INTRODUCTION TO LOGIC CIS008-2 Logic and Foundations of Mathematics

David Goodwin

david.goodwin@perisic.com

11:00, Tuesday 15th Novemeber 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

OUTLINE

1 PROPOSITIONS

2 CONDITIONAL PROPOSITIONS

3 LOGICAL EQUIVALENCE

THE WIRE "If you play with dirt you get dirty."

(日)、(四)、(E)、(E)、(E)

TRUE OR FALSE?

- 1 The only positive integers that divide 7 are 1 and 7 itself.
- Por every positive integer n, there is a prime number larger than n.
- **3** *x* + 4 = 6.
- **4** Write a pseudo-code to solve a linear diophantine equation.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

TRUE OR FALSE?

- The only positive integers that divide 7 are 1 and 7 itself.
 True.
- Por every positive integer n, there is a prime number larger than n. True
- **8** x + 4 = 6. The truth depends on the value of x.
- Write a pseudo-code to solve a linear diophantine equation.
 Neither true or false.

PROPOSITIONS

A sentence that is either true or false, but not both, is called a **proposition**. The following two are propositions

- The only positive integers that divide 7 are 1 and 7 itself.
 True.
- Por every positive integer n, there is a prime number larger than n. True

whereas the following are not propositions

3 x + 4 = 6. The truth depends on the value of x.

Write a pseudo-code to solve a linear diophantine equation.
 Neither true or false.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

NOTATION

We will use the notation

$$p: 2 + 2 = 5$$

to define *p* to be the proposition 2 + 2 = 5.

The **conjunction** of p and q, denoted $p \land q$, is the proposition

p and q

The **disjunction** of p and q, denoted $p \lor q$, is the proposition

p or q

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conjuction and Disjunction

lf

p: It is raining, q: It is cold,

then the conjunction of p and q is

 $p \wedge q$: It is raining and it is cold.

The disjunction of p and q is

 $p \lor q$: It is raining or it is cold.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

TRUTH TABLES

Truth tables describe the truth values of propositions such as conjunctions and disjunctions. T denotes true and F denotes false.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

NEGATION

The **negation** of p, denoted $\neg p$, is the proposition

not p

P $\neg p$ TFFT

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

OPERATOR PRECEDENCE

In expressions involving some or all of \neg , \land , and \lor , in the absence of parentheses, we first evaluate \neg then \land then \lor .

EXAMPLE

Given the proposition p is false, proposition q is true, and the proposition r is false, determine whether the proposition

 $\neg p \lor q \land r$

is true or false.

OPERATOR PRECEDENCE

In expressions involving some or all of \neg , \land , and \lor , in the absence of parentheses, we first evaluate \neg then \land then \lor .

EXAMPLE

We first evaluate $\neg p$, which is true. We next evaluate $q \land r$, which is false. Finally we evaluate

 $\neg p \lor q \land r$

which is true.

э

イロト 不得 トイヨト イヨト

CONDITIONAL PROPOSITIONS

If p and q are propositions, the proposition

if p then q

is called a conditional proposition and is denoted

p
ightarrow q

The proposition p is called the **hypothesis** (or **antecedent**) and the proposition q is called the **conclusion** (or **consequent**). With respect to operational precedence, the conditional operator \rightarrow is evaluated last.

Conditional Proposition

р	q	p ightarrow q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

EXAMPLE

Assuming that p is true, q is false, and r is true, find

A
$$p \land q \rightarrow r$$

B $p \lor q \rightarrow \neg r$
C $p \land (q \rightarrow r)$

D $p \rightarrow (q \rightarrow r)$

hiversity of adfordshire

Conditional Proposition

р	q	p ightarrow q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

EXAMPLE

Assuming that p is true, q is false, and r is true, find

A
$$p \wedge q \rightarrow r$$
 is true $(p \wedge q$ is false)

B
$$p \lor q \rightarrow \neg r$$
 is false $(p \lor q \text{ is true})$

$${}_{\mathrm{C}}$$
 $p \wedge (q
ightarrow r)$ is true $(q
ightarrow r$ is true)

D
$$p
ightarrow (q
ightarrow r)$$
 is true $(q
ightarrow r$ is true)

hiversity of adfordshire

BICONDITIONAL PROPOSITIONS

If p and q are propositions, the proposition

p if and only if q

is called a biconditional proposition and is denoted

 $p\leftrightarrow q$

LOGICAL EQUIVALENCE

Suppose that the propositions P and Q are made up of the propositions p_1, \ldots, p_n . We say that P and Q are **logically** equivalent and write

$$P \equiv Q$$

provided that, given any truth values of p_1, \ldots, p_n , either P and Q are both true, or P and Q are both false.

DE MORGAN'S LAWS FOR LOGIC

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Converse & Contrapositive

- We call the proposition $q \rightarrow p$ the **converse** of $p \rightarrow q$, thus a conditional proposition can be true while its converse is false.
- The **contrapositive** (or **transposition**) of the conditional proposition $p \rightarrow q$ is the proposition $\neg q \rightarrow \neg p$.

EXAMPLE

Write the conditional proposition "If the network is down, then I cannot access the internet" symbolically. Then write the contrapositive and converse in words.

EXAMPLE

Write the conditional proposition "If the network is down, then I cannot access the internet" symbolically. Then write the contrapositive and converse in words.

Let

- p: The internet is down
- q: I cannot access the Internet

Then the conditional proposition is $p \rightarrow q$.

3

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

EXAMPLE

Write the conditional proposition "If the network is down, then I cannot access the internet" symbolically. Then write the contrapositive and converse in words.

Let

- p: The internet is down
- q: I cannot access the Internet

Then the conditional proposition is $p \rightarrow q$, the contrapositive is $\neg q \rightarrow \neg p$ "If I can access the internet, then the network is not down".

3

・ロット (雪) () () () ()

EXAMPLE

Write the conditional proposition "If the network is down, then I cannot access the internet" symbolically. Then write the contrapositive and converse in words.

Let

p: The internet is down

q: I cannot access the Internet

Then the conditional proposition is $p \rightarrow q$, the converse is $q \rightarrow p$ "If I cannot access the internet, then the network is down".

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

LOGICAL EQUIVALENCE

The conditional proposition and its contrapositive are logically equivalent:

"If the network is down, then I cannot access the internet" is logically equivalent to "If I can access the internet, then the network is not down".

э

・ロット (雪) () () () ()