Determinants
 CIS002-2 Computational Alegrba and Number Theory

David Goodwin

david.goodwin@perisic.com

12:00, Tuesday $17^{\text {th }}$ January 2012

Outline

(1) DETERMINANTS
(2) Determinants of The Third order
(3) Evaluation of a Third-ORDER DETERMINANT
(4) Simultaneous equations in three unknowns
(5) Consistancy of a set of Equations
(6 Properties of determinants

Outline

(1) Determinants
(2) Determinants of THE THIRD ORDER
(3) EVALUATION OF A THIRD-ORDER DETERMINANT
(4) Simultaneous equations in three unknowns
(5) CONSISTANCY OF A SET OF EQUATIONS
(6) Properties of determinants

An introduction with simultaneous equations

- You are familiar with the method of solving a pair of simultaneous equations by elimination.

An introduction with simultaneous equations

- You are familiar with the method of solving a pair of simultaneous equations by elimination.
- e.g. to solve $2 x+3 y+2=0$ (I) and $3 x+4 y+6=0$ (II).

An introduction with simultaneous equations

- You are familiar with the method of solving a pair of simultaneous equations by elimination.
- e.g. to solve $2 x+3 y+2=0$ (I) and $3 x+4 y+6=0$ (II).
- we could find the value of x by eliminating y.

An introduction with simultaneous equations

- You are familiar with the method of solving a pair of simultaneous equations by elimination.
- e.g. to solve $2 x+3 y+2=0$ (I) and $3 x+4 y+6=0$ (II).
- we could find the value of x by eliminating y.
- we could multiply (I) by 4 and (II) by 3 to make the coefficient of y the same in each equation.

An introduction with simultaneous equations

- You are familiar with the method of solving a pair of simultaneous equations by elimination.
- e.g. to solve $2 x+3 y+2=0$ (I) and $3 x+4 y+6=0$ (II).
- we could find the value of x by eliminating y.
- we could multiply (I) by 4 and (II) by 3 to make the coefficient of y the same in each equation.
- giving $8 x+12 y+8=0$ and $9 x+12 y+18=0$.

An introduction with simultaneous equations

- You are familiar with the method of solving a pair of simultaneous equations by elimination.
- e.g. to solve $2 x+3 y+2=0$ (I) and $3 x+4 y+6=0$ (II).
- we could find the value of x by eliminating y.
- we could multiply (I) by 4 and (II) by 3 to make the coefficient of y the same in each equation.
- giving $8 x+12 y+8=0$ and $9 x+12 y+18=0$.
- then by subtraction we would get $x+10=0$, i.e. $x=-10$.

An introduction with simultaneous equations

- You are familiar with the method of solving a pair of simultaneous equations by elimination.
- e.g. to solve $2 x+3 y+2=0$ (I) and $3 x+4 y+6=0$ (II).
- we could find the value of x by eliminating y.
- we could multiply (I) by 4 and (II) by 3 to make the coefficient of y the same in each equation.
- giving $8 x+12 y+8=0$ and $9 x+12 y+18=0$.
- then by subtraction we would get $x+10=0$, i.e. $x=-10$.
- by substituting this value back into either equation we would get $y=6$.

An introduction with simultaneous equations

- You are familiar with the method of solving a pair of simultaneous equations by elimination.
- e.g. to solve $2 x+3 y+2=0$ (I) and $3 x+4 y+6=0$ (II).
- we could find the value of x by eliminating y.
- we could multiply (I) by 4 and (II) by 3 to make the coefficient of y the same in each equation.
- giving $8 x+12 y+8=0$ and $9 x+12 y+18=0$.
- then by subtraction we would get $x+10=0$, i.e. $x=-10$.
- by substituting this value back into either equation we would get $y=6$.
- This is almost trivial!

A generalisation of simultaneous equations

- A generalisation of a pair of simultaneous equations may prove useful in finding some pattern:

A generalisation of simultaneous equations

- A generalisation of a pair of simultaneous equations may prove useful in finding some pattern:

$$
a_{1} x+b_{1} y+d_{1}=0 \text { (I) } \quad a_{2} x+b_{2} y+d_{2}=0 \text { (II) }
$$

A generalisation of simultaneous equations

- A generalisation of a pair of simultaneous equations may prove useful in finding some pattern:

$$
a_{1} x+b_{1} y+d_{1}=0 \text { (I) } \quad a_{2} x+b_{2} y+d_{2}=0 \text { (II) }
$$

- then to eliminate y we make the coefficients of y in the two equations identical by multiplying (I) by,... and (II) by,....

A generalisation of simultaneous equations

- A generalisation of a pair of simultaneous equations may prove useful in finding some pattern:

$$
a_{1} x+b_{1} y+d_{1}=0 \text { (I) } \quad a_{2} x+b_{2} y+d_{2}=0 \text { (II) }
$$

- then to eliminate y we make the coefficients of y in the two equations identical by multiplying (I) by,... and (II) by,....
- The answer is to multiply (I) by b_{2} and (II) by b_{1}.

A generalisation of simultaneous equations

- A generalisation of a pair of simultaneous equations may prove useful in finding some pattern:

$$
a_{1} x+b_{1} y+d_{1}=0 \text { (I) } \quad a_{2} x+b_{2} y+d_{2}=0 \text { (II) }
$$

- then to eliminate y we make the coefficients of y in the two equations identical by multiplying (I) by,... and (II) by,....
- The answer is to multiply (I) by b_{2} and (II) by b_{1}.

$$
a_{1} b_{2} x+b_{1} b_{2} y+b_{2} d_{1}=0 \quad a_{2} b_{1} x+b_{1} b_{2} y+b_{1} d_{2}=0
$$

A generalisation of simultaneous equations

- A generalisation of a pair of simultaneous equations may prove useful in finding some pattern:

$$
a_{1} x+b_{1} y+d_{1}=0 \text { (I) } \quad a_{2} x+b_{2} y+d_{2}=0 \text { (II) }
$$

- then to eliminate y we make the coefficients of y in the two equations identical by multiplying (I) by,... and (II) by,....
- The answer is to multiply (I) by b_{2} and (II) by b_{1}.

$$
a_{1} b_{2} x+b_{1} b_{2} y+b_{2} d_{1}=0 \quad a_{2} b_{1} x+b_{1} b_{2} y+b_{1} d_{2}=0
$$

- The next step would be to subtract the equations, which gives $\left(a_{1} b_{2}-a_{2} b_{1}\right) x+b_{2} d_{1}-b_{1} d_{2}=0$

A generalisation of simultaneous equations

- A generalisation of a pair of simultaneous equations may prove useful in finding some pattern:

$$
a_{1} x+b_{1} y+d_{1}=0 \text { (I) } \quad a_{2} x+b_{2} y+d_{2}=0 \text { (II) }
$$

- then to eliminate y we make the coefficients of y in the two equations identical by multiplying (I) by,... and (II) by,....
- The answer is to multiply (I) by b_{2} and (II) by b_{1}.

$$
a_{1} b_{2} x+b_{1} b_{2} y+b_{2} d_{1}=0 \quad a_{2} b_{1} x+b_{1} b_{2} y+b_{1} d_{2}=0
$$

- The next step would be to subtract the equations, which gives $\left(a_{1} b_{2}-a_{2} b_{1}\right) x+b_{2} d_{1}-b_{1} d_{2}=0$
- finding x to be

$$
x=\frac{b_{1} d_{2}-b_{2} d_{1}}{a_{1} b_{2}-a_{2} b_{1}}
$$

A generalisation of simultaneous equations

- In practice, this last result can give a finite value for x if and only if the denominator is not zero.

A generalisation of simultaneous equations

- In practice, this last result can give a finite value for x if and only if the denominator is not zero.
- That is, the equations

$$
a_{1} x+b_{1} y+d_{1}=0 \quad a_{2} x+b_{2} y+d_{2}=0
$$

give a finite value for x provided that $\left(a_{1} b_{2}-a_{2} b_{1}\right) \neq 0$.

A generalisation of simultaneous equations

- In practice, this last result can give a finite value for x if and only if the denominator is not zero.
- That is, the equations

$$
a_{1} x+b_{1} y+d_{1}=0 \quad a_{2} x+b_{2} y+d_{2}=0
$$

give a finite value for x provided that $\left(a_{1} b_{2}-a_{2} b_{1}\right) \neq 0$.

- The equation $\left(a_{1} b_{2}-a_{2} b_{1}\right)$ is therefore an important one in the solution of simultaneous equations.

A generalisation of simultaneous equations

- In practice, this last result can give a finite value for x if and only if the denominator is not zero.
- That is, the equations

$$
a_{1} x+b_{1} y+d_{1}=0 \quad a_{2} x+b_{2} y+d_{2}=0
$$

give a finite value for x provided that $\left(a_{1} b_{2}-a_{2} b_{1}\right) \neq 0$.

- The equation $\left(a_{1} b_{2}-a_{2} b_{1}\right)$ is therefore an important one in the solution of simultaneous equations.
- There is a shorthand notation for this

$$
\left(a_{1} b_{2}-a_{2} b_{1}\right)=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|
$$

Notation

- For $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$ to represent $\left(a_{1} b_{2}-a_{2} b_{1}\right)$ then we must multiply the terms diagonally to form the product terms in the expansion:

Notation

- For $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$ to represent $\left(a_{1} b_{2}-a_{2} b_{1}\right)$ then we must multiply the terms diagonally to form the product terms in the expansion:
- we multiply $\left|\begin{array}{ll}a_{1} & \\ & b_{2}\end{array}\right|$ and then subrtact $\left|\begin{array}{ll} & b_{1} \\ a_{2} & \end{array}\right|$.

Notation

- For $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$ to represent $\left(a_{1} b_{2}-a_{2} b_{1}\right)$ then we must multiply the terms diagonally to form the product terms in the expansion:
- we multiply $\left|\begin{array}{ll}a_{1} & \\ & b_{2}\end{array}\right|$ and then subrtact $\left\lvert\, \begin{array}{ll} & b_{1} \\ a_{2} & \end{array}\right.$.
- i.e. $+\searrow$ and $-\nearrow$.

Notation

- For $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$ to represent $\left(a_{1} b_{2}-a_{2} b_{1}\right)$ then we must multiply the terms diagonally to form the product terms in the expansion:
- we multiply $\left|\begin{array}{ll}a_{1} & \\ & b_{2}\end{array}\right|$ and then subrtact $\left\lvert\, \begin{array}{ll} & b_{1} \\ a_{2} & \end{array}\right.$.
- i.e. $+\searrow$ and $-\nearrow$.
- $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$ is called the determinant of the second order (since it has two rows and two columns), and represents $\left(a_{1} b_{2}-a_{2} b_{1}\right)$

A FEW EXERCISES
(1) $\left|\begin{array}{ll}4 & 2 \\ 5 & 3\end{array}\right|$
(2) $\left|\begin{array}{ll}7 & 4 \\ 6 & 3\end{array}\right|$
(3) $\left|\begin{array}{cc}2 & 1 \\ 4 & -3\end{array}\right|$

A FEW EXERCISES
(1) $\left|\begin{array}{ll}4 & 2 \\ 5 & 3\end{array}\right|=4.3-5.2=12-10=2$
(2) $\left|\begin{array}{ll}7 & 4 \\ 6 & 3\end{array}\right|$
(3) $\left|\begin{array}{cc}2 & 1 \\ 4 & -3\end{array}\right|$

A FEW EXERCISES

(1) $\left|\begin{array}{ll}4 & 2 \\ 5 & 3\end{array}\right|=4.3-5.2=12-10=2$
(2) $\left|\begin{array}{ll}7 & 4 \\ 6 & 3\end{array}\right|=7.3-6.4=21-24=-3$
(3) $\left|\begin{array}{cc}2 & 1 \\ 4 & -3\end{array}\right|$

A FEW EXERCISES

(1) $\left|\begin{array}{ll}4 & 2 \\ 5 & 3\end{array}\right|=4.3-5.2=12-10=2$
(2) $\left|\begin{array}{ll}7 & 4 \\ 6 & 3\end{array}\right|=7.3-6.4=21-24=-3$
(3) $\left|\begin{array}{cc}2 & 1 \\ 4 & -3\end{array}\right|=2 .(-3)-4.1=-6-4=-10$

A generalisation of simultaneous equations

- In solving the equations

$$
a_{1} x+b_{1} y+d_{1}=0 \quad a_{2} x+b_{2} y+d_{2}=0
$$

We found

$$
x=\frac{b_{1} d_{2}-b_{2} d_{1}}{a_{1} b_{2}-a_{2} b_{1}}
$$

A generalisation of simultaneous equations

- In solving the equations

$$
a_{1} x+b_{1} y+d_{1}=0 \quad a_{2} x+b_{2} y+d_{2}=0
$$

We found

$$
x=\frac{b_{1} d_{2}-b_{2} d_{1}}{a_{1} b_{2}-a_{2} b_{1}}
$$

- $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$ is the denominator and $\left|\begin{array}{ll}b_{1} & d_{1} \\ b_{2} & d_{2}\end{array}\right|$ the numerator.

A generalisation of simultaneous equations

- If we were to eliminate x from the simultaneous equations, we would have

$$
y=-\frac{a_{1} d_{2}-a_{2} d_{1}}{a_{1} b_{2}-a_{2} b_{1}}
$$

A generalisation of simultaneous equations

- If we were to eliminate x from the simultaneous equations, we would have

$$
y=-\frac{a_{1} d_{2}-a_{2} d_{1}}{a_{1} b_{2}-a_{2} b_{1}}
$$

- $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$ is the denominator and $\left|\begin{array}{ll}a_{1} & d_{1} \\ a_{2} & d_{2}\end{array}\right|$ the numerator.

A generalisation of simultaneous equations

- Now we find

$$
x=\frac{\left|\begin{array}{ll}
b_{1} & d_{1} \\
b_{2} & d_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|} \quad \text { and } \quad y=-\frac{\left|\begin{array}{ll}
a_{1} & d_{1} \\
a_{2} & d_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

A generalisation of simultaneous equations

- Now we find

$$
x=\frac{\left|\begin{array}{ll}
b_{1} & d_{1} \\
b_{2} & d_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|} \quad \text { and } \quad y=-\frac{\left|\begin{array}{ll}
a_{1} & d_{1} \\
a_{2} & d_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

- Rearranging

$$
\frac{x}{\left|\begin{array}{ll}
b_{1} & d_{1} \\
b_{2} & d_{2}
\end{array}\right|}=\frac{1}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|} \quad \text { and } \quad \frac{y}{\left|\begin{array}{ll}
a_{1} & d_{1} \\
a_{2} & d_{2}
\end{array}\right|}=\frac{-1}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

A generalisation of simultaneous equations

- Now we find

$$
x=\frac{\left|\begin{array}{ll}
b_{1} & d_{1} \\
b_{2} & d_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|} \quad \text { and } \quad y=-\frac{\left|\begin{array}{ll}
a_{1} & d_{1} \\
a_{2} & d_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

- Rearranging

$$
\frac{x}{\left|\begin{array}{ll}
b_{1} & d_{1} \\
b_{2} & d_{2}
\end{array}\right|}=\frac{1}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|} \quad \text { and } \quad \frac{y}{\left|\begin{array}{ll}
a_{1} & d_{1} \\
a_{2} & d_{2}
\end{array}\right|}=\frac{-1}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

- and combining we find

$$
\frac{x}{\left|\begin{array}{ll}
b_{1} & d_{1} \\
b_{2} & d_{2}
\end{array}\right|}=\frac{-y}{\left|\begin{array}{ll}
a_{1} & d_{1} \\
a_{2} & d_{2}
\end{array}\right|}=\frac{1}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

Notation giving a memory aid

- $a_{1} x+b_{1} y+d_{1}=0$

Notation giving a memory aid

- $a_{1} x+b_{1} y+d_{1}=0$
- $a_{2} x+b_{2} y+d_{2}=0$

Notation giving a memory Aid

- $a_{1} x+b_{1} y+d_{1}=0$
- $a_{2} x+b_{2} y+d_{2}=0$
- The x denominator, $\left|\begin{array}{ll}b_{1} & d_{1} \\ b_{2} & d_{2}\end{array}\right|=\Delta_{1}$: omit the x-terms, write remaining coefficients/constants in the order they stand.

Notation giving a memory Aid

- $a_{1} x+b_{1} y+d_{1}=0$
- $a_{2} x+b_{2} y+d_{2}=0$
- The x denominator, $\left|\begin{array}{ll}b_{1} & d_{1} \\ b_{2} & d_{2}\end{array}\right|=\Delta_{1}$: omit the x-terms, write remaining coefficients/constants in the order they stand.
- The y denominator, $\left|\begin{array}{ll}a_{1} & d_{1} \\ a_{2} & d_{2}\end{array}\right|=\Delta_{2}$: omit the y-terms, write remaining coefficients/constants in the order they stand.

Notation giving a memory Aid

- $a_{1} x+b_{1} y+d_{1}=0$
- $a_{2} x+b_{2} y+d_{2}=0$
- The x denominator, $\left|\begin{array}{ll}b_{1} & d_{1} \\ b_{2} & d_{2}\end{array}\right|=\Delta_{1}$: omit the x-terms, write remaining coefficients/constants in the order they stand.
- The y denominator, $\left|\begin{array}{ll}a_{1} & d_{1} \\ a_{2} & d_{2}\end{array}\right|=\Delta_{2}$: omit the y-terms, write remaining coefficients/constants in the order they stand.
- The final denominator, $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|=\Delta_{0}$: omit the constant-terms and write the remaining coefficients in the order they stand.

Notation giving a memory Aid

- $a_{1} x+b_{1} y+d_{1}=0$
- $a_{2} x+b_{2} y+d_{2}=0$
- The x denominator, $\left|\begin{array}{ll}b_{1} & d_{1} \\ b_{2} & d_{2}\end{array}\right|=\Delta_{1}$: omit the x-terms, write remaining coefficients/constants in the order they stand.
- The y denominator, $\left|\begin{array}{ll}a_{1} & d_{1} \\ a_{2} & d_{2}\end{array}\right|=\Delta_{2}$: omit the y-terms, write remaining coefficients/constants in the order they stand.
- The final denominator, $\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|=\Delta_{0}$: omit the constant-terms and write the remaining coefficients in the order they stand.
- and our equations becomes

$$
\frac{x}{\Delta_{1}}=-\frac{y}{\Delta_{2}}=\frac{1}{\Delta_{0}}
$$

Outline

(1) DETERMINANTS
(2) Determinants of THE THIRD ORDER
(3) Evaluation of A THIRD-ORDER DETERMINANT
(4) Simultaneous equations in three unknowns
(5) CONSISTANCY OF A SET OF EQUATIONS
(6) Properties of determinants

DETERMINANTS OF THE THIRD ORDER

- A determinant of the third order will contain 3 rows and 3 columns:

DETERMINANTS OF THE THIRD ORDER

- A determinant of the third order will contain 3 rows and 3 columns:

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

DETERMINANTS OF THE THIRD ORDER

- A determinant of the third order will contain 3 rows and 3 columns:

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

- Each element in the determinant is associated with its minor, which is found by omitting the row and column containing the element concerned.

DETERMINANTS OF THE THIRD ORDER

- the minor of a_{1} is $\left|\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right|$ obtained $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & \mathbf{c}_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$.

DETERMINANTS OF THE THIRD ORDER

- the minor of a_{1} is $\left|\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right|$ obtained $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\ a_{3} & \mathbf{b}_{3} & \mathbf{c}_{3}\end{array}\right|$.
- the minor of b_{1} is $\left|\begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}\right|$ obtained $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ \mathbf{a}_{2} & b_{2} & \mathbf{c}_{2} \\ \mathbf{a}_{3} & b_{3} & \mathbf{c}_{3}\end{array}\right|$.

DETERMINANTS OF THE THIRD ORDER

- the minor of a_{1} is $\left|\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right|$ obtained $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\ a_{3} & \mathbf{b}_{3} & \mathbf{c}_{3}\end{array}\right|$.
- the minor of b_{1} is $\left|\begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}\right|$ obtained $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ \mathbf{a}_{2} & b_{2} & \mathbf{c}_{2} \\ \mathbf{a}_{3} & b_{3} & \mathbf{c}_{\mathbf{3}}\end{array}\right|$.
- the minor of c_{1} is $\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right|$ obtained $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & c_{2} \\ \mathbf{a}_{3} & \mathbf{b}_{3} & c_{3}\end{array}\right|$.

DETERMINANTS OF THE THIRD ORDER

- the minor of a_{1} is $\left|\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right|$ obtained $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & \mathbf{b}_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$.
- the minor of b_{1} is $\left|\begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}\right|$ obtained $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ \mathbf{a}_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$.
- the minor of c_{1} is $\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right|$ obtained $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & c_{2} \\ \mathbf{a}_{3} & \mathbf{b}_{3} & c_{3}\end{array}\right|$.
- What is the minor of b_{2} ?

DETERMINANTS OF THE THIRD ORDER

- the minor of a_{1} is $\left|\begin{array}{ll}b_{2} & c_{2} \\ b_{3} & c_{3}\end{array}\right|$ obtained $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$.
- the minor of b_{1} is $\left|\begin{array}{ll}a_{2} & c_{2} \\ a_{3} & c_{3}\end{array}\right|$ obtained $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ \mathbf{a}_{2} & b_{2} & c_{2} \\ \mathbf{a}_{3} & b_{3} & c_{3}\end{array}\right|$.
- the minor of c_{1} is $\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right|$ obtained $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & c_{2} \\ \mathbf{a}_{3} & \mathbf{b}_{3} & c_{3}\end{array}\right|$.
- What is the minor of b_{2} ?
- ... $\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{3} & c_{3}\end{array}\right|$

Outline

(1) DETERMINANTS
(2) Determinants of THE THIRD ORDER
(3) Evaluation of a Third-ORDER DETERMINANT
(4) Simultaneous equations in three unknowns
(5) Consistancy of A SET OF EQUATIONS
(6) Properties of determinants

Evaluation of a THIRD-ORDER DETERMINANT

- To expand a determinant of the third order, we can write down each element along the top row, multiply it by its minor and give the terms a plus or minus alternately.

Evaluation of a THIRD-ORDER DETERMINANT

- To expand a determinant of the third order, we can write down each element along the top row, multiply it by its minor and give the terms a plus or minus alternately.

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-b_{1}\left|\begin{array}{ll}
a_{2} & c_{2} \\
a_{3} & c_{3}
\end{array}\right|+c_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right|
$$

Evaluation of a THIRD-ORDER DETERMINANT

- To expand a determinant of the third order, we can write down each element along the top row, multiply it by its minor and give the terms a plus or minus alternately.

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-b_{1}\left|\begin{array}{ll}
a_{2} & c_{2} \\
a_{3} & c_{3}
\end{array}\right|+c_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right|
$$

- Then we already know how to expand a determinant of the second order by multiplying diagonally, $+\searrow-\nearrow$

Outline

（1）Determinants
（2）Determinants of The Third order
（3）EVALUATION OF A THIRD－ORDER DETERMINANT
（4）Simultaneous Equations in three unknowns
（5）CONSISTANCY OF A SET OF EQUATIONS
（6）Properties of determinants

Simultaneous Equations in three unknowns

- consider the following set of equations:

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z+d_{1}=0 \\
& a_{2} x+b_{2} y+c_{2} z+d_{2}=0 \\
& a_{3} x+b_{3} y+c_{3} z+d_{3}=0
\end{aligned}
$$

Simultaneous Equations in three unknowns

- consider the following set of equations:

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z+d_{1}=0 \\
& a_{2} x+b_{2} y+c_{2} z+d_{2}=0 \\
& a_{3} x+b_{3} y+c_{3} z+d_{3}=0
\end{aligned}
$$

- If we find x, y, and z by the elimination method, we obtain results that can be expressed in determinant form:

$$
\frac{x}{\left|\begin{array}{lll}
b_{1} & c_{1} & d_{1} \\
b_{2} & c_{2} & d_{2} \\
b_{3} & c_{3} & d_{3}
\end{array}\right|}=\frac{-y}{\left|\begin{array}{lll}
a_{1} & c_{1} & d_{1} \\
a_{2} & c_{2} & d_{2} \\
a_{3} & c_{3} & d_{3}
\end{array}\right|}=\frac{z}{\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right|}=\frac{-1}{\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|}
$$

Simultaneous Equations in three unknowns

- consider the following set of equations:

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z+d_{1}=0 \\
& a_{2} x+b_{2} y+c_{2} z+d_{2}=0 \\
& a_{3} x+b_{3} y+c_{3} z+d_{3}=0
\end{aligned}
$$

- If we find x, y, and z by the elimination method, we obtain results that can be expressed in determinant form:

$$
\frac{x}{\left|\begin{array}{lll}
b_{1} & c_{1} & d_{1} \\
b_{2} & c_{2} & d_{2} \\
b_{3} & c_{3} & d_{3}
\end{array}\right|}=\frac{-y}{\left|\begin{array}{lll}
a_{1} & c_{1} & d_{1} \\
a_{2} & c_{2} & d_{2} \\
a_{3} & c_{3} & d_{3}
\end{array}\right|}=\frac{z}{\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right|}=\frac{-1}{\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|}
$$

- where we would remember this in the form

$$
\frac{x}{\Delta_{1}}=\frac{-y}{\Delta_{2}}=\frac{z}{\Delta_{3}}=\frac{-1}{\Delta_{0}}
$$

CAN YOU SEE THE PATTERN?

Considering what we have seen with simultaneous equations with two and three unknowns, what would you guess to be the results in determinant form of the following set of equations:

$$
\begin{aligned}
& a_{1} w+b_{1} x+c_{1} y+d_{1} z+e_{1}=0 \\
& a_{2} w+b_{2} x+c_{2} y+d_{2} z+e_{2}=0 \\
& a_{3} w+b_{3} x+c_{3} y+d_{3} z+e_{3}=0 \\
& a_{4} w+b_{4} x+c_{4} y+d_{4} z+e_{4}=0
\end{aligned}
$$

Outline

(1) DETERMINANTS
(2) Determinants of The Third order
(3) EVALUATION OF A THIRD-ORDER DETERMINANT
(4) Simultaneous equations in three unknowns
(5) Consistancy of a set of Equations
(6) Properties of determinants

Consistancy of a set of equations

- Let us consider the follow set of three equations with two unknowns:

Consistancy of a set of equations

- Let us consider the follow set of three equations with two unknowns:

$$
\begin{array}{r}
3 x-y-4=0 \\
2 x+3 y-8=0 \\
x-2 y+3=0
\end{array}
$$

Consistancy of a set of equations

- Let us consider the follow set of three equations with two unknowns:

$$
\begin{array}{r}
3 x-y-4=0 \\
2 x+3 y-8=0 \\
x-2 y+3=0
\end{array}
$$

- If we solve the first two of these equations in the usual way,

Consistancy of a set of equations

- Let us consider the follow set of three equations with two unknowns:

$$
\begin{array}{r}
3 x-y-4=0 \\
2 x+3 y-8=0 \\
x-2 y+3=0
\end{array}
$$

- If we solve the first two of these equations in the usual way,
- we find $x=1$ and $y=2$.

Consistancy of a set of equations

- Let us consider the follow set of three equations with two unknowns:

$$
\begin{array}{r}
3 x-y-4=0 \\
2 x+3 y-8=0 \\
x-2 y+3=0
\end{array}
$$

- If we solve the first two of these equations in the usual way,
- we find $x=1$ and $y=2$.
- If we now substitute these values into the third equation we obtain $3 x-y-4=3-2-4=-3$, and not 0 as this equations states.

Consistancy of a set of equations

- Let us consider the follow set of three equations with two unknowns:

$$
\begin{array}{r}
3 x-y-4=0 \\
2 x+3 y-8=0 \\
x-2 y+3=0
\end{array}
$$

- If we solve the first two of these equations in the usual way,
- we find $x=1$ and $y=2$.
- If we now substitute these values into the third equation we obtain $3 x-y-4=3-2-4=-3$, and not 0 as this equations states.
- These three equations do not have a common solution. They are not consistent. There are no values of x and y which will satisfy all three equations.

Consistancy of a set of equations

- Let us consider the follow set of three equations with two unknowns:

$$
\begin{array}{r}
3 x-y-4=0 \\
2 x+3 y-8=0 \\
x-2 y+3=0
\end{array}
$$

- If we solve the first two of these equations in the usual way,
- we find $x=1$ and $y=2$.
- If we now substitute these values into the third equation we obtain $3 x-y-4=3-2-4=-3$, and not 0 as this equations states.
- These three equations do not have a common solution. They are not consistent. There are no values of x and y which will satisfy all three equations.
- If equations are consistent, they have a common solution.

General form of a consistent set of equations

- Let us consider the follow set of three equations with two unknowns:

$$
\begin{aligned}
& a_{1} x+b_{1} y+d_{1}=0 \\
& a_{2} x+b_{2} y+d_{2}=0 \\
& a_{3} x+b_{3} y+d_{3}=0
\end{aligned}
$$

GENERAL FORM OF A CONSISTENT SET OF EQUATIONS

- Let us consider the follow set of three equations with two unknowns:

$$
\begin{aligned}
& a_{1} x+b_{1} y+d_{1}=0 \\
& a_{2} x+b_{2} y+d_{2}=0 \\
& a_{3} x+b_{3} y+d_{3}=0
\end{aligned}
$$

- If we solve the second two of these equations in the usual way,

GENERAL FORM OF A CONSISTENT SET OF EQUATIONS

- Let us consider the follow set of three equations with two unknowns:

$$
\begin{aligned}
& a_{1} x+b_{1} y+d_{1}=0 \\
& a_{2} x+b_{2} y+d_{2}=0 \\
& a_{3} x+b_{3} y+d_{3}=0
\end{aligned}
$$

- If we solve the second two of these equations in the usual way,
- we find $x=\frac{\Delta_{1}}{\Delta_{0}}$ and $y=-\frac{\Delta_{2}}{\Delta_{0}}$.

GENERAL FORM OF A CONSISTENT SET OF EQUATIONS

- Let us consider the follow set of three equations with two unknowns:

$$
\begin{aligned}
& a_{1} x+b_{1} y+d_{1}=0 \\
& a_{2} x+b_{2} y+d_{2}=0 \\
& a_{3} x+b_{3} y+d_{3}=0
\end{aligned}
$$

- If we solve the second two of these equations in the usual way,
- we find $x=\frac{\Delta_{1}}{\Delta_{0}}$ and $y=-\frac{\Delta_{2}}{\Delta_{0}}$.
- If we now substitute these values into the first equation we obtain $a_{1} \frac{\Delta_{1}}{\Delta_{0}}+b_{1} \frac{-\Delta_{2}}{\Delta_{0}}+d_{1}=0$, i.e. $a_{1} \Delta_{1}-b_{1} \Delta_{2}+d_{1} \Delta_{0}=0$.

GENERAL FORM OF A CONSISTENT SET OF EQUATIONS

- Let us consider the follow set of three equations with two unknowns:

$$
\begin{aligned}
& a_{1} x+b_{1} y+d_{1}=0 \\
& a_{2} x+b_{2} y+d_{2}=0 \\
& a_{3} x+b_{3} y+d_{3}=0
\end{aligned}
$$

- If we solve the second two of these equations in the usual way,
- we find $x=\frac{\Delta_{1}}{\Delta_{0}}$ and $y=-\frac{\Delta_{2}}{\Delta_{0}}$.
- If we now substitute these values into the first equation we obtain $a_{1} \frac{\Delta_{1}}{\Delta_{0}}+b_{1} \frac{-\Delta_{2}}{\Delta_{0}}+d_{1}=0$, i.e. $a_{1} \Delta_{1}-b_{1} \Delta_{2}+d_{1} \Delta_{0}=0$.
- i.e. $a_{1}\left|\begin{array}{ll}b_{2} & d_{2} \\ b_{3} & d_{3}\end{array}\right|-b_{1}\left|\begin{array}{ll}a_{2} & d_{2} \\ a_{3} & d_{3}\end{array}\right|+d_{1}\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right|=0$.

GEnERAL FORM OF A CONSISTENT SET OF EQUATIONS

- Let us consider the follow set of three equations with two unknowns:

$$
\begin{aligned}
& a_{1} x+b_{1} y+d_{1}=0 \\
& a_{2} x+b_{2} y+d_{2}=0 \\
& a_{3} x+b_{3} y+d_{3}=0
\end{aligned}
$$

- If we solve the second two of these equations in the usual way,
- we find $x=\frac{\Delta_{1}}{\Delta_{0}}$ and $y=-\frac{\Delta_{2}}{\Delta_{0}}$.
- If we now substitute these values into the first equation we obtain $a_{1} \frac{\Delta_{1}}{\Delta_{0}}+b_{1} \frac{-\Delta_{2}}{\Delta_{0}}+d_{1}=0$, i.e. $a_{1} \Delta_{1}-b_{1} \Delta_{2}+d_{1} \Delta_{0}=0$.
- i.e. $a_{1}\left|\begin{array}{ll}b_{2} & d_{2} \\ b_{3} & d_{3}\end{array}\right|-b_{1}\left|\begin{array}{ll}a_{2} & d_{2} \\ a_{3} & d_{3}\end{array}\right|+d_{1}\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right|=0$.
- i.e. $\left|\begin{array}{lll}a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3}\end{array}\right|=0$.

Outline

(1) DETERMINANTS
(2) Determinants of The Third order
(3) Evaluation of a third-ORDER DETERMINANT
(4) Simultaneous equations in three unknowns
(5) CONSISTANCY OF A SET OF EQUATIONS
(6 Properties of determinants
(1) The value of a determinant remains unchanged if rows are changed to columns and columns are changed to rows. $\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
(1) The value of a determinant remains unchanged if rows are changed to columns and columns are changed to rows. $\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
(2) If two rows (or two columns) are interchanged, the sign of the determinant is changed. $\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{1} & b_{1}\end{array}\right|=-\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
(1) The value of a determinant remains unchanged if rows are changed to columns and columns are changed to rows. $\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
(2) If two rows (or two columns) are interchanged, the sign of the determinant is changed. $\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{1} & b_{1}\end{array}\right|=-\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
(3) If two rows (or two columns) are identical, the value of the determinant is zero. $\left|\begin{array}{ll}a_{1} & a_{1} \\ a_{2} & a_{2}\end{array}\right|=0$
(1) The value of a determinant remains unchanged if rows are changed to columns and columns are changed to rows. $\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
(2) If two rows (or two columns) are interchanged, the sign of the determinant is changed. $\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{1} & b_{1}\end{array}\right|=-\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
(3) If two rows (or two columns) are identical, the value of the determinant is zero. $\left|\begin{array}{ll}a_{1} & a_{1} \\ a_{2} & a_{2}\end{array}\right|=0$
(4) If the elements of any one row (or column) are all multiplied by a common factor, the determinant is multiplied by that common factor. $\left|\begin{array}{cc}k a_{1} & k b_{1} \\ a_{2} & b_{2}\end{array}\right|=k\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
(1) The value of a determinant remains unchanged if rows are changed to columns and columns are changed to rows. $\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
(2) If two rows (or two columns) are interchanged, the sign of the determinant is changed. $\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{1} & b_{1}\end{array}\right|=-\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
(3) If two rows (or two columns) are identical, the value of the determinant is zero. $\left|\begin{array}{ll}a_{1} & a_{1} \\ a_{2} & a_{2}\end{array}\right|=0$
4. If the elements of any one row (or column) are all multiplied by a common factor, the determinant is multiplied by that common factor. $\left|\begin{array}{cc}k a_{1} & k b_{1} \\ a_{2} & b_{2}\end{array}\right|=k\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
55 If the elements of any row (or column) are increased (or decreased) by equal multiples of the corresponding elements of any other row (or column), the value of the determinant is unchanged.

$$
\left|\begin{array}{ll}
\left(a_{1}+k b_{1}\right) & b_{1} \\
\left(a_{2}+k b_{2}\right) & b_{2}
\end{array}\right|=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|
$$

