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Characteristics of an Algorithm

Input The algorithm receives input.

Output The algorithm produces output.

Precision Steps that are precisely stated.

Determinism The intermediate results of each step of execution
are unique and determined only by the inputs and the
results of the preceding steps.

Finiteness The algorithm terminates; it stops after finitely many
instructions have been executed.

Correctness The output produced by the algorithm is correct;
the algorithm correctly solves the problem.

Generality The algorithm applies to a set of inputs.
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Asignment operator

= denotes the assignment operator. In pseudocode, x = y means
“copy the value of y to x” or “replace the current value of x by
the value of y”.

Example

Suppose that the value of x is 5 and the value of y is 10. After

x = y

the value of x is 10 and the value of y is 10.
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Arithmetic operators

• + is the normal representation for addition

• − is the normal representation for subtraction

• ∗ is a common representation for multiplication

• / is a common representation for division

With arithmetic operations, we must observe the operational
precedence:

• Multiplication and division always take precedence over
addition and subtraction.

• If and addition or subtraction is to be made first, it must be
enclosed by parentheses.

• We also note the left to right rule of precedence for
multiplication and division.
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Relation operators

• == compare equality

• ¬ = compare non-equality

• < compare value to be less than

• > compare value to be greater than

• ≤ compare value to be less than or equal to

• ≥ compare value to be greater than or equal to

We test some kind of relation between two numbers.
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Logical operators

• ∧ conjunction: indicates “and”; a conjunction is true only
when both of its components are true

• ∨ disjunction: indicates “or”; a disjunction is true when at
least one of its components is true

• ¬ negation: ¬p reads “not p”, “non p”, or “negation of p”

Logical operators will be studied in further lectures
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if else statement

if (condition)
action 1

else
action 2

If condition is true then action 1 is executed and control passes to
the statement following action 2. If condition is false action 2 is
executed and control passes to the statement following action 2.
The If statement can be constructed without an Else, in which
case If condition if false, do nothing and control passes to the
statement following action 1.
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while loop

while (condition)
action

If condition is true then action is executed and this sequence is
repeated until condition becomes false, then control is passed
immediately to the statement following the action.

Here we must be carfull not to unintentionally create an infinite
loop i.e. if condition can never be met, the action is repeatedly
executed and will not terminate. This is bad programming and bad
problem solving i.e. you should have an idea that condition will be
met at some point through the possible results action can give.
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for loop

for var = init to limit
action

When the for loop is executed, action is executed for values of var
from init to limit (where init and limit are integer values).
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function

A function is a unit of code that can recieve input, perform
computations, and produce output.

function name(parameters separated by commas){
code for performing computations

}
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return statement

return x teminates a function and returns the value of x to the
invoker of the function. Without x the return simply terminates
the function. If there is no return statement, the function
terminates just before the closing brace.
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Primality-Testing

This algorithm determines whether the integer n > 1 is prime. If n
is prime the algorithm returns 0. If n is composite, the algorithm
returns a divisor d satisfying 2 ≥ d ≥

√
n. To test whether d

divides n, the algorithm checks whether n mod (d) is zero.
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Primality-Testing Algorithm

Input: n
Output: d
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Primality-Testing Algorithm

Input: n
Output: d

is prime(n){
if (n mod d == 0)

return d
}
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Primality-Testing Algorithm

Input: n
Output: d

is prime(n){
for d = 2 to b

√
nc

if (n mod d == 0)
return d

return 0
}
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Example of Euclid’s Algorithm

Example (Euclid’s Algorithm)

Calculate gcd(1485, 1745) using Euclid’s algorithm.
If a = qb + r then gcd (a, b) = gcd (b, r). We use the equation
a = qb + r to find r , then to repeat using gcd (b, r). Remember
the constraints {q | q ∈ Z} and {r | r ∈ Z and r < b}.

1745 = 1485q + r q = 1 r = 260

1485 = 260q + r q = 5 r = 185

260 = 185q + r q = 1 r = 75

185 = 75q + r q = 2 r = 35

75 = 35q + r q = 2 r = 5

35 = 5q + r q = 7 r = 0

Therefore gcd (1485, 1745) = 5
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Euclid’s Algorithm

This algorithm finds the greatest common divisor of the
non-negative integers a and b, where a and b are not both zero.
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Euclid’s Algorithm

Input: a and b // the non-negative integers, not both zero
Output: a // greatest common divisor of a and b
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Euclid’s Algorithm

Input: a and b // the non-negative integers, not both zero
Output: a // greatest common divisor of a and b

gcd(a, b){
while (b¬ = 0){
r = a mod (b)
a = b
b = r
}
return a

}
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Euclid’s Algorithm

Input: a and b // the non-negative integers, not both zero
Output: a // greatest common divisor of a and b

gcd(a, b){
// make a the largest of the two inputs
if (a < b)
swap(a, b)

while (b¬ = 0){
r = a mod (b)
a = b
b = r
}
return a

}
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Example of Bezout’s Identity

Example (Bezout’s Identity)

Express gcd(1485, 1745) in the form 1485u + 1745v .
From the previous example we found gcd(1485, 1745) = 5

5 = 75− (2× 35)

= 75− 2× (185− (2× 75)

= (5× 75)− (2× 185)

= 5× (260− (1× 185))− (2× 185)

= (5× 260)− (7× 185)

= (5× 260)− 7× (1485− (5× 260))

= (40× 260)− (7× 1485)

= 40× (1745− (1× 1485))− (7× 1485)

= (40× 1745)− (47× 1485) = 69800− 69795 = 5
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Bezout’s Identity algorithm

This algorithm computes s and t satisfying gcd(a, b) = sa + tb,
where a and b are non-negative integers, not both zero.
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Recursive Euclidean Algorithm

Input: a and b // the non-negative integers, not both zero
Output: a // greatest common divisor of a and b

gcdr(a, b){
// make a the largest of the two inputs
if (a < b)
swap(a, b)

if (b == 0)
return a

r = a mod (b)
return gcdr(b, r)

}
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Bezout’s Identity algorithm

Input: a and b // the non-negative integers, not both zero
Output: gcd(a, b) // greatest common divisor of a and b returned

s, t // parameters are stored

STgcdr(a, b, s, t){
if (a < b)

swap(a, b)
if (b == 0){

s = 1
t = 0
return a
}
q = ba/bc
r = a mod (b)
g = STgcdr(b, r , s ′, t′)
s = t′

t = s ′ − t′ ∗ q
return g

}
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Class Exercises

Write a pseudocode for an algorithms that determines to following:

1 Swap the values a and b.

2 Determine whether an integer is even or odd without using
modulus, floor or ceil.

3 Determine the largest and smallest value of the different
values a, b, and c, and output the largest and smallest values.

4 Determine the product of s1, s2, . . . , sn

5 Explicitly determine the modulus function.

6 Explicitly determine the floor and ceil functions.

7 Determine the factorial of an integer n.
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Swap the values a and b.

Input: a,b
Output: a,b

t = a
a = b
b = t
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Determine whether an integer is even or odd without using
modulus, floor or ceil.

Input: i
Output: out

k = 0
while out ≥ 0

k = k + 1
out = i − 2 ∗ k

return out
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Determine the largest and smallest value of the different values a,
b, and c , and output the largest and smallest values.

Input: a, b, c
Output: l , s

l = a
s = a
if b > l

l = b
else

s = b
if c > l

l = c
else

if c < s
s = c
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