RELATIONS

CIS008-2 Logic and Foundations of Mathematics

David Goodwin

david.goodwin@perisic.com

12:00, Friday 02nd December 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

OUTLINE

1 Relations

Relation Reflexive relation Symmetric relation Antisymmetric relation Transitive relation Partial order Inverse Composition 2 EQUIVALENCE RELATIONS Equivalence relation Equivalence classes 3 CLASS EXERCISES

・ロト ・ 一下・ ・ モト ・ モト・

э

OUTLINE

RELATIONS

Relation Reflexive relation Symmetric relation Antisymmetric relation Transitive relation Partial order Inverse Composition 2 EQUIVALENCE RELATIONS Equivalence relation Equivalence classes 3 CLASS EXERCISES

э

・ロト ・ 一下・ ・ モト ・ モト・

Relations

A (binary) **relation** R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y \in R)$, we write xRy and say that x is related to y. If X = Y, we call R a (binary) relation on X.

A function is a special type of relation. A function f from X to Y is a relation from X to Y having the properties:

- The domain of f is equal to X.
- For each x ∈ X, there is exactly one y ∈ Y such that (x, y) ∈ f

Relations - Example

Let

$$X = \{2, 3, 4\}$$
 and $Y = \{3, 4, 5, 6, 7\}$

If we define a relation R from X to Y by

$$(x,y) \in R$$
 if $x \mid y$

we obtain

$$R = \{(2,4), (2,6), (3,3), (3,6), (4,4)\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Relations

Equivalence Relations

CLASS EXERCISES

Relations - Reflexive

A relation R on a set X is **reflexive** if $(x, x) \in X$, if $(x, y) \in R$ for all $x \in X$.

EXAMPLE

The relation R on $X = \{1, 2, 3, 4\}$ defined by $(x, y) \in R$ if x = y, with $x, y \in X$.

There must be a loop at each vertex.

Relations - Symmetry

A relation R on a set X is **symmetric** if for all $x, y \in X$, if $(x, y) \in R$ then $(y, x) \in R$. In symbols we can write

$$\forall x \forall y [(x, y) \in R] \rightarrow [(y, x) \in R]$$

EXAMPLE

The relation $R = \{(1,1), (2,3), (3,2), (4,4)\}$ on $X = \{1,2,3,4\}$.

Notice the axis of symmetry.

æ

▲□▶ ▲圖▶ ▲注▶ ▲注▶ -

Relations - Antisymmetry

A relation R on a set X is **antisymmetric** if for all $x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y. In symbols we can write

$$\forall x \forall y [(x, y) \in R \land (y, x) \in R] \rightarrow [x = y]$$

EXAMPLE

The relation R on $X = \{1, 2, 3, 4\}$ defined by $(x, y) \in R$ if x < y, with $x, y \in X$.

There is at most one directed edge between any two distinct vertices.

(日)、

Relations - Transitive

A relation R on a set X is **transitive** if for all $x, y, z \in X$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$. In symbols we can write

$$\forall x \forall y \forall z [(x, y) \in R \land (y, z) \in R] \rightarrow [(x, z) \in R]$$

EXAMPLE

The relation R on $X = \{1, 2, 3, 4\}$ defined by $(x, y) \in R$ if $x \leq y$, with $x, y \in X$.

Wherever there are a directed edges from x to y and from y to y there is also a directed edge from x to z

RELATIONS - PARTIAL ORDER

A relation R on a set X is a **partial order** if R is reflexive, antisymmetric, and transitive. If R is a partial order on a set X, the notation $x \leq y$ is sometimes used to indicate that $(x, y) \in R$.

Suppose that *R* is a partial order on a set *X*. If $x, y \in X$ and either $x \leq y$ or $y \leq x$ we say *x* and *y* are **comparable**. If $x, y \in X$ and $x \nleq y$ and $y \nleq x$ we say *x* and *y* are **incomparable**. If every pair of elements in *X* is comparable, we call *R* a **total order**.

EXAMPLE

The relation R on $X = \{1, 2, 3, 4\}$ defined by $(x, y) \in R$ if $x \leq y$, with $x, y \in X$.

There are loops at every vertex, there is at most one directed edge between any two distinct vertices and Wherever there are a directed edges from x to y and from y to z, there is also a directed edge from x to z.

Relations - inverse

A *R* be a relation from *X* to *Y*. The **inverse** of *R*, denoted R^{-1} , is the relation from *Y* to *X* defined by

$$R^{-1} = \{(y, x) \mid (x, y) \in R\}$$

ヘロト ヘ週ト ヘヨト ヘヨト

э

EXAMPLE

The relation *R* from $X = \{2, 3, 4\}$ to $X = \{3, 4, 5, 6, 7\}$ is $(x, y) \in R$ if x divides y.

Relations - Composition

Let R_1 be a relation from X to Y and R_2 be a relation from Y to Z. The **composition** of R_1 and R_2 , denoted $R_2 \circ R_1$, is the relation from X to Z defined by

 $R_2 \circ R_1 = \{(x, z) \mid (x, y) \in R_1 \text{ and } (y, z) \in R_2 \text{ for some } y \in Y\}$

OUTLINE

1 Relations

Relation Reflexive relation Symmetric relation Antisymmetric relation Transitive relation Partial order Inverse Composition 2 EQUIVALENCE RELATIONS Equivalence relation Equivalence classes 3 CLASS EXERCISES

ヘロン 人間 とくほと くほとう

æ

THEOREM

Let S be a partition of the set X. Define xRy to mean that for some set S in S, both x and y belong to S. Then R is reflexive, antisymmetric, and transitive.

A partition of a set X is a collection S of nonempty subsets of X such that every element in X belongs to exactly one member of S.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

EQUIVALENCE RELATION

A relation that is reflexive, symmetric, and transitive on a set X is called an **equivalence relation** on X.

Theorem

Let R be an equivalence realtion on a set X. For each $a \in X$, let

$$[a] = \{x \in X \mid xRa\}$$

(In words, [a] is a set of all elements in X that are related to a.) Then

$$\mathcal{S} = \{[a] \mid a \in X\}$$

is a partition of X.

EQUIVALENCE CLASSES

Let R be an equivalence relation on a set X. The sets [a] are called the **equivalence classes** of X given by the relation R.

THEOREM

Let R be an equivalence realtion on a finite set X. If each equivalence class has r elements, there are |X|/r equivalence classes.

OUTLINE

RELATIONS

Relation Reflexive relation Symmetric relation Antisymmetric relation Transitive relation Partial order Inverse Composition 2 EQUIVALENCE RELATIONS Equivalence relation Equivalence classes 3 CLASS EXERCISES

ヘロン 人間 とくほと くほとう

æ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

 Determine whether the following relation defined on the set of positive integers is reflexive, symmetric, antisymmetric, transitive, and / or a partial order

A
$$(x,y) \in R$$
 if $2 \mid x + y$

- B $(x, y) \in R$ if 3 | x + y
- Q Give an example of a relation on {1,2,3,4} that is reflexive, not antisymmetric, and not transitive.

EXERCISES

3 Suppose that R is a relation on X that is symmetric and transitive but not reflexive. Suppose also that $|X| \ge 2$. Define the relation \overline{R} on X by

$$\overline{R} = X \times X - R$$

Which of the following must be true? For each false statement, provide a counterexample

- A \overline{R} is reflexive
- B \overline{R} is symmetric
- \overline{R} is not antisymmetric
- \overline{D} \overline{R} is transitive

EXERCISES

Is the relation

$$\{(1,1),(1,2),(2,2),(4,4),(2,1),(3,3)\}$$

an equivalence relation on $\{1, 2, 3, 4\}$? Explain.

6 Given the relation

 $\{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (3,4), (4,3)\}$

is an equivalence relation on $\{1,2,3,4\}$, find [3], the equivalence class containing 3. How many distinct equivalence classes are there?

・ロット (雪) (日) (日) (日)

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

э

EXERCISES

- Find the equivalence relation (as a set of ordered pairs) on {a, b, c, d, e}, whose equivalence classes are {a}, {b, d, e}, {c}.
- **7** Let *R* be the relation defined on the set of eight-bit strings by s_1Rs_2 provided that s_1 and s_2 have the same number of zeros.
 - A Show that R is an equivalence relation.
 - B How many equivalence classes are there?
 - c List one member or each equivalence class.