Eigenvalues And Eigenvectors CIS008-2 Logic and Foundations of Mathematics

David Goodwin

david.goodwin@perisic.com

12:00, Friday $3^{\text {rd }}$ February 2012

Outline

(1) Eigenvalues
(2) CRAMER'S RULE

(3) SOLUTION TO

EIGENVALUE PROBLEM
(4) Eigenvectors
(5) ExERSISES

Outline

(1) Eigenvalues
(2) Cramer's RULE
(3) Solution TO

EIGENVALUE PROBLEM

(4) Eigenvectors
(5) ExERSISES

EigENVALUES

- Eigenvalues are a special set of scalars associated with a linear system of equations (i.e. a matrix equation).

Eigenvalues

- Eigenvalues are a special set of scalars associated with a linear system of equations (i.e. a matrix equation).
- Determination of the eigenvalues and eigenvectors of a system is extremely important in physics and engineering.

Eigenvalues

- Eigenvalues are a special set of scalars associated with a linear system of equations (i.e. a matrix equation).
- Determination of the eigenvalues and eigenvectors of a system is extremely important in physics and engineering.
- It is equivalent to matrix diagonalisation and arises in stability analysis, the physics of rotating bodies, small oscillations of vibrating systems etc.

EigEnvalues

- Eigenvalues are a special set of scalars associated with a linear system of equations (i.e. a matrix equation).
- Determination of the eigenvalues and eigenvectors of a system is extremely important in physics and engineering.
- It is equivalent to matrix diagonalisation and arises in stability analysis, the physics of rotating bodies, small oscillations of vibrating systems etc.
- Each eigenvalue is paired with a corresponding so-called eigenvector.

Eigenvalues

- Eigenvalues are a special set of scalars associated with a linear system of equations (i.e. a matrix equation).
- Determination of the eigenvalues and eigenvectors of a system is extremely important in physics and engineering.
- It is equivalent to matrix diagonalisation and arises in stability analysis, the physics of rotating bodies, small oscillations of vibrating systems etc.
- Each eigenvalue is paired with a corresponding so-called eigenvector.
- The decomposition of a square matrix \mathbf{A} into eigenvalues and eigenvectors is known as eigen decomposition.

Eigenvalues

- Eigenvalues are a special set of scalars associated with a linear system of equations (i.e. a matrix equation).
- Determination of the eigenvalues and eigenvectors of a system is extremely important in physics and engineering.
- It is equivalent to matrix diagonalisation and arises in stability analysis, the physics of rotating bodies, small oscillations of vibrating systems etc.
- Each eigenvalue is paired with a corresponding so-called eigenvector.
- The decomposition of a square matrix \mathbf{A} into eigenvalues and eigenvectors is known as eigen decomposition.
- Decomposition is always possible as long as the matrix consisting of the eigenvectors of A is square is known as the eigen decomposition theorem.

Eigenvalues

- Eigenvalues are a special set of scalars associated with a linear system of equations (i.e. a matrix equation).
- Determination of the eigenvalues and eigenvectors of a system is extremely important in physics and engineering.
- It is equivalent to matrix diagonalisation and arises in stability analysis, the physics of rotating bodies, small oscillations of vibrating systems etc.
- Each eigenvalue is paired with a corresponding so-called eigenvector.
- The decomposition of a square matrix \mathbf{A} into eigenvalues and eigenvectors is known as eigen decomposition.
- Decomposition is always possible as long as the matrix consisting of the eigenvectors of A is square is known as the eigen decomposition theorem.
- Eigenvalues are sometimes called characteristic values or latent roots.

Finding the Eigenvalues

Let \mathbf{A} be a linear transformation represented by a matrix \mathbf{A}. If there is a vector (column matrix) $\mathbf{x} \in \mathbb{R}^{n} \neq 0$ such that

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

for some scalar λ, then λ is called the eigenvalue of \mathbf{A} with corresponding eigenvector \mathbf{x}.

If we let \mathbf{A} be some $k \times k$ square matrix, with eigenvalue λ, then the corresponding eigenvectors satisfy

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k k}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right]=\lambda\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right]
$$

We can rearrange the matrix equation

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

by sutracting $\lambda \mathbf{x}$ from both sides of the equation to give

$$
\mathbf{A} \mathbf{x}-\lambda \mathbf{l} \mathbf{x}=0
$$

where we have explicitly multiplied $\lambda \mathbf{x}$ by the identity matrix \mathbf{I}, being $k \times k$ to make the subtraction compatable with the rule for matrix addition. It should be noted that $\lambda \mathbf{l} \mathbf{x}=\lambda \mathbf{x}$ and you should perform this multiplication to convince yourself of it's truth. We can now factorise the left hand side of the matrix equation

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0
$$

Outline

(3) Solution TO

(1) Eigenvalues
(2) CRAMER'S RULE

EIGENVALUE PROBLEM
 (4) Eigenvectors
 (5) ExERSISES

Cramer's Rule

- Consider the determinant

$$
D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Cramer's RULE

- Consider the determinant

$$
D=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

- Now multiply D by x, and use the property of determinants that multiplication by a constant is equivalent to multiplication of each entry in a single column by that constant, so

$$
x\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} x & b_{1} & c_{1} \\
a_{2} x & b_{2} & c_{2} \\
a_{3} x & b_{3} & c_{3}
\end{array}\right|
$$

Cramer's RULE

- Another property of determinants enables us to add a constant times any column to any column and obtain the same determinant, so add y times column 2 and z times column 3 to column 1,

$$
x D=\left|\begin{array}{lll}
a_{1} x+b_{1} y+c_{1} z & b_{1} & c_{1} \\
a_{2} x+b_{2} y+c_{2} z & b_{2} & c_{2} \\
a_{3} x+b_{3} y+c_{3} z & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right|
$$

where $d_{i}=a_{i} x+b_{i} y+c_{i} z$ is the charateristic linear equation.

CRAMER'S RULE

- Another property of determinants enables us to add a constant times any column to any column and obtain the same determinant, so add y times column 2 and z times column 3 to column 1,

$$
x D=\left|\begin{array}{lll}
a_{1} x+b_{1} y+c_{1} z & b_{1} & c_{1} \\
a_{2} x+b_{2} y+c_{2} z & b_{2} & c_{2} \\
a_{3} x+b_{3} y+c_{3} z & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right|
$$

where $d_{i}=a_{i} x+b_{i} y+c_{i} z$ is the charateristic linear equation.

- If $d_{1}, d_{2}, d_{3}=0$ then $x D=0$ (the case in our eigenvalue problem), and this has non-degenerate solutions (i.e. solutions other than $(0,0,0))$ only if $D=0$. If $d \neq 0$ and $D=0$ then there are no unique solutions, and if $d \neq 0$ and $D \neq 0$ then solutions exist (but are not of interest to our eigenvalue problem).

Outline

(3) Solution to

(1) Eigenvalues
(a) Craner's rute

EIGENVALUE PROBLEM
(4) Eigenvectors
(5) ExERSISES

University of Bedfordshire

Solution to the Eigenvalue problem

As shown in Cramer's rule, a linear system of equations has nontrivial solutions iff the determinant vanishes, so the solutions of equation $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0$ are given by

$$
|\mathbf{A}-\lambda \mathbf{I}|=0
$$

which is know as the characteristic equation for matrix \mathbf{A}.

Eigenvalues of a 2×2 matrix

Consider a 2×2 matrix

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

The characteristic equation for this matrix is given by

$$
\left|\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right|=0
$$

the multiplication of the identity by λ is trivial, giving a diagonal matrix with all non-zero elements being λ. since the two matrices \mathbf{A} and $\lambda \mathbf{I}$ are defined to be the same size, subtraction is possible, giving a matrix similar to \mathbf{A} but with different diagonal elements. The resulting determinant would be

$$
\left|\begin{array}{cc}
a_{11}-\lambda & a_{12} \\
a_{21} & a_{22}-\lambda
\end{array}\right|=0
$$

Eigenvalues of a 2×2 matrix

$$
\left|\begin{array}{cc}
a_{11}-\lambda & a_{12} \\
a_{21} & a_{22}-\lambda
\end{array}\right|=0
$$

can be calculated directly for such a simple determinant giving

$$
\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)-a_{12} a_{21}
$$

which gives a quadratic equation in λ

$$
\lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+\left(a_{11} a_{22}-a_{12} a_{21}\right)
$$

which can be solved by finding the roots to this quatratic equation by iuse of the quadratic formula:

$$
\lambda_{ \pm}=\frac{1}{2}\left[\left(a_{11}+a_{22}\right) \pm \sqrt{4 a_{12} a_{21}+\left(a_{11}-a_{22}\right)^{2}}\right]
$$

giving two values for λ, termed as two eigenvalues.

LARGER MATRICES

We notice that there are two eigenvalues to a 2×2 system.
Similarly, a 3×3 matrix will produce a cubic equation from the characteristic equation, and so will have 3 eigenvalues. And a 4×4 matrix will produce a quartic equation from the characteristic equation, and so will have 4 eigenvalues. We can make the generalisation that a matrix of size d will have d eigenvalues, although some of these eigenvalues may have the same value, we still explicitly state that there are a certain number of eigenvalue that happen to have the same value.
Solution to polynomials of degree greater than two is a non-trivial problem, and generally, root finding algorithms are needed. It is possible, however, to use trial of solutions to find the eigenvalues of matrices of degree 3 or maybe 4. Polynomials will be the next subject in the unit CIS002-2.

Outline

(3) Solution TO

Eigenvectors

Each eigenvalue obtained from the method of the previous section has corresponding to it, a solution of \mathbf{x} called an eigenvector. In matrices, the term vector indicates a row matrix or column matrix.

EXAMPLE

Consider the matrix $\left[\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right]$, the characteristic equation is

$$
\left|\begin{array}{cc}
(4-\lambda) & 1 \\
3 & (2-\lambda)
\end{array}\right|=0
$$

which gives the quadratic equation

$$
\lambda^{2}-6 \lambda+5=0
$$

This particular quadratic if easily factorised to

$$
(\lambda-1)(\lambda-5)=0
$$

which gives the two eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=5$

EXAMPLE

We can now substitute our eigenvalues back into our origional marix equation to give, for λ_{1} :

$$
\left[\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=1 \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

which gives

$$
\left[\begin{array}{c}
4 x_{1}+x_{2} \\
3 x_{1}+2 x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

which could give two equations, both telling us that whatever the value of x_{1}, the value of x_{2} must be -3 times it. Therefore the eigenvector $\left[\begin{array}{c}k \\ -3 k\end{array}\right]$ is the general form of an infinite number of such eigenvectors. The simplest eigenvector is therefore

$$
x_{1}=\left[\begin{array}{c}
1 \\
-3
\end{array}\right]
$$

EXAMPLE

We can find x_{2} with a similar method, but using the other eigenvalue. Convince yourself that there are two eigenvectors, $x_{1}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$ corresponding to the eigenvalue $\lambda_{1}=1$, and $x_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ corresponding to the eigenvalue $\lambda_{1}=5$

Outline

(3) SOLUTION TO
 (1) Eigenvalues
 (2) Craner's Rute
 EIGENVALUE PROBLEM
 (4) Eigenvectors
 (5) ExERSISES

ExERSISES

Find the eigenvaules and eigenvectors of the following Matrices
(1) $\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right]$
(2) $\left[\begin{array}{ccc}2 & 0 & 1 \\ -1 & 4 & -1 \\ -1 & 2 & 0\end{array}\right]$
(3) $\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 2 & 1 \\ -2 & 1 & -1\end{array}\right]$

ExERSISES

Find the eigenvaules and eigenvectors of the following Matrices
(1) $\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right] \lambda_{1}=2, \lambda_{2}=3, x_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], x_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(2) $\left[\begin{array}{ccc}2 & 0 & 1 \\ -1 & 4 & -1 \\ -1 & 2 & 0\end{array}\right]$
(3) $\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 2 & 1 \\ -2 & 1 & -1\end{array}\right]$

ExERSISES

Find the eigenvaules and eigenvectors of the following Matrices
(1) $\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right] \lambda_{1}=2, \lambda_{2}=3, x_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], x_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(2) $\left[\begin{array}{ccc}2 & 0 & 1 \\ -1 & 4 & -1 \\ -1 & 2 & 0\end{array}\right] \quad \lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3, x_{1}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], x_{2}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$,
$x_{3}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$
(3 $\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 2 & 1 \\ -2 & 1 & -1\end{array}\right]$

ExERSISES

Find the eigenvaules and eigenvectors of the following Matrices
(1) $\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right] \lambda_{1}=2, \lambda_{2}=3, x_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], x_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(2) $\left[\begin{array}{ccc}2 & 0 & 1 \\ -1 & 4 & -1 \\ -1 & 2 & 0\end{array}\right] \quad \lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3, x_{1}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], x_{2}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$,

$$
x_{3}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

(3) $\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 2 & 1 \\ -2 & 1 & -1\end{array}\right] \lambda_{1}=-1, \lambda_{2}=1, \lambda_{3}=2, x_{1}=\left[\begin{array}{c}1 \\ 2 \\ -7\end{array}\right], x_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$,

$$
x_{3}=\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]
$$

