
Introduction to Algorithms
CIS008-2 Logic and Foundations of Mathematics

David Goodwin
david.goodwin@perisic.com

12:00, Friday 11th Novemeber 2011

Outline

1 Introduction

2 Pseudocode
Assignment operator
Arithmetic operators
Relation operators
Logical operators
if else statement
while loop
for loop
function
return statement

3 Examples
Primality-Testing
Euclid’s Algorithm
Bezout’s Identity algorithm

4 Class Exercises

Introduction Pseudocode Examples Class Exercises

Characteristics of an Algorithm

Input The algorithm receives input.

Output The algorithm produces output.

Precision Steps that are precisely stated.

Determinism The intermediate results of each step of execution
are unique and determined only by the inputs and the
results of the preceding steps.

Finiteness The algorithm terminates; it stops after finitely many
instructions have been executed.

Correctness The output produced by the algorithm is correct;
the algorithm correctly solves the problem.

Generality The algorithm applies to a set of inputs.

Introduction Pseudocode Examples Class Exercises

Asignment operator

= denotes the assignment operator. In pseudocode, x = y means
“copy the value of y to x” or “replace the current value of x by
the value of y”.

Example

Suppose that the value of x is 5 and the value of y is 10. After

x = y

the value of x is 10 and the value of y is 10.

Introduction Pseudocode Examples Class Exercises

Arithmetic operators

• + is the normal representation for addition

• − is the normal representation for subtraction

• ∗ is a common representation for multiplication

• / is a common representation for division

With arithmetic operations, we must observe the operational
precedence:

• Multiplication and division always take precedence over
addition and subtraction.

• If and addition or subtraction is to be made first, it must be
enclosed by parentheses.

• We also note the left to right rule of precedence for
multiplication and division.

Introduction Pseudocode Examples Class Exercises

Relation operators

• == compare equality

• ¬ = compare non-equality

• < compare value to be less than

• > compare value to be greater than

• ≤ compare value to be less than or equal to

• ≥ compare value to be greater than or equal to

We test some kind of relation between two numbers.

Introduction Pseudocode Examples Class Exercises

Logical operators

• ∧ conjunction: indicates “and”; a conjunction is true only
when both of its components are true

• ∨ disjunction: indicates “or”; a disjunction is true when at
least one of its components is true

• ¬ negation: ¬p reads “not p”, “non p”, or “negation of p”

Logical operators will be studied in further lectures

Introduction Pseudocode Examples Class Exercises

if else statement

if (condition)
action 1

else
action 2

If condition is true then action 1 is executed and control passes to
the statement following action 2. If condition is false action 2 is
executed and control passes to the statement following action 2.
The If statement can be constructed without an Else, in which
case If condition if false, do nothing and control passes to the
statement following action 1.

Introduction Pseudocode Examples Class Exercises

while loop

while (condition)
action

If condition is true then action is executed and this sequence is
repeated until condition becomes false, then control is passed
immediately to the statement following the action.

Here we must be carfull not to unintentionally create an infinite
loop i.e. if condition can never be met, the action is repeatedly
executed and will not terminate. This is bad programming and bad
problem solving i.e. you should have an idea that condition will be
met at some point through the possible results action can give.

Introduction Pseudocode Examples Class Exercises

for loop

for var = init to limit
action

When the for loop is executed, action is executed for values of var
from init to limit (where init and limit are integer values).

Introduction Pseudocode Examples Class Exercises

function

A function is a unit of code that can recieve input, perform
computations, and produce output.

function name(parameters separated by commas){
code for performing computations

}

Introduction Pseudocode Examples Class Exercises

return statement

return x teminates a function and returns the value of x to the
invoker of the function. Without x the return simply terminates
the function. If there is no return statement, the function
terminates just before the closing brace.

Introduction Pseudocode Examples Class Exercises

Primality-Testing

This algorithm determines whether the integer n > 1 is prime. If n
is prime the algorithm returns 0. If n is composite, the algorithm
returns a divisor d satisfying 2 ≥ d ≥

√
n. To test whether d

divides n, the algorithm checks whether n mod (d) is zero.

Introduction Pseudocode Examples Class Exercises

Primality-Testing Algorithm

Input: n
Output: d

Introduction Pseudocode Examples Class Exercises

Primality-Testing Algorithm

Input: n
Output: d

is prime(n){
if (n mod d == 0)

return d
}

Introduction Pseudocode Examples Class Exercises

Primality-Testing Algorithm

Input: n
Output: d

is prime(n){
for d = 2 to b

√
nc

if (n mod d == 0)
return d

return 0
}

Introduction Pseudocode Examples Class Exercises

Example of Euclid’s Algorithm

Example (Euclid’s Algorithm)

Calculate gcd(1485, 1745) using Euclid’s algorithm.
If a = qb + r then gcd (a, b) = gcd (b, r). We use the equation
a = qb + r to find r , then to repeat using gcd (b, r). Remember
the constraints {q | q ∈ Z} and {r | r ∈ Z and r < b}.

1745 = 1485q + r q = 1 r = 260

1485 = 260q + r q = 5 r = 185

260 = 185q + r q = 1 r = 75

185 = 75q + r q = 2 r = 35

75 = 35q + r q = 2 r = 5

35 = 5q + r q = 7 r = 0

Therefore gcd (1485, 1745) = 5

Introduction Pseudocode Examples Class Exercises

Euclid’s Algorithm

This algorithm finds the greatest common divisor of the
non-negative integers a and b, where a and b are not both zero.

Introduction Pseudocode Examples Class Exercises

Euclid’s Algorithm

Input: a and b // the non-negative integers, not both zero
Output: a // greatest common divisor of a and b

Introduction Pseudocode Examples Class Exercises

Euclid’s Algorithm

Input: a and b // the non-negative integers, not both zero
Output: a // greatest common divisor of a and b

gcd(a, b){
while (b¬ = 0){
r = a mod (b)
a = b
b = r
}
return a

}

Introduction Pseudocode Examples Class Exercises

Euclid’s Algorithm

Input: a and b // the non-negative integers, not both zero
Output: a // greatest common divisor of a and b

gcd(a, b){
// make a the largest of the two inputs
if (a < b)
swap(a, b)

while (b¬ = 0){
r = a mod (b)
a = b
b = r
}
return a

}

Introduction Pseudocode Examples Class Exercises

Example of Bezout’s Identity

Example (Bezout’s Identity)

Express gcd(1485, 1745) in the form 1485u + 1745v .
From the previous example we found gcd(1485, 1745) = 5

5 = 75− (2× 35)

= 75− 2× (185− (2× 75)

= (5× 75)− (2× 185)

= 5× (260− (1× 185))− (2× 185)

= (5× 260)− (7× 185)

= (5× 260)− 7× (1485− (5× 260))

= (40× 260)− (7× 1485)

= 40× (1745− (1× 1485))− (7× 1485)

= (40× 1745)− (47× 1485) = 69800− 69795 = 5

Introduction Pseudocode Examples Class Exercises

Bezout’s Identity algorithm

This algorithm computes s and t satisfying gcd(a, b) = sa + tb,
where a and b are non-negative integers, not both zero.

Introduction Pseudocode Examples Class Exercises

Recursive Euclidean Algorithm

Input: a and b // the non-negative integers, not both zero
Output: a // greatest common divisor of a and b

gcdr(a, b){
// make a the largest of the two inputs
if (a < b)
swap(a, b)

if (b == 0)
return a

r = a mod (b)
return gcdr(b, r)

}

Introduction Pseudocode Examples Class Exercises

Bezout’s Identity algorithm

Input: a and b // the non-negative integers, not both zero
Output: gcd(a, b) // greatest common divisor of a and b returned

s, t // parameters are stored

STgcdr(a, b, s, t){
if (a < b)

swap(a, b)
if (b == 0){

s = 1
t = 0
return a
}
q = ba/bc
r = a mod (b)
g = STgcdr(b, r , s ′, t′)
s = t′

t = s ′ − t′ ∗ q
return g

}

Introduction Pseudocode Examples Class Exercises

Class Exercises

Write a pseudocode for an algorithms that determines to following:

1 Swap the values a and b.

2 Determine whether an integer is even or odd without using
modulus, floor or ceil.

3 Determine the largest and smallest value of the different
values a, b, and c, and output the largest and smallest values.

4 Determine the product of s1, s2, . . . , sn

5 Explicitly determine the modulus function.

6 Explicitly determine the floor and ceil functions.

7 Determine the factorial of an integer n.

Introduction Pseudocode Examples Class Exercises

Swap the values a and b.

Input: a,b
Output: a,b

t = a
a = b
b = t

Introduction Pseudocode Examples Class Exercises

Determine whether an integer is even or odd without using
modulus, floor or ceil.

Input: i
Output: out

k = 0
while out ≥ 0

k = k + 1
out = i − 2 ∗ k

return out

Introduction Pseudocode Examples Class Exercises

Determine the largest and smallest value of the different values a,
b, and c , and output the largest and smallest values.

Input: a, b, c
Output: l , s

l = a
s = a
if b > l

l = b
else

s = b
if c > l

l = c
else

if c < s
s = c

	Introduction
	Pseudocode
	Assignment operator
	Arithmetic operators
	Relation operators
	Logical operators
	if else statement
	while loop
	for loop
	function
	return statement

	Examples
	Primality-Testing
	Euclid's Algorithm
	Bezout's Identity algorithm

	Class Exercises

