Graph Theory: Applications and Algorithms
 CIS008-2 Logic and Foundations of Mathematics

David Goodwin

david.goodwin@perisic.com

11:00, Tuesday $21^{\text {st }}$ February 2012

Outline

(1) n-Cube
(2) Gray Codes
(3) Shortest-Path Algorithm
(4) Mesh Model

Outline

(1) n-Cube
(2) Gray Codes
(3) Shortest-Path Algorithm
(4) Mesh Model

The n-Cube (Hypercube)

- Serial Computers execute one instruction at a time.
- Standard definition of an algorithm assumes one instruction is exectuted at a time, and is called a serial algorithm.
- Parallel computers execute several instructions at a time, and their associated algorithms are parallel algorithms.
- Graphs are convenient models for parallel computation, and one model for this is known as the n-Cube or hypercube.

The n-Cube (Hypercube)

- n-Cube has 2^{n} processors, represented by vertices, labelled $0,1, \ldots, 2^{n}-1$. Each processor has its own memory.

The n-Cube (Hypercube)

- n-Cube has 2^{n} processors, represented by vertices, labelled $0,1, \ldots, 2^{n}-1$. Each processor has its own memory.
- An edge is drawn between two vertices if the binary representation of the labels differs in exactly one bit.

The n-Cube (Hypercube)

- n-Cube has 2^{n} processors, represented by vertices, labelled $0,1, \ldots, 2^{n}-1$. Each processor has its own memory.
- An edge is drawn between two vertices if the binary representation of the labels differs in exactly one bit.
- During one time unit, all processors may execute an instructionsimultaneously, then communicate with an adjacent processor.

The n-Cube (Hypercube)

- n-Cube has 2^{n} processors, represented by vertices, labelled $0,1, \ldots, 2^{n}-1$. Each processor has its own memory.
- An edge is drawn between two vertices if the binary representation of the labels differs in exactly one bit.
- During one time unit, all processors may execute an instructionsimultaneously, then communicate with an adjacent processor.
- To communicate with a non-adjacent processor, a message is sent that includes the route to and final destination of the recipient. It may take several time units to communicate with a non-adjacent processor.

The n-Cube (Hypercube)

- The 1 -cube has two vertices (processors), labelled 0 and 1 , and one edge.
- We draw two ($n-1$)-Cubes, whose vertices are labelled in binary.
- We place an edge between vertices with identical labels.
- We then place an additional character at the beginning of each of the two graphs, 0 at the front of one, and 1 at the font of the other's labels.
- Here we obtain an n-Cube from two ($n-1$)-Cubes.

Connecting two 1-cubes

Graph of 2-cube

Outline

(1) n-CUBE
(2) Gray Codes
(3) Shortest-Path Algorithm
(4) Mesh Model

Gray codes and Hamiltonian cycles in the n-Cube

- Consider a ring model for parallel computation, represented as a graph is a simple cycle.
- Each processor can communicate directly with two other processors.
- The n-Cube model has a greater degree of connectivity between vertices.
- If the n-Cube contains a Hamiltonian cycle, we must have $n \geq 2$, since the 1 -Cube has no

Ring model cycles.

Gray Codes

- The n-Cube has a Hamiltonian cycles if and only if $n \geq 2$ and there is a sequence,

$$
s_{1}, s_{2}, \ldots, s_{2^{n}}
$$

where each s_{i} is a string of n bits satisfying:

- Every n-bit string appears somewhere in the sequence.
- s_{i} and s_{i+1} differ in exactly one bit.
- $s_{2^{n}}$ and s_{1} differ in exactly one bit.
- This type of sequence is called a Gray code, and corresponds to a Hamiltonain cycle.
- Gray codes have been studied extensively, an example being converting analog to digital signal.
- The Gray code for $n=1$ is 0,1 and corresponds to the path $(0,1,0)$, which is not a cycle since the edge $(0,1)$ is repeated.

Constructing Gray codes

Let G_{1} denote the sequence 0,1 , we define G_{n} by G_{n-1} by the following rules:
(1) Let G_{n-1}^{R} denote the sequence G_{n-1} in reverse.
(2) Let G_{n-1}^{\prime} denote the sequence obtained by prefixing each member of G_{n-1} with 0 .
(3) Let $G_{n-1}^{\prime \prime}$ denote the sequence obtained by prefixing each member of G_{n-1} with 1 .
(4) Let G_{n} be the sequence consisting of G_{n-1}^{\prime} followed by $G_{n-1}^{\prime \prime}$

Then G_{n} is a Gray code for every positive integer n.

Theorem

The n-Cube has a Hamiltonian cycle for every positive integer $n \geq 2$.

Outline

(1) n-CUBE

(2) GRAY CODES
(3) Shortest-Path Algorithm
(4) Mesh Model

Dijkstra's Shortest Path Algorithm

- The aim is to find the shortest path (having the minimum length) between any two vertices, a and z, of a connected, weighted graph, G.
- Dijkstra's Algorithm involves assigning lables to vertices. Let $L(u)$ denote the label of vertex v.
- At any point, some vertices have temporary labels and the rest have permanent labels.
- Let t denote the set of vertices with temporary labels.
- Initially, all vertices have temporary labels.
- Each iteration of the algorithm changes the status of one label to permanent.
- The algorithm terminates when z recieves a permanent label, then $L(z)$ gives the length of the shortest path from a to z.

Input: A connected, weighted graoh in which all weights are positive; vertices a and z.
Output: $L(z)$, the length of a shortest path from a to z.
(1) dijkstra $(w, a, z, L)\{$
(2) $L(a)=0$
(3) for all vertices $x \neq a$
(4) $L(x)=\infty$
(5) $T=$ set of all vertices
(6) // T is the set of all vertices whose shortest distance has not been found
(7) while $(z \in T)\{$

8 chose $v \in T$ with minimum $L(v)$
(9) $T=T-\{v\}$
(10) for each $x \in T$ adjacent to v
(1) $L(x)=\min \{L(x), L(v)+w(v, x)\}$
(12) $\}$
(13)

Path length and the Adjacency matrix

Theorem

If A is the adjacency matrix of a simple graph, the $i j^{\text {th }}$ entry of A^{n} is equal to the number of paths of length n from vertex i to vertex $j, n=1,2, \ldots$.

Outline

(2) GRAY CODES
(3) Shortest-Path Algorithm
(4) Mesh Model

Isomorphisms of Graphs

Graphs G_{1} and G_{2} are isomorphic if there is a one-to-one, onto function f from the vertices of G_{1} to the vertices of G_{2} and a one-to-one, onto function g from the edges of G_{1} to the edges of G_{2}. So the edge e is incident on v and w in G_{1} if and only if the edge $g(e)$ is incident on $f(v)$ and $f(w)$ in G_{2}. The pair of functions g and f is called an isomorphism of G_{1} onto G_{2}.

The Mesh Model for Parallel Computation

- 2-D mesh model described as a graph consisting a rectangular array of vertices connected by edges to their nearest neighbour.
- Let M be a mesh p vertices by q vertices, where $p \leq 2^{i}$ and $q \leq 2^{j}$.
- As co-ordinates for the mesh, we use the Gray codes.
- The co-ordinates in the horizonatal direction are the first p member of an i-bit Gray code.
- The co-ordinates in the vertical direction are the first q member of an j-bit Gray code.

Mesh Model
EXERCISE Show that the mesh M, with p by q vertices $\left(p \leq 2^{i}\right.$ and $\left.q \leq 2^{j}\right)$ has an isomorphism to a subgraph contained in the $(i+j)$-cube.

