origional matrix \mathbf{A} and is written $\operatorname{adj} \mathbf{A}$.
- What is the adjoint of the matrix $\mathbf{A}=\left[\begin{array}{lll}5 & 2 & 1 \\ 3 & 1 & 4 \\ 4 & 6 & 3\end{array}\right]$?

Adjoint of a Square Matrix

- If we have a square matrix $\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0\end{array}\right]$, we can form a new matrix \mathbf{C} of the cofactors. What is this matrix?
- The matrix of the cofactors is $\mathbf{C}=\left[\begin{array}{ccc}-24 & 6 & 15 \\ 20 & -5 & -5 \\ 13 & 8 & -10\end{array}\right]$.
- The transpose of this matrix of cofactors \mathbf{C}^{T} is called the adjoint of the origional matrix \mathbf{A} and is written $\operatorname{adj} \mathbf{A}$.
- What is the adjoint of the matrix $\mathbf{A}=\left[\begin{array}{lll}5 & 2 & 1 \\ 3 & 1 & 4 \\ 4 & 6 & 3\end{array}\right]$?
- $\operatorname{adj} \mathbf{A}=\left[\begin{array}{ccc}-21 & 0 & 7 \\ 7 & 11 & -17 \\ 14 & -22 & -1\end{array}\right]$.

Outline

(1) Determinant of a Square Matrix

(2) Cofactors
(3) Adjoint of a Square Matrix
(4) Inverse of A sQuare matrix
(5) SOLUTION TO A SET OF LINEAR EQUATIONS
(6) GAUSSIAN ELIMINATIONCoursework

INVERSE OF A SQUARE MATRIX

- The adjoint of a square matrix is important, since it enables us to form the inverse of the matrix.

INVERSE OF A SQUARE MATRIX

- The adjoint of a square matrix is important, since it enables us to form the inverse of the matrix.
- Each element of the adjoint of \mathbf{A} is divided by the value of the determinant of \mathbf{A} i.e. $|\mathbf{A}|$,

Inverse of a square matrix

- The adjoint of a square matrix is important, since it enables us to form the inverse of the matrix.
- Each element of the adjoint of \mathbf{A} is divided by the value of the determinant of \mathbf{A} i.e. $|\mathbf{A}|$,
- provided \mathbf{A} is not a singular matrix (i.e. $|\mathbf{A}| \neq 0$),

Inverse of a square matrix

- The adjoint of a square matrix is important, since it enables us to form the inverse of the matrix.
- Each element of the adjoint of \mathbf{A} is divided by the value of the determinant of \mathbf{A} i.e. $|\mathbf{A}|$,
- provided \mathbf{A} is not a singular matrix (i.e. $|\mathbf{A}| \neq 0$),
- the resulting matrix is called the inverse of \mathbf{A} and is denoted by \mathbf{A}^{-1}. Note that $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=\mathbf{I}$

Inverse of a square matrix

- The adjoint of a square matrix is important, since it enables us to form the inverse of the matrix.
- Each element of the adjoint of \mathbf{A} is divided by the value of the determinant of \mathbf{A} i.e. $|\mathbf{A}|$,
- provided \mathbf{A} is not a singular matrix (i.e. $|\mathbf{A}| \neq 0$),
- the resulting matrix is called the inverse of \mathbf{A} and is denoted by \mathbf{A}^{-1}. Note that $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=\mathbf{I}$
- What is the inverse of the matrix we used in the last frame,
$\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0\end{array}\right]$?

Inverse of a square matrix

- The adjoint of a square matrix is important, since it enables us to form the inverse of the matrix.
- Each element of the adjoint of \mathbf{A} is divided by the value of the determinant of \mathbf{A} i.e. $|\mathbf{A}|$,
- provided \mathbf{A} is not a singular matrix (i.e. $|\mathbf{A}| \neq 0$),
- the resulting matrix is called the inverse of \mathbf{A} and is denoted by \mathbf{A}^{-1}. Note that $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=\mathbf{I}$
- What is the inverse of the matrix we used in the last frame,
$\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0\end{array}\right]$?
- $\mathbf{A}^{-1}=\frac{1}{45}\left[\begin{array}{ccc}-24 & 20 & 13 \\ 6 & -5 & 8 \\ 15 & -5 & -10\end{array}\right]$.

Outline

(1) Determinant of a Square Matrix

(2) Cofactors
(3) Adjoint of a Square Matrix
(4) Inverse of a square matrix
(5) Solution to a set of Linear Equations
(6) GAUSSIAN ELIminationCoursework

Solution to a set of linear equations

- Consider a set of linear equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

Solution to a set of linear equations

- Consider a set of linear equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

- From our knowledge of matrix multiplication, this can be written as

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Solution to a set of linear equations

- Consider a set of linear equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

- From our knowledge of matrix multiplication, this can be written as

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

- i.e. $\mathbf{A} \cdot \mathbf{x}=\mathbf{b}$, where

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Solution to a set of linear equations

- $\mathbf{A} \cdot \mathbf{x}=\mathbf{b}$ is called a matrix equation.

Solution to a set of linear equations

- $\mathbf{A} \cdot \mathbf{x}=\mathbf{b}$ is called a matrix equation.
- If we multiply both sides of this matrix equations by the inverse of \mathbf{A}, we have

$$
\begin{aligned}
\mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{x} & =\mathbf{A}^{-1} \cdot \mathbf{b} \\
\mathbf{I} \cdot \mathbf{x} & =\mathbf{A}^{-1} \cdot \mathbf{b} \\
\mathbf{x} & =\mathbf{A}^{-1} \cdot \mathbf{b}
\end{aligned}
$$

Solution to a set of linear equations

- $\mathbf{A} \cdot \mathbf{x}=\mathbf{b}$ is called a matrix equation.
- If we multiply both sides of this matrix equations by the inverse of \mathbf{A}, we have

$$
\begin{aligned}
\mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{x} & =\mathbf{A}^{-1} \cdot \mathbf{b} \\
\mathbf{I} \cdot \mathbf{x} & =\mathbf{A}^{-1} \cdot \mathbf{b} \\
\mathbf{x} & =\mathbf{A}^{-1} \cdot \mathbf{b}
\end{aligned}
$$

- Therefore, if we form the inverse of the matrix of coefficients and pre-multiply matrix \mathbf{b} by it, we shall determine the matrix of the solutions of \mathbf{x}.

Class Exercises

Solver the following sets of equations
(1)

$$
\begin{array}{r}
x_{1}+2 x_{2}+x_{3}=4 \\
3 x_{1}-4 x_{2}-2 x_{3}=2 \\
5 x_{1}+3 x_{2}+5 x_{3}=-1
\end{array}
$$

(2)

$$
\begin{array}{r}
2 x_{1}-x_{2}+3 x_{3}=2 \\
x_{1}+3 x_{2}-x_{3}=11 \\
2 x_{1}-2 x_{2}+5 x_{3}=3
\end{array}
$$

Class Exercises - Answers

(1) $x_{1}=2, x_{2}=3, x_{3}=-4$
(2) $x_{1}=-1, x_{2}=5, x_{3}=3$

Outline

(1) Determinant of a Square Matrix

(2) Cofactors
(3) Adjoint of a Square Matrix
(4) Inverse of A sQuare matrix
(5) SOLUTION TO A SET OF LINEAR EQUATIONS
(6) GAUSSIAN ELIMINATION
(7) Coursework

GaUSSIAN ELIMINATION

Finding an inverse can be a time consuming task, and finding an inverse to large matrices is numerically inefficient. If we go back to our initial problem of finding solution to a set of linear, we could eliminate terms from successive equaions: Consider a set of linear equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

The Guassian elimination technique uses the first equation to eliminate the first unknown from the remaining equations. Then the new second equation is used to eliminate the second unknown from the third equation. In general we work down the equations, and then, with the last unknown determined, we wrok back up 19 solve for each of the other unknowns in succession.

Gaussian elimination - EXAmple

$$
\begin{aligned}
3 x+2 y+z & =11 \\
2 x+3 y+z & =13 \\
x+y+4 z & =12
\end{aligned}
$$

- Divide each row by its initial coefficient

Gaussian elimination - EXAmple

$$
\begin{aligned}
3 x+2 y+z & =11 \\
2 x+3 y+z & =13 \\
x+y+4 z & =12
\end{aligned}
$$

- Divide each row by its initial coefficient

$$
\begin{aligned}
x+\frac{2}{3} y+\frac{1}{3} z & =\frac{11}{3} \\
x+\frac{3}{2} y+\frac{1}{2} z & =\frac{13}{2} \\
x+y+4 z & =12
\end{aligned}
$$

GAUSSIAN ELIMINATION - EXAMPLE

$$
\begin{aligned}
x+\frac{2}{3} y+\frac{1}{3} z & =\frac{11}{3} \\
x+\frac{3}{2} y+\frac{1}{2} z & =\frac{13}{2} \\
x+y+4 z & =12
\end{aligned}
$$

- Eliminate x from the second and thrid equations, using the first equation

GAUSSIAN ELIMINATION - EXAMPLE

$$
\begin{aligned}
x+\frac{2}{3} y+\frac{1}{3} z & =\frac{11}{3} \\
x+\frac{3}{2} y+\frac{1}{2} z & =\frac{13}{2} \\
x+y+4 z & =12
\end{aligned}
$$

- Eliminate x from the second and thrid equations, using the first equation

$$
\begin{aligned}
x+\frac{2}{3} y+\frac{1}{3} z & =\frac{11}{3} \\
y+\frac{1}{5} z & =\frac{17}{5} \\
y+11 z & =25
\end{aligned}
$$

GAUSSIAN ELIMINATION - EXAMPLE

$$
\begin{aligned}
x+\frac{2}{3} y+\frac{1}{3} z & =\frac{11}{3} \\
y+\frac{1}{5} z & =\frac{17}{5} \\
y+11 z & =25
\end{aligned}
$$

- Repeat the technique to eliminate y from the third equation, using the second equation

GAUSSIAN ELIMINATION - EXAMPLE

$$
\begin{aligned}
x+\frac{2}{3} y+\frac{1}{3} z & =\frac{11}{3} \\
y+\frac{1}{5} z & =\frac{17}{5} \\
y+11 z & =25
\end{aligned}
$$

- Repeat the technique to eliminate y from the third equation, using the second equation

$$
\begin{aligned}
x+\frac{2}{3} y+\frac{1}{3} z & =\frac{11}{3} \\
y+\frac{1}{5} z & =\frac{17}{5} \\
54 z & =108
\end{aligned}
$$

GAUSSIAN ELIMINATION - EXAMPLE

$$
\begin{aligned}
x+\frac{2}{3} y+\frac{1}{3} z & =\frac{11}{3} \\
y+\frac{1}{5} z & =\frac{17}{5} \\
54 z & =108
\end{aligned}
$$

- so we find $z=2$, from this last equation.

GAUSSIAN ELIMINATION - EXAMPLE

$$
\begin{aligned}
x+\frac{2}{3} y+\frac{1}{3} z & =\frac{11}{3} \\
y+\frac{1}{5} z & =\frac{17}{5} \\
54 z & =108
\end{aligned}
$$

- so we find $z=2$, from this last equation.
- Working back to the second equation we find $y+\frac{1}{5} \times 2=\frac{17}{5}$ so $y=3$

GAUSSIAN ELIMINATION - EXAMPLE

$$
\begin{aligned}
x+\frac{2}{3} y+\frac{1}{3} z & =\frac{11}{3} \\
y+\frac{1}{5} z & =\frac{17}{5} \\
54 z & =108
\end{aligned}
$$

- so we find $z=2$, from this last equation.
- Working back to the second equation we find $y+\frac{1}{5} \times 2=\frac{17}{5}$ so $y=3$
- Finally, we work back to the first equation to find $x+\frac{3}{3} \times 3+\frac{1}{3} \times 2=\frac{11}{3}$ so $x=1$.

GaUSSIAN ELIMINATION

The technique of Gaussian elimination may not seem so elegant as that of using an inverse of a matrix, but it is well adapted to modern computers and is far faster than the time spent with determinants.
The Gaussian technique may be used to convert a determinant into triangular form:

$$
D=\left|\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
0 & b_{2} & c_{2} \\
0 & 0 & c_{3}
\end{array}\right|=a_{1} b_{2} c_{3}
$$

For an $n^{\text {th }}$-order determinant the evaluation of the triangular form requires only $n-1$ multiplications compared with the n required for the general case.

GAUSS-JORDAN ELIMINATION - A VARIATION OF GAUSS ELIMINATION

- We start with the preceeding Gauss elimination, but each new equation considered is used to eliminate a variable from all the other equations, not just those below it

GAUSS-JORDAN ELIMINATION - A VARIATION OF GAUSS ELIMINATION

- We start with the preceeding Gauss elimination, but each new equation considered is used to eliminate a variable from all the other equations, not just those below it
- If we had used this Gauss-Jordan elimination we would eliminate x from the second and thrid equations, using the first equation

Gauss-Jordan elimination - A variation of

Gauss elimination

- We start with the preceeding Gauss elimination, but each new equation considered is used to eliminate a variable from all the other equations, not just those below it
- If we had used this Gauss-Jordan elimination we would eliminate x from the second and thrid equations, using the first equation

$$
\begin{aligned}
x+\frac{2}{3} y+\frac{1}{3} z & =\frac{11}{3} \\
y+\frac{1}{5} z & =\frac{17}{5} \\
y+11 z & =25
\end{aligned}
$$

GAUSS-JORDAN ELIMINATION - A VARIATION OF GAUSS ELIMINATION

- Then we would eliminate y from the first and third equations, using the second equation

GAUSS-JORDAN ELIMINATION - A VARIATION OF GAUSS ELIMINATION

- Then we would eliminate y from the first and third equations, using the second equation

$$
\begin{array}{r}
x+\frac{1}{5} z=\frac{7}{5} \\
y+\frac{1}{5} z=\frac{17}{5} \\
z=2
\end{array}
$$

GAUSS-JORDAN ELIMINATION - A VARIATION OF GAUSS ELIMINATION

- Then we would eliminate y from the first and third equations, using the second equation

$$
\begin{array}{r}
x+\frac{1}{5} z=\frac{7}{5} \\
y+\frac{1}{5} z=\frac{17}{5} \\
z=2
\end{array}
$$

- Then we would eliminate z from the first and second equations, using the third equation

GAUSS-JORDAN ELIMINATION - A VARIATION OF GAUSS ELIMINATION

- Then we would eliminate y from the first and third equations, using the second equation

$$
\begin{array}{r}
x+\frac{1}{5} z=\frac{7}{5} \\
y+\frac{1}{5} z=\frac{17}{5} \\
z=2
\end{array}
$$

- Then we would eliminate z from the first and second equations, using the third equation

$$
x=1 \quad y=3 \quad z=2
$$

Gauss ELIMINATION - THE AUGMENTED MATRIX

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Gauss elimination - THE AUGMENTED MATRIX

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

- All the information for solving the set of equations is provided by the matrix of coefficients \mathbf{A} and the column matrix \mathbf{b}. If we write the elements of \mathbf{b} within the matrix \mathbf{A}, we obtain the augmented matrix \mathbf{B} of the given set of equations.

GaUSS ELIMINATION - THE AUGMENTED MATRIX

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

- All the information for solving the set of equations is provided by the matrix of coefficients \mathbf{A} and the column matrix \mathbf{b}. If we write the elements of \mathbf{b} within the matrix \mathbf{A}, we obtain the augmented matrix \mathbf{B} of the given set of equations.

$$
\mathbf{B}=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right]
$$

Gauss ELImination - THE AUGMENTED MATRIX

$$
\mathbf{B}=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right]
$$

Gauss elimination - THE AUGMENTED MATRIX

$$
\mathbf{B}=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right]
$$

- We then eliminate elements other than a_{11} from the first column by subtracting $\frac{a_{21}}{a_{11}}$ times the first row from the second row and $\frac{a_{31}}{a_{11}}$ times the first row from the third row, etc.

Gauss elimination - THE AUGMENTED MATRIX

$$
\mathbf{B}=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right]
$$

- We then eliminate elements other than a_{11} from the first column by subtracting $\frac{a_{21}}{a_{11}}$ times the first row from the second row and $\frac{a_{31}}{a_{11}}$ times the first row from the third row, etc.
- This gives a matrix of the form

$$
\mathbf{B}=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
0 & c_{22} & \cdots & c_{2 n} & d_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & c_{n 2} & \cdots & c_{n n} & d_{n}
\end{array}\right]
$$

Gauss elimination - THE AUGMENTED MATRIX

$$
\mathbf{B}=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right]
$$

- We then eliminate elements other than a_{11} from the first column by subtracting $\frac{a_{21}}{a_{11}}$ times the first row from the second row and $\frac{a_{31}}{a_{11}}$ times the first row from the third row, etc.
- This gives a matrix of the form

$$
\mathbf{B}=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
0 & c_{22} & \cdots & c_{2 n} & d_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & c_{n 2} & \cdots & c_{n n} & d_{n}
\end{array}\right]
$$

- The process is then repeated to eliminate $c_{i 2}$ from the thirdd and subsequent rows.

Augmented matrix - EXAMPLE

- Gven a set of linear equation, we can write them in matrix form, from a particular example we have

$$
\left[\begin{array}{ccc}
1 & -4 & -2 \\
2 & 1 & 2 \\
3 & 2 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
21 \\
3 \\
-2
\end{array}\right]
$$

Augmented matrix - EXAMPLE

- Gven a set of linear equation, we can write them in matrix form, from a particular example we have

$$
\left[\begin{array}{ccc}
1 & -4 & -2 \\
2 & 1 & 2 \\
3 & 2 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
21 \\
3 \\
-2
\end{array}\right]
$$

- The augmented matrix would be

$$
\left[\begin{array}{ccc|c}
1 & -4 & -2 & 21 \\
2 & 1 & 2 & 3 \\
3 & 2 & -1 & -2
\end{array}\right]
$$

Augmented matrix - EXAMPLE

$$
\left[\begin{array}{ccc|c}
1 & -4 & -2 & 21 \\
2 & 1 & 2 & 3 \\
3 & 2 & -1 & -2
\end{array}\right]
$$

Augmented matrix - EXAMPLE

$$
\left[\begin{array}{ccc|c}
1 & -4 & -2 & 21 \\
2 & 1 & 2 & 3 \\
3 & 2 & -1 & -2
\end{array}\right]
$$

- We can now eliminate the x_{1} coefficients from the second and third rows by subtracting 2 times the first row from the second row, and subtracting 3 times the first row from the third row.

Augmented matrix - EXAMPLE

$$
\left[\begin{array}{ccc|c}
1 & -4 & -2 & 21 \\
2 & 1 & 2 & 3 \\
3 & 2 & -1 & -2
\end{array}\right]
$$

- We can now eliminate the x_{1} coefficients from the second and third rows by subtracting 2 times the first row from the second row, and subtracting 3 times the first row from the third row.
- So the matrix becomes

$$
\left[\begin{array}{ccc|c}
1 & -4 & -2 & 21 \\
0 & 9 & 6 & -39 \\
0 & 14 & 5 & -65
\end{array}\right]
$$

AUGMENTED MATRIX - EXAMPLE

$$
\left[\begin{array}{ccc|c}
1 & -4 & -2 & 21 \\
0 & 9 & 6 & -39 \\
0 & 14 & 5 & -65
\end{array}\right]
$$

AUGMENTED MATRIX - EXAMPLE

$$
\left[\begin{array}{ccc|c}
1 & -4 & -2 & 21 \\
0 & 9 & 6 & -39 \\
0 & 14 & 5 & -65
\end{array}\right]
$$

- We can now eliminate the x_{2} coefficients from the third row by subtracting $\frac{14}{9}$ times the second row from the third row.

Augmented matrix - EXAMPLE

$$
\left[\begin{array}{ccc|c}
1 & -4 & -2 & 21 \\
0 & 9 & 6 & -39 \\
0 & 14 & 5 & -65
\end{array}\right]
$$

- We can now eliminate the x_{2} coefficients from the third row by subtracting $\frac{14}{9}$ times the second row from the third row.
- So the matrix becomes

$$
\left[\begin{array}{ccc|c}
1 & -4 & -2 & 21 \\
0 & 9 & 6 & -39 \\
0 & 0 & -\frac{13}{3} & -\frac{13}{3}
\end{array}\right]
$$

AUGMENTED MATRIX - EXAMPLE

$$
\left[\begin{array}{ccc|c}
1 & -4 & -2 & 21 \\
0 & 9 & 6 & -39 \\
0 & 0 & -\frac{13}{3} & -\frac{13}{3}
\end{array}\right]
$$

AUGMENTED MATRIX - EXAMPLE

$$
\left[\begin{array}{ccc|c}
1 & -4 & -2 & 21 \\
0 & 9 & 6 & -39 \\
0 & 0 & -\frac{13}{3} & -\frac{13}{3}
\end{array}\right]
$$

- Re-forming the matrix equation

$$
\left[\begin{array}{ccc}
1 & -4 & -2 \\
0 & 9 & 6 \\
0 & 0 & -\frac{13}{3}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
21 \\
-39 \\
-\frac{13}{3}
\end{array}\right]
$$

Augmented matrix - EXAMPLE

$$
\left[\begin{array}{ccc|c}
1 & -4 & -2 & 21 \\
0 & 9 & 6 & -39 \\
0 & 0 & -\frac{13}{3} & -\frac{13}{3}
\end{array}\right]
$$

- Re-forming the matrix equation

$$
\left[\begin{array}{ccc}
1 & -4 & -2 \\
0 & 9 & 6 \\
0 & 0 & -\frac{13}{3}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
21 \\
-39 \\
-\frac{13}{3}
\end{array}\right]
$$

- We can start from the bottom row to find the solution $x_{3}=1$, use this in the second row to find $x_{2}=-5$, then use both of these in the first row to find $x_{1}=3$.

Outline

(1) Determinant of A Square Matrix
(2) Cofactors
(3) Adjoint of a Square Matrix
(4) Inverse of a square matrix
(3) Solution To A SET OF Linear EQUATIONS
© Gaussian Elimination
(7) Coursework

University of Bedfordshire

Coursework

Coursework Assignment

Write a computer code in $\mathrm{C}++$ that uses the General technique, Gauss elimination technique, Guass-Jordan elimination technique to solve a set of n linear equations with n unknowns. Compare the computing time of the three different methods and make a graph of the data. Please use at least 10 data points.

A decent book that could be useful for this coursework, and further scientific programming is:
Numerical Recipes 3rd Edition: The Art of Scientific Computing W.H.Press, S.A.Teukolsky, W.T.Vetterling, B.P.Flannery; Cambridge University Press (2007)

