INTRODUCTION TO SET OPERATIONS CIS008-2 Logic and Foundations of Mathematics

David Goodwin

david.goodwin@perisic.com

12:00, Friday 21st October 2011

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

OUTLINE

1 Recap

2 INTRODUCTION TO SETS

3 CLASS EXERCISES

Recap

- Reviewed the definition of:
 - Natural numbers ℕ
 - Integers $\mathbb Z$
 - Rational numbers \mathbb{Q}
 - Real numbers \mathbb{R} .
- Introduced Base systems.
- Showed how to change between different Bases without loss of generallity.
- Guided examples of pseudocoded change of Base.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

æ –

NOTATION

Notation	Example	Reads
$\{,\ldots,\}$	$\{x_1, x_2, \ldots x_n\}$	Set with elements $x_1, x_2 \dots x_n$
\in	$x \in A$	x belongs to A
¢	$x \notin A$	x does not belong to A
\ni	$A \ni x$	The set A contains the x as an element
∌	A ∌ x	The set A does not contain x as an element

Also, we define a set builder with an example notation as $\{x \in A \mid p(x)\}$, which reads the set of those elements x of A for which the proposition p(x) is true.

・ロト ・ 一下・ ・ ヨト

SUBSETS AND PROPER SUBSETS

- If X and Y are sets. If every element of X is and element of Y, we say X is a **subset** of Y and write $X \subseteq Y$.
- Any set of X is a subset of itself, also the empty set \emptyset is a subset of every set. If X is a subset of Y and X does not equal Y, we say that X is a **proper subset** of Y and write $X \subset Y$.
- The set of all subsets (proper or not) of a set X, denoted $\mathcal{P}(X)$, is called the **power set** of X.

Sometimes when dealing with sets, all of which are subsets of a set U, the set U is called a **universal set** (or simply a **universe**).

The **union** of X and Y consists of all elements belonging to either X or Y (or both).

$$X \cup Y = \{x \mid x \in X \text{ or } x \in Y\}$$

INTERSECTION

The **intersection** of X and Y consists of all elements belonging to both X and Y.

$$X \cap Y = \{x \mid x \in X \text{ and } x \in Y\}$$

X and Y are **disjoint** if

$$X \cap Y = \emptyset \tag{1}$$

▲ロト ▲圖ト ▲屋ト ▲屋ト

æ

Complement & Difference

The **complement** of X, being a subset of a universal set U, consists of all elements **not** belonging to X.

$$U - X = \{x \mid x \notin X\}$$

U - X is called the compliment of X and is written \overline{X} .

The **difference** (or **relative complement**) X - Y consists of all elements belonging to X and not Y.

$$X - Y = \{x \mid x \in X \text{ and } x \notin Y\}$$

X - Y is called the relative compliment of Y.

э

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

ヘロト ヘ部ト ヘヨト ヘヨト

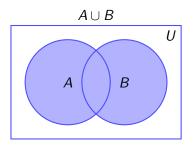
Ξ.

VENN DIAGRAMS

Venn diagrams provide a pictorial views of sets

- A rectangle depicts a universal set.
- Subsets of a universal set are drawn as circles within the rectangle
- The inside of a circle represents the members of that set.

UNION

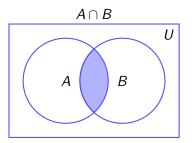


EXAMPLE If $A = \{1, 2, 3\}$ and $B = \{2, 4, 6\}$ then $A \cup B = \{1, 2, 3, 4, 6\}$

æ

<ロ> <個> <ヨ> <ヨ>

INTERSECTION

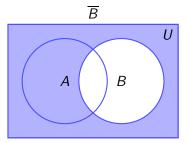


EXAMPLE If $A = \{1, 2, 3\}$ and $B = \{2, 4, 6\}$ then $A \cap B = \{2\}$

æ

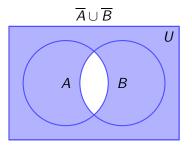
<ロ> <個> <ヨ> <ヨ>

Complement



EXAMPLE If $U = \mathbb{Z}$ and $B = \mathbb{N}$ then $\overline{B} = \{0, -1, -2, -3, \dots\}$.

UNION OF COMPLEMENTS



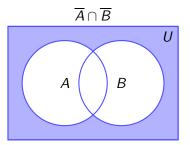
EXAMPLE

If
$$U = \mathbb{R}$$
, $A = \{1, 2, 3\}$ and $B = \{2, 4, 6\}$ then
 $\overline{A} \cup \overline{B} = \{x \mid x \in \mathbb{R} \text{ and } x \neq 2\}$

æ

<ロ> <個> <ヨ> <ヨ>

INTERSECTION OF COMPLEMENTS

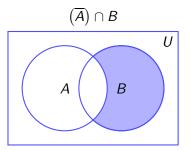


EXAMPLE

There are 4 students in a class U, 2 pass the first coursework assignment A and 2 pass the second coursework assignment B. If only 1 student passes both coursework assignments, the amount of students that did not pass either coursework is $\overline{A} \cap \overline{B} = 1$.

niversity of edfordshire

INTERSECTION OF COMPLEMENT AND SUBSET



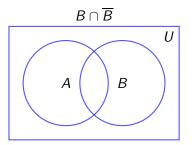
EXAMPLE

If
$$A = \{a, b, c\}$$
 and $B = \{c, d, e\}$ then $\left(\overline{A}\right) \cap B = \{d, e\}$

æ

(日) (四) (三) (三)

INTERSECTION OF SUBSET AND ITS COMPLEMENT

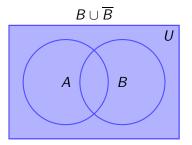


EXAMPLE

If B = "my only red apple" and U = "all of my apples" then $B \cap \overline{B} =$ "none of my apples"

(日) (四) (三) (三)

UNION OF SUBSET AND ITS COMPLEMENT



EXAMPLE

If A and B is each 1 bit, A = 10, B = 01, $A \cap B = 11$, and $\overline{A} \cap \overline{B} = 00$, then $B \cup \overline{B} = \{00, 10, 01, 11\}$

(日) (四) (三) (三)

QUESTIONS

- Draw a Venn diagram of two disjoint sets, A and B in a universe U.
- Oraw a Venn diagram of A being a proper subset of B, both within a universal set, U.
- **3** Draw a Venn diagram of $(\overline{A}) \cup B$.
- Draw a Venn diagram of the complement of union of subsets, where A and B are subsets of the universal set U.
- **6** Write question (4) in a symbolic way.
- **6** Construct Venn diagrams for the $A \cap B = \emptyset$.
- **?** Construct Venn diagrams for the $A \cup B = A$.
- 8 Construct Venn diagrams for the A B = A.

U

QUESTIONS (II)

Consider the Venn diagram opposite, then match each of the following

	-				
	_	$\overline{A} \cup B$		В	
$\bigcirc A \cap B$	1	$\overline{A} \cap \overline{B}$			
$\textcircled{1} A \cap \overline{B}$	6	$\overline{A} \cup \overline{B}$			
❶ A−B	0	Ū			
with one of					
• Ø	• A	• B	• U	• <u>B</u>	• <u>A</u>
					University of Bedfordshire
					। । । । । । । । । । । । ।

QUESTIONS (III)

Of 160 individuals with a skin disorder, 100 had been exposed to chemical **A** (individuals A), 50 to chemical **B** (individuals B), and 30 to chemicals **A** and **B**.

Use symbols and Venn diagrams to describe the number of individuals exposed to:

- (chemicals ${\boldsymbol A}$ and ${\boldsymbol B}$
- (b) chemical A but not chemical B
- () chemical **B** but not chemical **A**
- ${\bf Q}$ chemical ${\bf A}$ or chemical ${\bf B}$
- a neither chemical A nor chemical B

3

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・