Introduction to Algorithms CIS008-2 Logic and Foundations of Mathematics

David Goodwin
david.goodwin@perisic.com

12:00, Friday $11^{\text {th }}$ Novemeber 2011

Outline

(1) Introduction
(2) PSEUDOCODE

Assignment operator
Arithmetic operators
Relation operators
Logical operators
if else statement
while loop
for loop
function
return statement
(3) Examples

Primality-Testing
Euclid's Algorithm
Bezout's Identity algorithm
(4) Class Exercises

Characteristics of an Algorithm

Input The algorithm receives input.
Output The algorithm produces output.
Precision Steps that are precisely stated.
Determinism The intermediate results of each step of execution are unique and determined only by the inputs and the results of the preceding steps.
Finiteness The algorithm terminates; it stops after finitely many instructions have been executed.

Correctness The output produced by the algorithm is correct; the algorithm correctly solves the problem.
Generality The algorithm applies to a set of inputs.

Asignment operator

$=$ denotes the assignment operator. In pseudocode, $x=y$ means "copy the value of y to x " or "replace the current value of x by the value of y ".

EXAMPLE

Suppose that the value of x is 5 and the value of y is 10 . After

$$
x=y
$$

the value of x is 10 and the value of y is 10 .

Arithmetic operators

- + is the normal representation for addition
- - is the normal representation for subtraction
- $*$ is a common representation for multiplication
- / is a common representation for division

With arithmetic operations, we must observe the operational precedence:

- Multiplication and division always take precedence over addition and subtraction.
- If and addition or subtraction is to be made first, it must be enclosed by parentheses.
- We also note the left to right rule of precedence for multiplication and division.

RELATION OPERATORS

- == compare equality
- $ᄀ=$ compare non-equality
- < compare value to be less than
- > compare value to be greater than
- \leq compare value to be less than or equal to
- \geq compare value to be greater than or equal to

We test some kind of relation between two numbers.

LOGICAL OPERATORS

- \wedge conjunction: indicates "and"; a conjunction is true only when both of its components are true
- V disjunction: indicates "or"; a disjunction is true when at least one of its components is true
- \neg negation: $\neg p$ reads "not p ", "non p ", or "negation of p "

Logical operators will be studied in further lectures

IF ELSE STATEMENT

if (condition)
action 1
else
action 2

If condition is true then action 1 is executed and control passes to the statement following action 2. If condition is false action 2 is executed and control passes to the statement following action 2. The If statement can be constructed without an Else, in which case If condition if false, do nothing and control passes to the statement following action 1 .

WHILE LOOP

while (condition)
action

If condition is true then action is executed and this sequence is repeated until condition becomes false, then control is passed immediately to the statement following the action.

Here we must be carfull not to unintentionally create an infinite loop i.e. if condition can never be met, the action is repeatedly executed and will not terminate. This is bad programming and bad problem solving i.e. you should have an idea that condition will be met at some point through the possible results action can give.

FOR LOOP

for var $=$ init to limit action

When the for loop is executed, action is executed for values of var from init to limit (where init and limit are integer values).

FUNCTION

A function is a unit of code that can recieve input, perform computations, and produce output.
function_name(parameters separated by commas)\{ code for performing computations \}

RETURN STATEMENT

return x teminates a function and returns the value of x to the invoker of the function. Without x the return simply terminates the function. If there is no return statement, the function terminates just before the closing brace.

Primality-Testing

This algorithm determines whether the integer $n>1$ is prime. If n is prime the algorithm returns 0 . If n is composite, the algorithm returns a divisor d satisfying $2 \geq d \geq \sqrt{n}$. To test whether d divides n, the algorithm checks whether $n \bmod (d)$ is zero.

Primality-Testing Algorithm

Input: n
Output: d

Primality-Testing Algorithm

Input: n
Output: d

```
is_prime(n){
    if ( }n\operatorname{mod}d==0
        return d
}
```


Primality-Testing Algorithm

Input: n
Output: d

```
is_prime(n){
    for d=2 to \lfloor\sqrt{}{n}\rfloor
        if ( }n\operatorname{mod}d==0
        return d
    return 0
}
```


Example of Euclid's Algorithm

Example (Euclid's Algorithm)

Calculate $\operatorname{gcd}(1485,1745)$ using Euclid's algorithm.
If $a=q b+r$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$. We use the equation $a=q b+r$ to find r, then to repeat using $\operatorname{gcd}(b, r)$. Remember the constraints $\{q \mid q \in \mathbb{Z}\}$ and $\{r \mid r \in \mathbb{Z}$ and $r<b\}$.

$$
\begin{array}{rrr}
1745=1485 q+r & q=1 & r=260 \\
1485=260 q+r & q=5 & r=185 \\
260=185 q+r & q=1 & r=75 \\
185=75 q+r & q=2 & r=35 \\
75=35 q+r & q=2 & r=5 \\
35=5 q+r & q=7 & r=0
\end{array}
$$

Therefore $\operatorname{gcd}(1485,1745)=5$

Euclid's Algorithm

This algorithm finds the greatest common divisor of the non-negative integers a and b, where a and b are not both zero.

Euclid's Algorithm

Input: a and $b / /$ the non-negative integers, not both zero Output: $a / /$ greatest common divisor of a and b

Euclid's Algorithm

Input: a and $b / /$ the non-negative integers, not both zero Output: $a / /$ greatest common divisor of a and b

```
gcd}(a,b)
    while ( }b\neg=0)
        r=a mod (b)
        a=b
        b=r
    }
    return a
}
```


Euclid's Algorithm

Input: a and $b / /$ the non-negative integers, not both zero Output: $a / /$ greatest common divisor of a and b

```
gcd(a,b){
    if (a<b)
        swap(a,b)
    while ( }b\neg=0)
        r=a mod (b)
        a=b
        b=r
    }
    return a
}
```

 // make a the largest of the two inputs

Example of Bezout's Identity

Example (Bezout's Identity)

Express $\operatorname{gcd}(1485,1745)$ in the form $1485 u+1745 v$.
From the previous example we found $\operatorname{gcd}(1485,1745)=5$

$$
\begin{aligned}
5 & =75-(2 \times 35) \\
& =75-2 \times(185-(2 \times 75) \\
& =(5 \times 75)-(2 \times 185) \\
& =5 \times(260-(1 \times 185))-(2 \times 185) \\
& =(5 \times 260)-(7 \times 185) \\
& =(5 \times 260)-7 \times(1485-(5 \times 260)) \\
& =(40 \times 260)-(7 \times 1485) \\
& =40 \times(1745-(1 \times 1485))-(7 \times 1485) \\
& =(40 \times 1745)-(47 \times 1485)=69800-69795=5
\end{aligned}
$$

Bezout's Identity algorithm

This algorithm computes s and t satisfying $\operatorname{gcd}(a, b)=s a+t b$, where a and b are non-negative integers, not both zero.

Recursive Euclidean Algorithm

Input: a and $b / /$ the non-negative integers, not both zero Output: $a / /$ greatest common divisor of a and b

```
gcdr(a,b){
    // make a the largest of the two inputs
    if (a<b)
        swap(a,b)
    if (b==0)
        return a
    r=a mod (b)
    return gcdr(b,r)
}
```


BEZOUT'S IDENTITY ALGORITHM

Input: a and $b / /$ the non-negative integers, not both zero
Output: $\operatorname{gcd}(a, b) / /$ greatest common divisor of a and b returned $s, t / /$ parameters are stored

```
\(S \operatorname{Tgcdr}(a, b, s, t)\{\)
    if \((a<b)\)
        \(\operatorname{swap}(a, b)\)
    if \((b==0)\{\)
        \(s=1\)
        \(t=0\)
        return \(a\)
    \}
    \(q=\lfloor a / b\rfloor\)
    \(r=a \bmod (b)\)
    \(g=S T g c d r\left(b, r, s^{\prime}, t^{\prime}\right)\)
    \(s=t^{\prime}\)
    \(t=s^{\prime}-t^{\prime} * q\)
    return \(g\)
\}
```


Class Exercises

Write a pseudocode for an algorithms that determines to following:
(1) Swap the values a and b.
(2) Determine whether an integer is even or odd without using modulus, floor or ceil.
(3) Determine the largest and smallest value of the different values a, b, and c, and output the largest and smallest values.
(4) Determine the product of $s_{1}, s_{2}, \ldots, s_{n}$
(5) Explicitly determine the modulus function.
(6) Explicitly determine the floor and ceil functions.
(7) Determine the factorial of an integer n.

Swap the values a and b.
Input: a, b
Output: a, b
$t=a$
$a=b$
$b=t$

Determine whether an integer is even or odd without using modulus, floor or ceil.

Input: i
Output: out
$k=0$
while out ≥ 0
$k=k+1$

$$
\text { out }=i-2 * k
$$

return out

Determine the largest and smallest value of the different values a, b, and c, and output the largest and smallest values.

Input: a, b, c
Output: I, s
$I=a$
$s=a$
if $b>1$
$l=b$
else
$s=b$
if $c>1$
$I=c$
else

$$
\text { if } \begin{aligned}
c & <s \\
s & =c
\end{aligned}
$$

