An Introduction to Graph Theory CIS008-2 Logic and Foundations of Mathematics

David Goodwin

david.goodwin@perisic.com

12:00, Friday $17^{\text {th }}$ February 2012

Outline

(1) Graphs
(2) Paths and cycles
(3) Graphs and Matrices

Outline

(1) Graphs

(2) PATHS AND CYCLES
 (3) Graphs and Matrices

- A graph can refer to a function graph or graph of a function, i.e. a plot.
- A graph can also be a collection of points and lines connecting some subset of them.
- Points of a graph are most commonly known as graph vertices, but may also be called nodes or simply points.
- Lines connecting the vertices of a graph are most commonly known as graph edges, but may also be called arcs or lines.
- The study of graphs is known as graph theory, and was first systematically investigated by D. König in the 1930s.
- A normal graph in which edges have no direction is said to be undirected.
- When arrows are placed on one or both endpoints of the edges of a graph to indicate direction, the graph is said to be directed.
- A directed graph in which each edge is given a unique direction (one arrow on each edge) is called an oriented graph.
- A graph with numbers on the edges is called a weighted graph, in a weighted graph the length of a path is the sum of the weights of the edges in the path.
- A graph or directed graph together with a function which assigns a positive real number to each edge is known as a network.

Example (Undirected graph)

Example (Directed graph)

Example (Weighted graph)

GRAPHS

- A graph (or undirected graph) G consists of a set V of vertices and a set E of edges such that each edge $e \in E$ is associated with an unordered pair of vertices.
- If there is a unique edge e associated with the vertices v and w, we write $e=(v, w)$ or $e=(w, v)$. In this context, (v, w) denotes an edge between v and w in an undirected graph (not an ordered pair).
- A directed graph (or digraph) G consists of a set V of vertices and a set E of edges such that each edge $e \in E$ is associated with an ordered pair of vertices.
- If there is a unique edge e associated with the ordered pair (v, w) of the vertices, we write $e=(v, w)$, which denotes an edge from v to w.
- An edge e of a graph (directed or undirected) that is associated with the pair of vertices v and w is said to be incident on v and w, and v and w are said to be incident on e and to be adjacent vertices.
- The degree of a vertex $v, \delta(v)$, is the number of edges incident on v.

GRAPHS

- An edge incident on a single vertex is called a loop.
- A vertex that has no incident edges is called and isolated vertex.
- Distinct edges associated with the same pair of vertices are called parallel edges.
- A graph with neither loops nor parallel edges is called a simple graph.

GRAPHS

- A complete graph on n vertices, denoted K_{n}, is a simple graph with n vertices in which there is an edge between every pair of distinct vertices.
- A graph $G=(V, E)$ is bipartite if there exist subsets V_{1} and V_{2} of v such that $V_{1} \cap V_{2}=\varnothing, V_{1} \cup V_{2}=V$, and each edge in E is incident on one vertex in V_{1} and one vertex in V_{2}.
- A complete bipartite graph on m and n vertices, denotes $K_{m, n}$, is the simplest graph whose vertex set is partitioned into sets V_{1} with m vertices and V_{2} with n vertices in which the edge set consists of all edges of the form $\left(v_{1}, v_{2}\right)$ with $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$

Example (Complete Graph)
Example (Complete Bipartite GRAPH)

Outline

(2) PATHS AND CYCLES

(3) Graphs And Matrices

Paths

Let v_{0} and v_{n} be vertices on a graph. A path from v_{0} to v_{n} of length n is an alternating sequence of $n+1$ vertices and n edges beginning with vertex v_{0} and ending with vertex v_{n}.

$$
\left(v_{0}, e_{1}, v_{1}, e_{2}, v_{v}, \ldots, v_{n-1}, e_{n}, v_{n}\right)
$$

in which edge e_{i} is incident on vertices v_{i-1} and v_{i}, for $i=1, \ldots, n$.

CONNECTED GRAPHS

A graph G is connected if given any vertices v and w in G, there is a path from v to w. Below is an example of a graph that is not connected.

Subgraphs

Let $G=(V, E)$ be a graph. We call $\left(V^{\prime}, E^{\prime}\right)$ a subgraph of G if:

- $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$
- For every edge $e^{\prime} \in E^{\prime}$, if e^{\prime} is incident on v^{\prime} and w^{\prime}, then $v^{\prime}, w^{\prime} \in V^{\prime}$

A graph G

A graph G^{\prime}, a subgraph of G

Let G be a graph and let v be a vertex in G. The subgraph G^{\prime} of G consisting of all edges and vertices in G that are contained in some path beginning at v is called the component of G containing v.

Cycles

Let v and w be vertices in a graph G.

- A simple path from v to w is a path from v to w with no repeated vertices.
- A cycle (or circuit) is a path of nonzero length from v to v with no repeated edges.
- A simple cycle is a cycle from v to v in which, except for the beginning and ending vertices that are both equal to v, there are no repeated vertices.
- A cycle in a graph G that includes all of the edges and all of the vertices of G is called an Euler cycle.

EULER CYCLE

Theorem

If a graph G has an Euler cycle, then G is connected and every vertex has an even degree.

Theorem

If G is a connected graph and every vertex has even degree, the G has an Euler cycle.

Theorem

If G is a graph with m edges and vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then

$$
\sum_{i=1}^{n} \delta\left(v_{i}\right)=2 m
$$

In particular, the sum over the degrees of all the vertices in a graph is even. Also, in any graph, the number of vertices of odd degree is even.

Euler cycle

Theorem

A graph has a path with no repeated edges from v to $w(v \neq w)$ containing all the egdes and vertices if and only if it is connected and v and w are the only vertices having odd degree.

Theorem

If a graph G contains a cycle from v to v, G contains a simple cycle from v to v.

HAMILTONIAN CYCLE

A cycle in a graph G that contains each vertex in G exactly once, except for the starting and ending vertex that appears twice, is called a Hamiltonian cycle.

Outline

(2) PATHS AND CYCLES
 (3) Graphs and Matrices

The adjacency matrix

- The adjacency matrix of a graph is a matrix with rows and columns labeled by graph vertices, with a 1 or 0 in position $\left(v_{i}, v_{j}\right)$ according to whether v_{i} and v_{j} are adjacent or not.
- For a simple graph with no self-loops, the adjacency matrix must have 0s on the diagonal.
- For an undirected graph, the adjacency matrix is symmetric.
- If $i=j$ the element is twice the number of the loops incident on the vertex.
- The eigenvalues of a graph are defined as the eigenvalues of its adjacency matrix.
- The set of eigenvalues of a graph is called a graph spectrum.

The adjacency matrix

Example (Adjacency matrix)

University of Bedfordshire

The incidence matrix

- The physicist Kirchhoff (1847) was the first to define the incidence matrix.
- To obtain the incidence matrix of a graph, we label the rows with the vertices and the columns with edges (in some arbitrary order).
- The entry for a row v and column e is 1 if e is incident on v and 0 otherwise.

The incidence matrix

Example (Incidence matrix)

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

ExERCISES

Draw a graph for the following adjacency matrices:
(1) $\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 2\end{array}\right]$
(2) $\left[\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0\end{array}\right]$

ExERCISES

Draw a graph for the following incidence matrices:
(1) $\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1\end{array}\right]$
(2) $\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0\end{array}\right]$

Further Exercises

(1) Wrtie a programme that determines whether a graph contains an Euler cycle, where inputs are given in the form of an adjaceny matrix or an incidence matrix.
(2) Wrtie a programme that lists all simple paths between two given vertices.

