RELATIONS

CIS002-2 COMPUTATIONAL ALEGRBA AND NUMBER THEORY

David Goodwin

david.goodwin@perisic.com

11:00, Tuesday 29th November 2011

OUTLINE

• RELATIONS

Relation
Reflexive relation
Symmetric relation
Antisymmetric relation
Transitive relation
Partial order

Inverse Composition

2 Equivalence

RELATIONS

Equivalence relation Equivalence classes

3 Class Exercises

OUTLINE

• RELATIONS

Relation
Reflexive relation
Symmetric relation
Antisymmetric relation
Transitive relation
Partial order

Inverse Composition

- EQUIVALENCE RELATIONS Equivalence relation Equivalence classes
- 3 Class Exercises

RELATIONS

A (binary) **relation** R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y \in R)$, we write xRy and say that x is related to y. If X = Y, we call R a (binary) relation on X.

A function is a special type of relation. A function f from X to Y is a relation from X to Y having the properties:

- The domain of f is equal to X.
- For each $x \in X$, there is exactly one $y \in Y$ such that $(x,y) \in f$

RELATIONS - EXAMPLE

Let

$$X = \{2,3,4\}$$
 and $Y = \{3,4,5,6,7\}$

If we define a relation R from X to Y by

$$(x,y) \in R$$
 if $x \mid y$

we obtain

$$R = \{(2,4), (2,6), (3,3), (3,6), (4,4)\}$$

Relations - Reflexive

A relation R on a set X is **reflexive** if $(x, x) \in X$, if $(x, y) \in R$ for all $x \in X$.

A relation R on a set X is **symmetric** if for all $x, y \in X$, if $(x, y) \in R$ then $(y, x) \in R$. In symbols we can write

$$\forall x \forall y [(x,y) \in R] \rightarrow [(y,x) \in R]$$

A relation R on a set X is **antisymmetric** if for all $x, y \in X$, if $(x,y) \in R$ and $(y,x) \in R$, then x = y. In symbols we can write

$$\forall x \forall y [(x, y) \in R \land (y, x) \in R] \rightarrow [x = y]$$

RELATIONS - TRANSITIVE

A relation R on a set X is **transitive** if for all $x, y, z \in X$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$. In symbols we can write

$$\forall x \forall y \forall z [(x,y) \in R \land (y,z) \in R] \rightarrow [(x,z) \in R]$$

Relations - Partial Order

A relation R on a set X is a **partial order** if R is reflexive, antisymmetric, and transitive. If R is a partial order on a set X, the notation $x \leq y$ is sometimes used to indicate that $(x, y) \in R$.

Suppose that R is a partial order on a set X. If $x,y\in X$ and either $x\preceq y$ or $y\preceq x$ we say x and y are **comparable**. If $x,y\in X$ and $x\npreceq y$ and $y\npreceq x$ we say x and y are **incomparable**. If every pair of elements in X is comparable, we call R a **total order**.

A R be a relation from X to Y. The **inverse** of R, denoted R^{-1} , is the relation from Y to X defined by

$$R^{-1} = \{(y, x) \mid (x, y) \in R\}$$

Let R_1 be a relation from X to Y and R_2 be a relation from Y to Z. The **composition** of R_1 and R_2 , denoted $R_2 \circ R_1$, is the relation from X to Z defined by

$$R_2 \circ R_1 = \{(x, z) \mid (x, y) \in R_1 \text{ and } (y, z) \in R_2 \text{ for some } y \in Y\}$$

OUTLINE

• RELATIONS

Relation
Reflexive relation
Symmetric relation
Antisymmetric relation
Transitive relation
Partial order

Inverse Composition

- EQUIVALENCE RELATIONS Equivalence relation Equivalence classes
- **3** Class Exercises

THEOREM

Let S be a partition of the set X. Define xRy to mean that for some set S in S, both x and y belong to S. Then R is reflexive, antisymmetric, and transitive.

A partition of a set X is a collection S of nonempty subsets of X such that every element in X belongs to exactly one member of S.

A relation that is reflexive, symmetric, and transitive on a set X is called an **equivalence relation** on X.

THEOREM

Let R be an equivalence realtion on a set X. For each $a \in X$, let

$$[a] = \{x \in X \mid xRa\}$$

(In words, [a] is a set of all elements in X that are related to a.)
Then

$$\mathcal{S} = \{[a] \mid a \in X\}$$

is a partition of X.

Let R be an equivalence relation on a set X. The sets [a] are called the **equivalence classes** of X given by the relation R.

THEOREM

Let R be an equivalence realtion on a finite set X. If each equivalence class has r elements, there are |X|/r equivalence classes.

OUTLINE

• RELATIONS

Relation
Reflexive relation
Symmetric relation
Antisymmetric relation
Transitive relation

Inverse Composition

2 Equivalence

RELATIONS

Equivalence relation Equivalence classes

3 Class Exercises

EXERCISES

• Determine whether the following relation defined on the set of positive integers is reflexive, symmetric, antisymmetric, transitive, and / or a partial order

$$A (x,y) \in R \text{ if } 2 \mid x+y$$

B
$$(x, y) \in R \text{ if } 3 | x + y$$

② Give an example of a relation on $\{1, 2, 3, 4\}$ that is reflexive, not antisymmetric, and not transitive.

EXERCISES

3 Suppose that R is a relation on X that is symmetric and transitive but not reflexive. Suppose also that $|X| \geq 2$. Define the relation \overline{R} on X by

$$\overline{R} = X \times X - R$$

Which of the following must be true? For each false statement, provide a counterexample

- \overline{R} is reflexive
- \overline{R} is symmetric
- \overline{R} is not antisymmetric
- \overline{R} is transitive

4 Is the relation

$$\{(1,1),(1,2),(2,2),(4,4),(2,1),(3,3)\}$$

an equivalence relation on $\{1, 2, 3, 4\}$? Explain.

6 Given the relation

$$\{(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(3,4),(4,3)\}$$

is an equivalence relation on $\{1, 2, 3, 4\}$, find [3], the equivalence class containing 3. How many distinct equivalence classes are there?

- **6** Find the equivalence relation (as a set of ordered pairs) on $\{a, b, c, d, e\}$, whose equivalence classes are $\{a\}$, $\{b, d, e\}$, $\{c\}$.
- **6** Let R be the relation defined on the set of eight-bit strings by s_1Rs_2 provided that s_1 and s_2 have the same number of zeros.
 - A Show that R is an equivalence relation.
 - B How many equivalence classes are there?
 - C List one member or each equivalence class.

