Relations
 CIS002-2 Computational Alegrba and Number Theory

David Goodwin

david.goodwin@perisic.com

11:00, Tuesday 29 ${ }^{\text {th }}$ November 2011

Outline

(1) Relations

Relation
Reflexive relation
Symmetric relation
Antisymmetric relation
Transitive relation
Partial order

Inverse
Composition
(2) Equivalence

Relations
Equivalence relation
Equivalence classes
(3) Class Exercises

Outline

(1) Relations

Relation
Reflexive relation
Symmetric relation
Antisymmetric relation
Transitive relation
Partial order

Inverse
Composition
(2) EQUIVALENCE

Relations
Equivalence relation Equivalence classes (3) Class Exercises

Relations

A (binary) relation R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y \in R$, we write $x R y$ and say that x is related to y. If $X=Y$, we call R a (binary) relation on X.

A function is a special type of relation. A function f from X to Y is a relation from X to Y having the properties:

- The domain of f is equal to X.
- For each $x \in X$, there is exactly one $y \in Y$ such that $(x, y) \in f$

RELATIONS - EXAMPLE

Let

$$
X=\{2,3,4\} \quad \text { and } \quad Y=\{3,4,5,6,7\}
$$

If we define a relation R from X to Y by

$$
(x, y) \in R \quad \text { if } x \mid y
$$

we obtain

$$
R=\{(2,4),(2,6),(3,3),(3,6),(4,4)\}
$$

RELATIONS - REFLEXIVE

A relation R on a set X is reflexive if $(x, x) \in X$, if $(x, y) \in R$ for all $x \in X$.

RELATIONS - SYMMETRY

A relation R on a set X is symmetric if for all $x, y \in X$, if $(x, y) \in R$ then $(y, x) \in R$. In symbols we can write

$$
\forall x \forall y[(x, y) \in R] \rightarrow[(y, x) \in R]
$$

RELATIONS - ANTISYMMETRY

A relation R on a set X is antisymmetric if for all $x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then $x=y$. In symbols we can write

$$
\forall x \forall y[(x, y) \in R \wedge(y, x) \in R] \rightarrow[x=y]
$$

RELATIONS - TRANSITIVE

A relation R on a set X is transitive if for all $x, y, z \in X$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$. In symbols we can write

$$
\forall x \forall y \forall z[(x, y) \in R \wedge(y, z) \in R] \rightarrow[(x, z) \in R]
$$

RELATIONS - PARTIAL ORDER

A relation R on a set X is a partial order if R is reflexive, antisymmetric, and transitive. If R is a partial order on a set X, the notation $x \preceq y$ is sometimes used to indicate that $(x, y) \in R$.

Suppose that R is a partial order on a set X. If $x, y \in X$ and either $x \preceq y$ or $y \preceq x$ we say x and y are comparable. If $x, y \in X$ and $x \npreceq y$ and $y \npreceq x$ we say x and y are incomparable. If every pair of elements in X is comparable, we call R a total order.

ReLATIONS - INVERSE

A R be a relation from X to Y. The inverse of R, denoted R^{-1}, is the relation from Y to X defined by

$$
R^{-1}=\{(y, x) \mid(x, y) \in R\}
$$

Relations - Composition

Let R_{1} be a relation from X to Y and R_{2} be a relation from Y to Z. The composition of R_{1} and R_{2}, denoted $R_{2} \circ R_{1}$, is the relation from X to Z defined by

$$
R_{2} \circ R_{1}=\left\{(x, z) \mid(x, y) \in R_{1} \text { and }(y, z) \in R_{2} \text { for some } y \in Y\right\}
$$

Outline

(1) Relations
 Reflexive relation
 Symmetric relation Antisymmetric relation
 Transitive relation Partial order

 \section*{Relation}

 \section*{Relation}}

Inverse

Composition

(2) EqUIVALENCE RELATIONS

Equivalence relation Equivalence classes

Theorem

Let S be a partition of the set X. Define xRy to mean that for some set S in S, both x and y belong to S. Then R is reflexive, antisymmetric, and transitive.

A partition of a set X is a collection S of nonempty subsets of X such that every element in X belongs to exactly one member of S.

EqUIVALENCE RELATION

A relation that is reflexive, symmetric, and transitive on a set X is called an equivalence relation on X.

Theorem

Let R be an equivalence realtion on a set X. For each $a \in X$, let

$$
[a]=\{x \in X \mid x R a\}
$$

(In words, [a] is a set of all elements in X that are related to a.) Then

$$
\mathcal{S}=\{[a] \mid a \in X\}
$$

is a partition of X.

EQUIVALENCE CLASSES

Let R be an equivalence relation on a set X. The sets [a] are called the equivalence classes of X given by the relation R.

Theorem

Let R be an equivalence realtion on a finite set X. If each equivalence class has r elements, there are $|X| / r$ equivalence classes.

Outline

(1) Relations
 Relation
 Reflexive relation
 Symmetric relation
 Antisymmetric relation
 Transitive relation
 Partial order

ExERCISES

(1) Determine whether the following relation defined on the set of positive integers is reflexive, symmetric, antisymmetric, transitive, and / or a partial order

$$
\begin{aligned}
& \text { A }(x, y) \in R \text { if } 2 \mid x+y \\
& \text { B }(x, y) \in R \text { if } 3 \mid x+y
\end{aligned}
$$

(2) Give an example of a relation on $\{1,2,3,4\}$ that is reflexive, not antisymmetric, and not transitive.

ExERCISES

(3) Suppose that R is a relation on X that is symmetric and transitive but not reflexive. Suppose also that $|X| \geq 2$. Define the relation \bar{R} on X by

$$
\bar{R}=X \times X-R
$$

Which of the following must be true? For each false statement, provide a counterexample
A \bar{R} is reflexive
B \bar{R} is symmetric
C \bar{R} is not antisymmetric
D \bar{R} is transitive

ExERCISES

(4) Is the relation

$$
\{(1,1),(1,2),(2,2),(4,4),(2,1),(3,3)\}
$$

an equivalence relation on $\{1,2,3,4\}$? Explain.
(5) Given the relation

$$
\{(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(3,4),(4,3)\}
$$

is an equivalence relation on $\{1,2,3,4\}$, find [3], the equivalence class containing 3 . How many distinct equivalence classes are there?

ExERCISES

(6) Find the equivalence relation (as a set of ordered pairs) on $\{a, b, c, d, e\}$, whose equivalence classes are $\{a\},\{b, d, e\}$, $\{c\}$.
(7) Let R be the relation defined on the set of eight-bit strings by $s_{1} R s_{2}$ provided that s_{1} and s_{2} have the same number of zeros.

A Show that R is an equivalence relation.
B How many equivalence classes are there?
C List one member or each equivalence class.

