Introduction to Set Operations CIS008-2 Logic and Foundations of Mathematics

David Goodwin

david.goodwin@perisic.com

12:00, Friday $21^{\text {st }}$ October 2011

Outline

(1) Recap
(2) Introduction to sets
(3) Class Exercises

RECAP

- Reviewed the definition of:
- Natural numbers \mathbb{N}
- Integers \mathbb{Z}
- Rational numbers \mathbb{Q}
- Real numbers \mathbb{R}.
- Introduced Base systems.
- Showed how to change between different Bases without loss of generallity.
- Guided examples of pseudocoded change of Base.

Notation

Notation
$\{, \ldots$,
\in
\notin
\ni
$\not \supset$

Example

$\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$
$x \in A$
$x \notin A$
$A \ni x$
$A \nexists x$

Reads

Set with elements $x_{1}, x_{2} \ldots x_{n}$ x belongs to A
x does not belong to A
The set A contains the x as an element
The set A does not contain x as an element

Also, we define a set builder with an example notation as $\{x \in A \mid p(x)\}$, which reads the set of those elements x of A for which the proposition $p(x)$ is true.

Subsets and Proper Subsets

If X and Y are sets. If every element of X is and element of Y, we say X is a subset of Y and write $X \subseteq Y$.

Any set of X is a subset of itself, also the empty set \varnothing is a subset of every set. If X is a subset of Y and X does not equal Y, we say that X is a proper subset of Y and write $X \subset Y$.

The set of all subsets (proper or not) of a set X, denoted $\mathcal{P}(X)$, is called the power set of X.

Universe

Sometimes when dealing with sets, all of which are subsets of a set U, the set U is called a universal set (or simply a universe).

Union

The union of X and Y consists of all elements belonging to either X or Y (or both).

$$
X \cup Y=\{x \mid x \in X \text { or } x \in Y\}
$$

InTERSECTION

The intersection of X and Y consists of all elements belonging to both X and Y.

$$
X \cap Y=\{x \mid x \in X \text { and } x \in Y\}
$$

X and Y are disjoint if

$$
\begin{equation*}
X \cap Y=\varnothing \tag{1}
\end{equation*}
$$

Complement \& Difference

The complement of X, being a subset of a universal set U, consists of all elements not belonging to X.

$$
U-X=\{x \mid x \notin X\}
$$

$U-X$ is called the compliment of X and is written \bar{X}.

The difference (or relative complement) $X-Y$ consists of all elements belonging to X and not Y.

$$
X-Y=\{x \mid x \in X \text { and } x \notin Y\}
$$

$X-Y$ is called the relative compliment of Y.

VEnn DIAGRAMS

Venn diagrams provide a pictorial views of sets

- A rectangle depicts a universal set.
- Subsets of a universal set are drawn as circles within the rectangle
- The inside of a circle represents the members of that set.

Union

$A \cup B$

Example

If $A=\{1,2,3\}$ and $B=\{2,4,6\}$ then $A \cup B=\{1,2,3,4,6\}$

InTERSECTION

$A \cap B$

Example
If $A=\{1,2,3\}$ and $B=\{2,4,6\}$ then $A \cap B=\{2\}$

Complement

Example
If $U=\mathbb{Z}$ and $B=\mathbb{N}$ then $\bar{B}=\{0,-1,-2,-3, \ldots\}$.

Union of Complements

$\bar{A} \cup \bar{B}$

Example
If $U=\mathbb{R}, A=\{1,2,3\}$ and $B=\{2,4,6\}$ then
$\bar{A} \cup \bar{B}=\{x \mid x \in \mathbb{R}$ and $x \neq 2\}$

Intersection of Complements

$\bar{A} \cap \bar{B}$

Example

There are 4 students in a class $U, 2$ pass the first coursework assignment A and 2 pass the second coursework assignment B. If only 1 student passes both coursework assignments, the amount of students that did not pass either coursework is $\bar{A} \cap \bar{B}=1$.

Intersection of Complement and Subset

$(\bar{A}) \cap B$

Example
If $A=\{a, b, c\}$ and $B=\{c, d, e\}$ then $(\bar{A}) \cap B=\{d, e\}$

Intersection of Subset and its Complement

$B \cap \bar{B}$

Example

If $B=$ "my only red apple" and $U=$ "all of my apples" then $B \cap \bar{B}=$ "none of my apples"

Union of Subset and its Complement

Example
If A and B is each 1 bit, $A=10, B=01, A \cap B=11$, and $\bar{A} \cap \bar{B}=00$, then $B \cup \bar{B}=\{00,10,01,11\}$

Questions

(1) Draw a Venn diagram of two disjoint sets, A and B in a universe U.
(2) Draw a Venn diagram of A being a proper subset of B, both within a universal set, U.
(3) Draw a Venn diagram of $(\bar{A}) \cup B$.
(4) Draw a Venn diagram of the complement of union of subsets, where A and B are subsets of the universal set U.
(5) Write question (4) in a symbolic way.
(6) Construct Venn diagrams for the $A \cap B=\varnothing$.
(7) Construct Venn diagrams for the $A \cup B=A$.

8 Construct Venn diagrams for the $A-B=A$.

Questions (II)

Consider the Venn diagram opposite, then match each of the following
(9) $A \cup B$
(B) $\bar{A} \cup B$
(10) $A \cap B$
(14) $\bar{A} \cap \bar{B}$
(11) $A \cap \bar{B}$
(1.) $\bar{A} \cup \bar{B}$
(1) $A-B$
(16) \bar{U}
with one of

- \varnothing
- A
- B
- U
- \bar{B}
- \bar{A}

Questions (III)

Of 160 individuals with a skin disorder, 100 had been exposed to chemical \mathbf{A} (individuals A), 50 to chemical \mathbf{B} (individuals B), and 30 to chemicals \mathbf{A} and \mathbf{B}.

Use symbols and Venn diagrams to describe the number of individuals exposed to:
(1) chemicals \mathbf{A} and \mathbf{B}
(18) chemical A but not chemical B
(19) chemical B but not chemical A

20 chemical \mathbf{A} or chemical \mathbf{B}
(1) neither chemical \mathbf{A} nor chemical \mathbf{B}

