EIGENVALUES AND EIGENVECTORS CIS008-2 Logic and Foundations of Mathematics

David Goodwin

david.goodwin@perisic.com

12:00, Friday 3rd February 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

CRAMER'S RULE

Solution to eigenvalue proble

Eigenveg

Exersises

OUTLINE

1 EIGENVALUES

2 CRAMER'S RULE

SOLUTION TO EIGENVALUE PROBLEM
EIGENVECTORS
EXERSISES

ヘロト 人間ト 人団ト 人団ト

æ

CRAMER'S RULE

Solution to eigenvalue proble

Eigenvec

Exersises

OUTLINE

1 EIGENVALUES

2 CRAMER'S RULE

8 Solution to Eigenvalue problem
9 Eigenvectors
9 Exersises

・ロト ・聞ト ・ヨト ・ヨト

æ

• Eigenvalues are a special set of scalars associated with a linear system of equations (i.e. a matrix equation).

- Eigenvalues are a special set of scalars associated with a linear system of equations (i.e. a matrix equation).
- Determination of the eigenvalues and eigenvectors of a system is extremely important in physics and engineering.

- Eigenvalues are a special set of scalars associated with a linear system of equations (i.e. a matrix equation).
- Determination of the eigenvalues and eigenvectors of a system is extremely important in physics and engineering.
- It is equivalent to matrix diagonalisation and arises in stability analysis, the physics of rotating bodies, small oscillations of vibrating systems etc.

- Eigenvalues are a special set of scalars associated with a linear system of equations (i.e. a matrix equation).
- Determination of the eigenvalues and eigenvectors of a system is extremely important in physics and engineering.
- It is equivalent to matrix diagonalisation and arises in stability analysis, the physics of rotating bodies, small oscillations of vibrating systems etc.
- Each eigenvalue is paired with a corresponding so-called eigenvector.

- Eigenvalues are a special set of scalars associated with a linear system of equations (i.e. a matrix equation).
- Determination of the eigenvalues and eigenvectors of a system is extremely important in physics and engineering.
- It is equivalent to matrix diagonalisation and arises in stability analysis, the physics of rotating bodies, small oscillations of vibrating systems etc.
- Each eigenvalue is paired with a corresponding so-called eigenvector.
- The decomposition of a square matrix **A** into eigenvalues and eigenvectors is known as eigen decomposition.

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

- Eigenvalues are a special set of scalars associated with a linear system of equations (i.e. a matrix equation).
- Determination of the eigenvalues and eigenvectors of a system is extremely important in physics and engineering.
- It is equivalent to matrix diagonalisation and arises in stability analysis, the physics of rotating bodies, small oscillations of vibrating systems etc.
- Each eigenvalue is paired with a corresponding so-called eigenvector.
- The decomposition of a square matrix **A** into eigenvalues and eigenvectors is known as eigen decomposition.
- Decomposition is always possible as long as the matrix consisting of the eigenvectors of A is square is known as the eigen decomposition theorem.

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

- Eigenvalues are a special set of scalars associated with a linear system of equations (i.e. a matrix equation).
- Determination of the eigenvalues and eigenvectors of a system is extremely important in physics and engineering.
- It is equivalent to matrix diagonalisation and arises in stability analysis, the physics of rotating bodies, small oscillations of vibrating systems etc.
- Each eigenvalue is paired with a corresponding so-called eigenvector.
- The decomposition of a square matrix **A** into eigenvalues and eigenvectors is known as eigen decomposition.
- Decomposition is always possible as long as the matrix consisting of the eigenvectors of A is square is known as the eigen decomposition theorem.
- Eigenvalues are sometimes called characteristic values or latent roots.

CRAMER'S RULE

Solution to eigenvalue proble

Eigenvector

・ロト ・ 雪 ト ・ ヨ ト ・

э

Exersises

FINDING THE EIGENVALUES

Let **A** be a linear transformation represented by a matrix **A**. If there is a vector (column matrix) $\mathbf{x} \in \mathbb{R}^n \neq 0$ such that

 $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$

for some scalar $\lambda,$ then λ is called the eigenvalue of ${\bf A}$ with corresponding eigenvector ${\bf x}.$

If we let **A** be some $k \times k$ square matrix, with eigenvalue λ , then the corresponding eigenvectors satisfy

a ₁₁	<i>a</i> ₁₂		a_{1k}	x_1		x_1	
a ₂₁	a ₂₂	•••	a _{2k}	<i>x</i> ₂		<i>x</i> ₂	
:	÷	·	:	÷	$=\lambda$	÷	
a_{k1}	a_{k2}	• • •	a _{kk}	x_k		x_k	

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

・ロト ・ 雪 ト ・ ヨ ト ・

We can rearrange the matrix equation

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

by sutracting $\lambda \mathbf{x}$ from both sides of the equation to give

$$\mathbf{A}\mathbf{x} - \lambda \mathbf{I}\mathbf{x} = \mathbf{0}$$

where we have explicitly multiplied $\lambda \mathbf{x}$ by the identity matrix **I**, being $k \times k$ to make the subtraction compatable with the rule for matrix addition. It should be noted that $\lambda \mathbf{I} \mathbf{x} = \lambda \mathbf{x}$ and you should perform this multiplication to convince yourself of it's truth. We can now factorise the left hand side of the matrix equation

$$\left(\mathbf{A} - \lambda \mathbf{I}\right)\mathbf{x} = \mathbf{0}$$

Exersises

OUTLINE

1 EIGENVALUES

2 CRAMER'S RULE

Solution to eigenvalue problem
Eigenvectors
Exersises

ヘロン 人間 とくほとう ほとう

æ

• Consider the determinant

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

• Consider the determinant

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

• Now multiply *D* by *x*, and use the property of determinants that multiplication by a constant is equivalent to multiplication of each entry in a single column by that constant, so

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 x & b_1 & c_1 \\ a_2 x & b_2 & c_2 \\ a_3 x & b_3 & c_3 \end{vmatrix}$$

э

・ロト ・ 四ト ・ ヨト ・ ヨト

CRAMER'S RULE

 Another property of determinants enables us to add a constant times any column to any column and obtain the same determinant, so add y times column 2 and z times column 3 to column 1,

$$xD = \begin{vmatrix} a_1x + b_1y + c_1z & b_1 & c_1 \\ a_2x + b_2y + c_2z & b_2 & c_2 \\ a_3x + b_3y + c_3z & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$$

where $d_i = a_i x + b_i y + c_i z$ is the characteristic linear equation.

CRAMER'S RULE

 Another property of determinants enables us to add a constant times any column to any column and obtain the same determinant, so add y times column 2 and z times column 3 to column 1,

$$xD = \begin{vmatrix} a_1x + b_1y + c_1z & b_1 & c_1 \\ a_2x + b_2y + c_2z & b_2 & c_2 \\ a_3x + b_3y + c_3z & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$$

where $d_i = a_i x + b_i y + c_i z$ is the characteristic linear equation.

If d₁, d₂, d₃ = 0 then xD = 0 (the case in our eigenvalue problem), and this has non-degenerate solutions (i.e. solutions other than (0,0,0)) only if D = 0. If d ≠ 0 and D = 0 then there are no unique solutions, and if d ≠ 0 and D ≠ 0 then solutions exist (but are not of interest to our eigenvalue problem).

OUTLINE

1 EIGENVALUES

2 CRAMER'S RULE

Solution to EIGENVALUE PROBLEM
EIGENVECTORS
Exersises

ヘロン 人間 とくほとう ほとう

æ

Solution to the Eigenvalue problem

As shown in Cramer's rule, a linear system of equations has nontrivial solutions iff the determinant vanishes, so the solutions of equation $(\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = 0$ are given by

$$\left|\mathbf{A} - \lambda \mathbf{I}\right| = \mathbf{0}$$

which is know as the characteristic equation for matrix A.

Eigenvalues of a 2×2 matrix

Consider a 2×2 matrix

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

The characteristic equation for this matrix is given by

$$\begin{vmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0$$

the multiplication of the identity by λ is trivial, giving a diagonal matrix with all non-zero elements being λ . since the two matrices **A** and λ **I** are defined to be the same size, subtraction is possible, giving a matrix similar to **A** but with different diagonal elements. The resulting determinant would be

$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0$$

EIGENVALUES OF A 2×2 matrix

$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0$$

can be calculated directly for such a simple determinant giving

$$(a_{11}-\lambda)(a_{22}-\lambda)-a_{12}a_{21}$$

which gives a quadratic equation in $\boldsymbol{\lambda}$

$$\lambda^2 - (a_{11} + a_{22}) \lambda + (a_{11}a_{22} - a_{12}a_{21})$$

which can be solved by finding the roots to this quatratic equation by iuse of the quadratic formula:

$$\lambda_{\pm} = rac{1}{2} \left[(a_{11} + a_{22}) \pm \sqrt{4a_{12}a_{21} + (a_{11} - a_{22})^2}
ight]$$

giving two values for λ , termed as two eigenvalues. $\beta \rightarrow \beta \rightarrow \beta \rightarrow \beta \rightarrow \beta$

・ロット (雪) (山) (日)

LARGER MATRICES

We notice that there are two eigenvalues to a 2×2 system. Similarly, a 3×3 matrix will produce a cubic equation from the characteristic equation, and so will have 3 eigenvalues. And a 4×4 matrix will produce a quartic equation from the characteristic equation, and so will have 4 eigenvalues. We can make the generalisation that a matrix of size *d* will have *d* eigenvalues, although some of these eigenvalues may have the same value, we still explicitly state that there are a certain number of eigenvalue that happen to have the same value.

Solution to polynomials of degree greater than two is a non-trivial problem, and generally, root finding algorithms are needed. It is possible, however, to use trial of solutions to find the eigenvalues of matrices of degree 3 or maybe 4. Polynomials will be the next subject in the unit CIS002-2.

Cramer's rule

Solution to eigenvalue proble

EIGENVECTORS

Exersises

OUTLINE

1 EIGENVALUES

2 CRAMER'S RULE

8 Solution to Eigenvalue problem
1 Eigenvectors
5 Exersises

・ロト ・聞ト ・ヨト ・ヨト

æ

EIGENVECTORS

Each eigenvalue obtained from the method of the previous section has corresponding to it, a solution of x called an **eigenvector**. In matrices, the term vector indicates a row matrix or column matrix.

EXAMPLE

Consider the matrix $\begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$, the characteristic equation is

$$\begin{vmatrix} (4-\lambda) & 1 \\ 3 & (2-\lambda) \end{vmatrix} = 0$$

which gives the quadratic equation

$$\lambda^2 - 6\lambda + 5 = 0$$

This particular quadratic if easily factorised to

$$(\lambda - 1)(\lambda - 5) = 0$$

which gives the two eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 5$

EXAMPLE

We can now substitute our eigenvalues back into our origional marix equation to give, for λ_1 :

$$\begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 1 \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

which gives

$$\begin{bmatrix} 4x_1 + x_2 \\ 3x_1 + 2x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

which could give two equations, both telling us that whatever the value of x_1 , the value of x_2 must be -3 times it. Therefore the eigenvector $\begin{bmatrix} k \\ -3k \end{bmatrix}$ is the general form of an infinite number of such eigenvectors. The simplest eigenvector is therefore

$$x_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

・ロト ・ 四ト ・ ヨト ・ ヨト

EXAMPLE

We can find x_2 with a similar method, but using the other eigenvalue. Convince yourself that there are two eigenvectors, $x_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ corresponding to the eigenvalue $\lambda_1 = 1$, and $x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ corresponding to the eigenvalue $\lambda_1 = 5$

CRAMER'S RULE

Solution to eigenvalue proble

EIGENVEC.

Exersises

OUTLINE

1 EIGENVALUES

2 CRAMER'S RULE

Solution to EIGENVALUE PROBLEM
EIGENVECTORS
EXERSISES

ヘロン 人間 とくほとう ほとう

æ

$$\begin{array}{ccc}
\left[\begin{array}{ccc}
4 & -1 \\
2 & 1
\end{array}\right] \\
\left[\begin{array}{ccc}
2 & 0 & 1 \\
-1 & 4 & -1 \\
-1 & 2 & 0
\end{array}\right]$$

1
$$\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix} \lambda_1 = 2, \ \lambda_2 = 3, \ x_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \ x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

2 $\begin{bmatrix} 2 & 0 & 1 \\ -1 & 4 & -1 \\ -1 & 2 & 0 \end{bmatrix}$

$$\begin{array}{c} \left[\begin{array}{c} 4 & -1 \\ 2 & 1 \end{array} \right] \lambda_{1} = 2, \ \lambda_{2} = 3, \ x_{1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \ x_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \left[\begin{array}{c} 2 & 0 & 1 \\ -1 & 4 & -1 \\ -1 & 2 & 0 \end{array} \right] \lambda_{1} = 1, \ \lambda_{2} = 2, \ \lambda_{3} = 3, \ x_{1} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \ x_{2} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \\ x_{3} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \\ \left[\begin{array}{c} 1 & -1 & 0 \\ 1 & 2 & 1 \\ -2 & 1 & -1 \end{bmatrix} \right]$$

・ロト・(部・・モー・モー・)への

$$\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix} \lambda_{1} = 2, \lambda_{2} = 3, x_{1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, x_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 1 \\ -1 & 4 & -1 \\ -1 & 2 & 0 \end{bmatrix} \lambda_{1} = 1, \lambda_{2} = 2, \lambda_{3} = 3, x_{1} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, x_{2} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, x_{3} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \\ -2 & 1 & -1 \end{bmatrix} \lambda_{1} = -1, \lambda_{2} = 1, \lambda_{3} = 2, x_{1} = \begin{bmatrix} 1 \\ 2 \\ -7 \end{bmatrix}, x_{2} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, x_{3} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

rsity of

・ロト・(部・・モー・モー・)への