CIS009-2, MECHATRONICS SIGNALS & MOTORS

David Goodwin

Department of Computer Science and Technology University of Bedfordshire

 13^{th} December 2012

Outline

vI	ec	hat	rc	CS

David Goodwir

Digital signals

Information encoding

Digital to analogue conversion

Analogue to digital conversion

Computers

DC motors

DC motor loading

Stepper motor

Department of Computer Science and Technology University of Bedfordshire Digital signals
 Information encoding
 Digital to analogue conversion
 Analogue to digital conversion
 Stepper motor

Mechatronics

David Goodwin

Digital signals

Information encoding

3

Digital to analogue conversion

Analogue to digital conversion

Computers

DC motors

DC motor loading

Stepper motor

Department of Computer Science and Technology University of Bedfordshire

DIGITAL SIGNALS

Signals

Mechatronics

David Goodwin

Digital signals

Information encoding

Digital to analogue conversion

Analogue to digital conversion

Computers

DC motors

DC motor loading

Stepper motor

Department of Computer Science and Technology University of Bedfordshire

Two types of signals exist:

Analogue signal In an analogue signal voltages and currents continuously change with time.
 Digital signal In a digital signal voltages are switched on and off. Thus, the signal consists of a train of pulses.

Digital Signal

V

Transmission of digital signals

Mechatronics

David Goodwin

Digital signals

Information encoding

Digital to analogue conversion

Analogue to digital conversion

Computers

DC motors

DC motor loading

Stepper motor

Department of Computer Science and Technology University of Bedfordshire

• Two methods are used:

Parallel transmission Uses several wires in parallel to carry the electrical signal corresponding to a different bit in the message.
 Serial transmission Individual bits which constitute the information can be sent one by one, down a single pair of wires.

Mechatronics

David Goodwir

Digital signals

Information encoding

7

Digital to analogue conversion

Analogue to digital conversion

Computers

DC motors

DC motor loading

Stepper motor

Department of Computer Science and Technology University of Bedfordshire

INFORMATION ENCODING

V

Encoding information

Mechatronics

David Goodwin

Digital signals

Information encoding

Digital to analogue conversion

Analogue to digital conversion

Computers

DC motors

DC motor loading

Stepper motor

Department of Computer Science and Technology University of Bedfordshire We use a simple example to illustrate how information can be encoded in digital format.

• For example we could encode temperature information using 2 bits as:

- 1, 1 Very hot (i.e.two pulses in succession).
- 1, 0 Hot (i.e.a pulse followed by a space).
 - 0, 1 Warm (i.e. a space followed by a pulse).
- 0, 0 Cold (i.e. two spaces in succession).

• NOTE: Using 4 bits will allow the temperature to be represented to 16 levels

Mechatronics

David Goodwin

Digital signals

Information encoding

9

Digital to analogue conversion

Analogue to digital conversion

Computers

DC motors

DC motor loading

Stepper motor

Department of Computer Science and Technology University of Bedfordshire

DIGITAL TO ANALOGUE CONVERSION

V

Digital circuits

- Mechatronics
- David Goodwin
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading
- Stepper motor

- These use or produce digital signals. Three categories exist: Logic circuits Circuits with digital signals as both inputs and outputs Analogue-Digital Converter (ADC) This has an analogue
- input and a digital output. Digital-Analogue Converter (DAC) This has a digital input and an analogue output.

Digital-Analogue Converter (DAC)

Digital signals

Information encoding

11

Digital to analogue conversion

Analogue to digita conversion

Computers

DC motors

DC motor loading

Stepper motor

Department of Computer Science and Technology University of Bedfordshire

Note that the resistors are in the ratio of 2^0 , 2^1 , 2^2 and 2^3 . It is difficult to fabricate these array of resistors on a single chip therefore the following alternative is preferred.

Digital-Analogue Converter (DAC)

David Goodwin

Digital signals

Information encoding

12

Digital to analogu conversion

Analogue to digita conversion

Computers

DC motors

DC motor loading

Stepper motor

Mechatronics

David Goodwin

Digital signal

Information encoding

Digital to analogue conversion

Analogue to digital conversion 13

Computers

DC motors

DC motor loading

Stepper motor

Department of Computer Science and Technology University of Bedfordshire

ANALOGUE TO DIGITAL CONVERSION

Steps in converting analogue

- Mechatronics
- David Goodwir
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading
- Stepper motor

Department of Computer Science and Technology University of Bedfordshire

signals to digital form

- Sample the analogue signal at regular short intervals.
- The sampled signals are coded using binary digits.
- In practice we need a digital to analogue converter to implement it.

Analogue-Digital Converter (ADC)

Mechatronics

David Goodwin

Digital signals

Information encoding

Digital to analogue conversion

Analogue to digital conversion

Computers

DC motors

DC motor loading

Stepper motor

Three types exist:

Linear search converter The simplest of all A-D converters. Successive approximation converter Flash converter The fastest method to encode an analogue signal to a digital form.

Department of	
Computer Science and	
Technology	
University of	
Bedfordshire	

Linear Search Converter (ADC)

V

Linear Search Converter

Mechatronics

- David Goodwin
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading
- Stepper motor

Department of Computer Science and Technology University of Bedfordshire

How it works:

- The analogue comparator has the property that if the voltage on the + input is greater than voltage on the - input the output is binary "1" (typically 5V) otherwise "0" (typically 0V). The sequence of operation is as follows:
 - Set the counter to zero
 - 2 Apply signal to be converted at the unknown terminal
 - Start counter. The D-A converts the counting sequence into volts
 - If the input is greater than + input, the comparator output becomes zero disabling the AND gate and stopping the counter. The number in the counter is the best approximation.

Successive Approximation Converter (ADC)

Algorithm for successive approximation (ADC)

- Mechatronics
- David Goodwir
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading
- Stepper motor

- Let the variable M represent the most significant bit.Set M bit to 1
- If the D-A output exceeds the unknown, set the M bit to 0
 Let the variable M represent the next most significant bit.
 If all bits have been checked stop; elso go to 2.

Flash Converter (ADC)

Mechatronics

David Goodwin

Digital signal

Information encoding

Digital to analogu conversion

Analogue to digital conversion 20

Computers

DC motors

DC motor loading

Stepper motor

- A resistive divider network of 2ⁿ resistors divide the reference voltage into many equal increments.
- The unknown is applied inputs exceeding the unknown are on,; all others are off.
- The comparator code is is converted to a binary code by the priority encoder

Mechatronics

David Goodwin

Digital signal

Information encoding

Digital to analogue conversion

Analogue to digita conversion

Computers

DC motors

DC motor loading

Stepper motor

Department of Computer Science and Technology University of Bedfordshire

COMPUTERS

Microprocessor

- Mechatronics
- David Goodwir
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading
- Stepper motor

- Microprocessors, logic gates, A-D and D-A are parts of robotic systems.
- Microprocessor and logic gates are studied in Computer Systems Architecture and will not be discussed here.
- Both A-D and D-A are interfaces of robotics system to the real world.

Computers used in automation

- Mechatronics
- David Goodwin
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading
- Stepper motor

Department of Computer Science and Technology University of Bedfordshire Mainframes Large computer with large word length (> 32 bits). Mini-computers Microcomputers

Programmable logic controllers This are computers dedicated for control purposes.

Programmable logic controller

Mechatronics

- David Goodwin
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion

Computers

- DC motors
- DC motor loading
- Stepper motor

- Responds to sensors
- Can make decisions about the sensors according what it is programmed to do.
 - Can be programmed to simulate PI, PD and PID controllers.
- Some control applications of PLC are:
 - Industrial equipment such as motors, pumps and valves, Furnaces, packaging machinery.

Bus systems

- Mechatronics
- David Goodwin
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading
- Stepper motor

- All computers make use of address, data and control bus systems as summarised below:
 - Address bus is used to carry the address of memory locations.
 - Data bus is used to carry the computer word, The larger the data bus the more powerful the computer is.
 - Control bus carries control signals suc as READ/WRITE, INTERRUPT etc, signals.

V

I/O management

Mechatronics

- David Goodwir
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion

Computers

- DC motors
- DC motor loading
- Stepper motor

Department of Computer Science and Technology University of Bedfordshire Memory mapped I/O
Isolated I/O Addressing
Input/Output Ports
Parallel I/O Ports
Programmable I/O Ports

Mechatronics

David Goodwin

Digital signal

Information encoding

Digital to analogue conversion

Analogue to digita conversion

Computers

DC motors

DC motor loading

Department of Computer Science and Technology University of Bedfordshire

DC MOTORS

Electric motors

M	ec	Б	H	n	IC	

- David Goodwir
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading

28

52

Stepper motor

Department of Computer Science and Technology University of Bedfordshire

• Three basic characteristics of electric motors are:

- Power
- Torque
- Speed

Power

- Mechatronics
- David Goodwir
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digita conversion
- Computers
- DC motors
- DC motor loading
- Stepper motor

Department of Computer Science and Technology University of Bedfordshire One can distinguish between two types of power **Electrical power** A measure of electricity used by the motor. **Mechanical power** The power (work) produced by the motor. Measurement of Power (in Watts). 1hp=745.7Watts.

Torque

Mechatronics

- David Goodwin
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading

30

Stepper motor

- This is the turning force a motor is able to produce. The force multiplied by the shortest distance measured from the axis of rotation to the line along which the force acts. It is measured in Newton-meters (Nm)
- Left Diagram Torque required to lift weight $= 20 \times 0.1 = 2$ Nm
- Right Diagram A larger Torque is required to lift the same weight since the pulley is larger.

Example

Mechatronics	
David Goodwin	
Digital signals	
Information encoding	 Torque exerted on a robot motor as the arm is moved about
Digital to analogue conversion	and the second
Analogue to digital conversion	A is the axis of rotation
Computers	A contract the send sates A contract of the send
DC motors	
DC motor loading	
Stepper motor	
	and a second second and a second as graphics and a second s
	The torque decreases as the load moves inwards towards the axis of the
	motor
Department of Computer Science and	
Technology	
Bedfordshire 5	

Speed

- Mechatronics
- David Goodwir
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading
- Stepper motor

Department of Computer Science and Technology University of Bedfordshire The speed (R) of a motor is measured in revolutions per minute (RPM). It is the link between Power(P) and Torque(T).

$$T = 10 \frac{P}{R}$$
 Newton Metres

• where P is in Watts and R is in revolutions per second

Types of electric motors

- Mechatronics
- David Goodwir
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading

33

Stepper motor

Department of Computer Science and Technology University of Bedfordshire AC motors Operated by alternating current electricity. DC motors Operated by direct current electricity. Stepper motor Operated by pulses of electricity

V

Principle of a DC motor

Mechatronics

- David Goodwin
- Digital signal
- Information encoding
- Digital to analogue conversion
- Analogue to digita conversion
- Computers

DC motors

- DC motor loading
- Stepper motor

- Current is led into the coil through the brushes which are held in contact with the commutator by springs.
- The current in the coil produces a magnet field which repels the magnet field of the stator (permanent magnet) and causes the coil to rotate in the direction shown by the arrow.
- The commutator shown has only 2 segments. In practice, several segments with corresponding coils can be used.

Relationship between Torque and armature current

Department of Computer Science and Technology University of Bedfordshire • T =Torque, $K_t =$ a constant, $\phi_F =$ Flux of magnetic field and $I_a =$ armature current (i.e. current in coil)

Current is supplied by a separate source to the field winding

$T = K_t K_f I_f I_a$

• K_t , K_f are constants, I_a and I_f are armature current and field currents. K_f depends on the permeability of the iron used, Generating an electromagnet field instead of permanent magnet field

Mechatronics

David Goodwin

Digital signal

Information encoding

Digital to analogue conversion

Analogue to digita conversion

Computers

DC motors

DC motor loading

Categorising motors by their field windings

Mechatronics

- David Goodwir
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading
- Stepper motor

- Series wound motor
- Shunt wound motor
- Compound wound motor
- Permanent magnetic field

Series wound motor

Characteristics of a series wound motor

Compound wound motor

Mechatronics	The second se	X
David Goodwin		
Digital signals		
Information encoding	0	
Digital to analogue conversion		1
Analogue to digital conversion		
Computers	8 ()	10
DC motors 40		
DC motor loading		-
Stepper motor	0000	
	• A) Motor can be differentially compounded	
Department of Computer Science and Technology University of Bedfordshire 52	• B) Commutatively compounded	

Characteristics of compound wound motor

Department of Computer Science and Technology University of Bedfordshire

DC motors

Note that differentially wound motors can attain dangerous speeds if the maximum load is exceeded.

Shunt wound motor

Characteristics of shunt wound motor

Permanent magnet motor

Mechatronics

David Goodwin

Digital signals

Information encoding

Digital to analogue conversion

Analogue to digita conversion

Computers

DC motors

DC motor loading

Stepper motor

Department of Computer Science and Technology University of Bedfordshire

DC MOTOR LOADING

V

Load on a DC motor

- Mechatronics
- David Goodwin
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading
- Stepper motor

- Primary loads on motors are: Friction, Inertia, and constant or varying Torque loads.
- A rotating system in the absence of outside forces obeys:
 - $T = J\ddot{\theta} + F\dot{\theta}$ where
 - T = Torque
 - $\theta =$ angular position
 - $\dot{\theta} =$ angular velocity
 - $\ddot{\theta} =$ angular acceleration

Load on a DC motor

Mechatronics

- David Goodwin
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading
- Stepper motor

Department of Computer Science and Technology University of Bedfordshire DC motors have high rotational velocities but low torque. Therefore, gearing is needed to increase torque and reduce motor speed.

• Assume a gear ratio N then,

 $T_{\text{applied to load}} = NT_{\text{applied to motor}}$

$$\dot{\theta}_{\text{load}} = \frac{1}{N} \dot{\theta}_{\text{motor}}$$

V

Load on a DC motor

Mechatronics

David Goodwin

Digital signals

Information encoding

Digital to analogue conversion

Analogue to digital conversion

Computers

DC motors

DC motor loading

Stepper motor

Department of Computer Science and Technology University of Bedfordshire • The load is divided by the square of the gear ratio. Therefore, the equivalent inertia J_{eq} and the equivalent friction F_{eq} seen by the motor are give by:

$$J_{eq} = J_a + \frac{1}{N^2} J_l$$
$$F_{eq} = F_a + \frac{1}{N^2} F_l$$

J_a and F_a are the inertia and friction of the motor
J_l and F_l are the inertia and friction of the load

Mechatronics

David Goodwin

Digital signals

Information encoding

Digital to analogue conversion

Analogue to digita conversion

Computers

DC motors

DC motor loading

Stepper motor

Department of Computer Science and Technology University of Bedfordshire

STEPPER MOTOR

V

Stepper Motor

- Mechatronics
- David Goodwin
- Digital signals
- Information encoding
- Digital to analogue conversion
- Analogue to digital conversion
- Computers
- DC motors
- DC motor loading
- Stepper motor

- Operate on pulses.
- Each time a pulse is sent to the controller the motor steps (i.e rotates by a small angle),
- The angle of rotation can be from 1.5 to 30 degrees.
- Can be made to rotate faster or slower by sending more or fewer pulses.
- Computer controlled.

Torque-Speed characteristics

