Number Systems I
 CIS008-2 Logic and Foundations of Mathematics

David Goodwin

david.goodwin@perisic.com

11:00, Tuesday $18{ }^{\text {th }}$ October 2011

Outline

(1) Number systems

Numbers
Natural numbers
Integers
Rational numbers
Real numbers
(2) Representation of Integers Decimal
Binary
Hexadecimal
Deciaml to Base b
(3) Problems
R. Dedekind
"Numbers are free creations of the human mind that serve as a medium for the easier and clearer understanding of the diversity of thought."

Systems of numbers

- natural numbers, $1,2,3, \ldots$
- integers,
$\ldots,-3,-2,-1,0,1,2,3, \ldots$
- rational numbers
- real numbers
- complex numbers (not covered in this course)

Natural Numbers - \mathbb{N}

- The set of Natural numbers are symbolised by \mathbb{N}
- Sometimes called 'counting numbers'
- All positive integers belong to the set of natural numbers.
- Zero is not a natural number
- $1,2,3, \ldots$

InTEGERS - \mathbb{Z}

- The set of integers are symbolised by \mathbb{Z}
- The set of natural numbers belong to the set of integers
- Integers are whole numbers, including zero
- The set of natural numbers supplemented with zero and negative whole numbers is the set of integers
- ..., $-3,-2,-1,0,1,2,3, \ldots$

Rational numbers - \mathbb{Q}

- The set of Rational numbers are symbolised by \mathbb{Q}
- Ratios of integers are rational numbers
- Rational numbers produce other rational numbers when added, multiplied, subtracted, or divided.
- Integers belong to the set of rational numbers

Real numbers - \mathbb{R}

- The set of Real numbers are symbolised by \mathbb{R}
- Not all numbers are included in the set of integers and rational numbers
- $\pi=3.1415, \ldots$ cannot be represented as any ratio of integers
- the solution to $x^{2}-2=0$ cannot be represented by any rational number
- numbers that cannot be represented by ratios of integers are known as irrational numbers
- The set of rational numbers, together with the set of irrational numbers is the set of real numbers

Decimal Number System

- 10 symbols are used ($0,1,2,3,4,5,6,7,8,9$)
- Read from right to left.
- $1^{\text {st }}$ symbol represents 1^{\prime} s $\left(10^{0}\right), 2^{\text {nd }}$ represents 10^{\prime} s $\left(10^{1}\right), 3^{\text {rd }}$ represents 100 's $\left(10^{2}\right), \ldots$ etc.
- We call the value on which the number system is based the base of the system (base 10 in the decimal system).

Binary Number System

- 2 symbols are used $(0,1)$
- Read from right to left.
- $1^{\text {st }}$ symbol represents $1^{\prime} s\left(2^{0}\right), 2^{\text {nd }}$ represents $2^{\prime} s\left(2^{1}\right), 3^{\text {rd }}$ represents 4's $\left(2^{2}\right), \ldots$ etc.
- The base of the binary system is 2 .

Binary Number System

Example

Binary to decimal

$$
\begin{aligned}
101101_{2}= & \left(1 \times 2^{5}\right)+\left(0 \times 2^{4}\right)+\left(1 \times 2^{3}\right)+\left(1 \times 2^{2}\right) \\
& +\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right) \\
101101_{2}= & (1 \times 32)+(0 \times 16)+(1 \times 8)+(1 \times 4) \\
& +(0 \times 2)+(1 \times 1) \\
101101_{2}= & 32+8+4+1 \\
101101_{2}= & 45_{10}
\end{aligned}
$$

Hexadecimal Number System

- 16 symbols are used $(0,1,2,3,4,5,6,7,8,9, A, B, C, D, E$, F)
- Read from right to left.
- $1^{\text {st }}$ symbol represents 1^{\prime} 's $\left(16^{0}\right), 2^{\text {nd }}$ represents 16^{\prime} s $\left(16^{1}\right), 3^{\text {rd }}$ represents 256's (16^{2}), ... etc.
- The base of the Hexadecimal system is 16 .

Hexadecimal Number System

Example

Hexadecimal to decimal

$$
\begin{aligned}
& B 4 F_{16}=\left(11 \times 16^{2}\right)+\left(4 \times 16^{1}\right)+\left(15 \times 16^{0}\right) \\
& B 4 F_{16}=(11 \times 256)+(4 \times 16)+(15 \times 1) \\
& B 4 F_{16}=2816+64+15 \\
& B 4 F_{16}=2895_{10}
\end{aligned}
$$

Converting a decimal integer into Base b

Example

Convert the decimal number 3941 to an Octal number (Base 8): Successive division by 8, recording the remainder

$$
\begin{array}{rll}
3941 \div 8 & \text { remainder } 5 & \text { 1's place } \\
492 \div 8 & \text { remainder } 4 & 8 \text { 's place } \\
61 \div 8 & \text { remainder } 5 & 8^{2} \text { 's place } \\
7 \div 8 & \text { remainder } 7 & 8^{3} \text { 's place }
\end{array}
$$

gives:

$$
3941_{10}=7545_{8}
$$

Converting an integer from Base b To Decimal

Write and algorithm in pseudocode that returns the decimal value of the base b integer $c_{n} c_{n-1} \ldots c_{1} c_{0}$. The variable n is used as an index in the sequence c.

Converting a Decimal integer into Base b

Write ans algorithm in pseudocode that converts the positive integer m into the base b integer $c_{n} c_{n-1} \ldots c_{1} c_{0}$. The variable n is used as an index in the sequence c. The value of $m \bmod b$ is the remainder when m is divided by b. The value of $[m / b]$ is the quotient when m is divided by b.

Adding Binary Numbers

Write and algorithm in pseudocode that adds the binary numbers $b_{n} b_{n-1} \ldots b_{1} b_{0}$ and $b_{n}^{\prime} b_{n-1}^{\prime} \ldots b_{1}^{\prime} b_{0}^{\prime}$ and returns the sum $s_{n+1} s_{n} s_{n-1} \ldots s_{1} s_{0}$.

