GRAPH THEORY: APPLICATIONS AND ALGORITHMS

CIS008-2 Logic and Foundations of Mathematics

David Goodwin

david.goodwin@perisic.com

11:00, Tuesday 21st February 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

OUTLINE

2 Gray Codes

3 Shortest-Path Algorithm

OUTLINE

2 Gray Codes

3 Shortest-Path Algorithm

・ロット (雪) () () () ()

3

- Serial Computers execute one instruction at a time.
- Standard definition of an algorithm assumes one instruction is exectuted at a time, and is called a **serial algorithm**.
- Parallel computers execute several instructions at a time, and their associated algorithms are parallel algorithms.
- Graphs are convenient models for parallel computation, and one model for this is known as the n-Cube or hypercube.

THE *n*-CUBE (HYPERCUBE)

n-Cube has 2ⁿ processors, represented by vertices, labelled 0, 1, ..., 2ⁿ - 1. Each processor has its own memory.

- n-Cube has 2ⁿ processors, represented by vertices, labelled 0, 1, ..., 2ⁿ 1. Each processor has its own memory.
- An edge is drawn between two vertices if the binary representation of the labels differs in exactly one bit.

- n-Cube has 2ⁿ processors, represented by vertices, labelled 0, 1, ..., 2ⁿ 1. Each processor has its own memory.
- An edge is drawn between two vertices if the binary representation of the labels differs in exactly one bit.
- During one time unit, all processors may execute an instructionsimultaneously, then communicate with an adjacent processor.

(日)、

- n-Cube has 2ⁿ processors, represented by vertices, labelled 0, 1, ..., 2ⁿ 1. Each processor has its own memory.
- An edge is drawn between two vertices if the binary representation of the labels differs in exactly one bit.
- During one time unit, all processors may execute an instructionsimultaneously, then communicate with an adjacent processor.
- To communicate with a non-adjacent processor, a message is sent that includes the route to and final destination of the recipient. It may take several time units to communicate with a non-adjacent processor.

- The 1-cube has two vertices (processors), labelled 0 and 1, and one edge.
- We draw two (n-1)-Cubes, whose vertices are labelled in binary.
- We place an edge between vertices with identical labels.
- We then place an additional character at the beginning of each of the two graphs, 0 at the front of one, and 1 at the font of the other's labels.
- Here we obtain an *n*-Cube from two (n-1)-Cubes.

OUTLINE

1 *n*-CUBE

2 Gray Codes

3 Shortest-Path Algorithm

GRAY CODES AND HAMILTONIAN CYCLES IN THE n-CUBE

- Consider a **ring model** for parallel computation, represented as a graph is a simple cycle.
- Each processor can communicate directly with two other processors.
- The n-Cube model has a greater degree of connectivity between vertices.
- If the *n*-Cube contains a Hamiltonian cycle, we must have n ≥ 2, since the 1-Cube has no cycles.

Ring model

(日)、

GRAY CODES

• The *n*-Cube has a Hamiltonian cycles if and only if *n* ≥ 2 and there is a sequence,

$$s_1, s_2, \ldots, s_{2^n}$$

where each s_i is a string of n bits satisfying:

- Every *n*-bit string appears somewhere in the sequence.
- s_i and s_{i+1} differ in exactly one bit.
- s_{2^n} and s_1 differ in exactly one bit.
- This type of sequence is called a **Gray code**, and corresponds to a Hamiltonain cycle.
- Gray codes have been studied extensively, an example being converting analog to digital signal.
- The Gray code for n = 1 is 0, 1 and corresponds to the path (0, 1, 0), which is not a cycle since the edge (0, 1) is repeated.

・ロット (雪) (日) (日) (日)

・ロット (雪) (日) (日) (日)

CONSTRUCTING GRAY CODES

Let G_1 denote the sequence 0, 1, we define G_n by G_{n-1} by the following rules:

- 1 Let G_{n-1}^R denote the sequence G_{n-1} in reverse.
- 2 Let G'_{n-1} denote the sequence obtained by prefixing each member of G_{n-1} with 0.
- **8** Let G''_{n-1} denote the sequence obtained by prefixing each member of G_{n-1} with 1.
- 4 Let G_n be the sequence consisting of G'_{n-1} followed by G''_{n-1}

Then G_n is a Gray code for every positive integer n.

Theorem

The n-Cube has a Hamiltonian cycle for every positive integer $n \ge 2$.

OUTLINE

● *n*-Cube

2 Gray Codes

3 Shortest-Path Algorithm

DIJKSTRA'S SHORTEST PATH ALGORITHM

- The aim is to find the shortest path (having the minimum length) between any two vertices, *a* and *z*, of a connected, weighted graph, *G*.
- Dijkstra's Algorithm involves assigning lables to vertices. Let L(u) denote the label of vertex v.
- At any point, some vertices have temporary labels and the rest have permanent labels.
- Let *t* denote the set of vertices with temporary labels.
- Initially, all vertices have temporary labels.
- Each iteration of the algorithm changes the status of one label to permanent.
- The algorithm terminates when z recieves a permanent label, then L(z) gives the length of the shortest path from a to z.

Input: A connected, weighted graoh in which all weights are positive; vertices a and z. Output: L(z), the length of a shortest path from a to z. 1 dijkstra(w, a, z, L){ **2** L(a) = 0**3** for all vertices $x \neq a$ 4 $L(x) = \infty$ **5** T =set of all vertices **(6)** // T is the set of all vertices whose shortest distance has not been found **7** while $(z \in T)$ 8 chose $v \in T$ with minimum L(v)9 $T = T - \{v\}$ 10 for each $x \in T$ adjacent to v $L(x) = min\{L(x), L(v) + w(v, x)\}$ 12 } **B** }

PATH LENGTH AND THE ADJACENCY MATRIX

Theorem

If A is the adjacency matrix of a simple graph, the ij^{th} entry of A^n is equal to the number of paths of length n from vertex i to vertex j, n = 1, 2, ...

OUTLINE

● *n*-Cube

2 Gray Codes

3 Shortest-Path Algorithm

ISOMORPHISMS OF GRAPHS

Graphs G_1 and G_2 are **isomorphic** if there is a one-to-one, onto function f from the vertices of G_1 to the vertices of G_2 and a one-to-one, onto function g from the edges of G_1 to the edges of G_2 . So the edge e is incident on v and w in G_1 if and only if the edge g(e) is incident on f(v) and f(w) in G_2 . The pair of functions g and f is called an **isomorphism** of G_1 onto G_2 .

The Mesh Model for Parallel Computation

- 2-D mesh model described as a graph consisting a rectangular array of vertices connected by edges to their nearest neighbour.
- Let *M* be a mesh *p* vertices by *q* vertices, where $p \leq 2^i$ and $q \leq 2^j$.
- As co-ordinates for the mesh, we use the Gray codes.
- The co-ordinates in the horizonatal direction are the first *p* member of an *i*-bit Gray code.
- The co-ordinates in the vertical direction are the first *q* member of an *j*-bit Gray code.

Mesh Model

EXERCISE Show that the mesh M, with p by q vertices ($p \le 2^i$ and $q \le 2^j$) has an isomorphism to a subgraph contained in the University of (i + j)-cube.