CIS009-2, Mechatronics Robot Coordination Systems I

Outline

Mechatronics
David Goodwin

Maths basis
Method to find inverses

Descriptions
Positions of an
end-effector
Orientations of an end-effector

Frames
(1) Maths basis

Method to find inverses
(2) Descriptions

Positions of an end-effector
Orientations of an end-effector
Frames

Mechatronics
David Goodwin

Maths basis

Method to fnd
inverses
Descriptions
Positions of an
end-effector

MATHS BASIS

Orientations of an end-effector
Frames

Department of Computer Science and Technology
University of
Bedfordshire

MATRIX AND OPERATIONS

A Matrix

- Matrix
- "A group of numbers arranged in a rectangle which can be used together as a single unit to solve particular mathematical problems"
- The numbers are called elements
- Elements are arranged in rows and columns
- Each element has two subscripts to describe its position in a matrix
- First subscript - index of row
- Second subscript - index of column

MATRIX AND OPERATIONS

An Example of a Matrix

MATRIX AND OPERATIONS

Operations

Mechatronics
David Goodwin

Maths basis
Method to find inverses

Descriptions
Positions of an
end-effector
Orientations of an end-effector

Frames

- Operations
- $A+B$ (A and B must have the same number of rows and the same number of columns

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \quad B=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right] \\
A+B=\left[\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n}
\end{array}\right]
\end{gathered}
$$

MATRIX AND OPERATIONS

Multiplication by a constant

Mechatronics
David Goodwin

Maths basis Method to find inverses

Descriptions
Positions of an end-effector

Orientations of an end-effector

Frames

- Multiply a number k with A

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

$$
k \cdot A=\left[\begin{array}{cccc}
k a_{11} & k a_{12} & \cdots & k a_{1 n} \\
k a_{21} & k a_{22} & \cdots & k a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
k a_{m 1} & k a_{m 2} & \cdots & k a_{m n}
\end{array}\right]
$$

MATRIX AND OPERATIONS

Matrix Multiplication (cross product)

Mechatronics
David Goodwin

Maths basis
Method to find inverses

Descriptions
Positions of an
end-effector
Orientations of an end-effector

Frames

- Multiplication (The number of columns in A must be the same as the number rows of in B)

$$
\begin{gathered}
\left.A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \quad \begin{array}{cccc}
\overline{=}= & \begin{array}{ccc}
b_{11} & b_{12} & \cdots
\end{array} & b_{1 k} \\
b_{21} & b_{22} & \cdots & b_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n k}
\end{array}\right] \\
C=A \times B=\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 k} \\
c_{21} & c_{22} & \cdots & c_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
c_{m 1} & c_{m 2} & \cdots & c_{m k}
\end{array}\right] \\
c_{i j}=\left(a_{i 1} \times b_{1 j}\right)+\left(a_{i 2} \times b_{2 j}\right)+\cdots+\left(a_{i n} \times b_{n j}\right)
\end{gathered}
$$

MATRIX AND OPERATIONS
 Transpose of a Matrix

Mechatronics
David Goodwin

Maths basis

Method to find inverses

Descriptions
Pesitiens of an end-effector
Orientations of an end-effector Frames

- Transpose

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

$$
A^{T}=\left[\begin{array}{cccc}
a_{11}^{\prime} & a_{12}^{\prime} & \cdots & a_{1 n}^{\prime} \\
a_{21}^{\prime} & a_{22}^{\prime} & \cdots & a_{2 n}^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}^{\prime} & a_{m 2}^{\prime} & \cdots & a_{m n}^{\prime}
\end{array}\right]=A=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{n 1} \\
a_{12} & a_{22} & \cdots & a_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 m} & a_{2 m} & \cdots & a_{n m}
\end{array}\right]
$$

$$
a_{i j}^{\prime}=a_{j i}
$$

MATRIX AND OPERATIONS

Inverse of a Matrix: The determinant

Mechatronics
David Goodwin

Maths basis
Method to find inverses

Descriptions
Pesitions of an
end-effector
Orientations of an end-effector

Frames

- Determinant of a matrix A
$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right] \quad|A|=\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right|$
- A determinant has a value
- Value = sum (products starting from the first row) - sum (products starting from the last column)

$$
\begin{aligned}
|M|= & \left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right| \\
= & ((1 \times 2 \times 3)+(2 \times 1 \times 2)+(3 \times 1 \times 3)) \\
& -((3 \times 2 \times 2)+(1 \times 1 \times 1)+(3 \times 3 \times 2)) \\
= & 19-31=-12
\end{aligned}
$$

MATRIX AND OPERATIONS

Properties of Determinants

(1) The value of a determinant remains unchanged if rows are changed to columns and columns are changed to rows. $\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
(2) If two rows (or two columns) are interchanged, the sign of the determinant is changed. $\left|\begin{array}{ll}a_{2} & b_{2} \\ a_{1} & b_{1}\end{array}\right|=-\left|\begin{array}{ll}l_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
(3) If two rows (or two columns) are identical, the value of the determinant is zero. $\left|\begin{array}{ll}a_{1} & a_{1} \\ a_{2} & a_{2}\end{array}\right|=0$
4) If the elements of any one row (or column) are all multiplied by a common factor, the determinant is multiplied by that common factor. $\left|\begin{array}{cc}k a_{1} & k b_{1} \\ a_{2} & b_{2}\end{array}\right|=k\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
5) If the elements of any row (or column) are increased (or decreased) by equal multiples of the corresponding elements of any other row (or column), the value of the determinant is unchanged.

$$
\left|\begin{array}{ll}
\left(a_{1}+k b_{1}\right) & b_{1} \\
\left(a_{2}+k b_{2}\right) & b_{2}
\end{array}\right|=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|
$$

MATRIX AND OPERATIONS

Inverse of a Matrix

Mechatronics
David Goodwin

Maths basis
Method to find inverses

Descriptions
Positions of an end-effector
Orientations of an end-effector Frames

- Inverse matrix of a 2 d -matrix A

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
A^{-1} & =\frac{1}{|A|}\left[\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right]
\end{aligned}
$$

- I is called a unit matrix (or identity matrix) where all elements in the diagonal line are 1

$$
A A^{-1}=I
$$ identity matrix) where all

The Problem

David Goodwin

Maths basis
Method to find inverses

Descriptions
Positions of an end-effector

Orientations of an end-effector

Frames

Department of Computer Science and Technology University of Bedfordshire

We could have the following Matrix equation to be solved:

$$
\left[\begin{array}{ccc}
2 & 4 & 3 \\
3 & 5 & 6 \\
1 & 3 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
8 \\
7 \\
5
\end{array}\right]
$$

which could be represented as

$$
\mathbf{A x}=\mathbf{b}
$$

Considering the interpretation, opposite, this matrix equation could also be written as

$$
\left[\begin{array}{ccc}
1 & 3 & -2 \\
2 & 4 & 3 \\
3 & 5 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
5 \\
8 \\
7
\end{array}\right]
$$

We have changed the position of the rows, and left the \mathbf{x} column (29) matrix alone.

The interpretation of the opposite matrix equation can be a set of linear equations:

$$
\begin{array}{r}
2 x+4 y+3 z=8 \\
3 x+5 y+6 z=7 \\
x+3 y-2 z=5
\end{array}
$$

It is worth noting that each equation has no perticular hierarchical ranking, The set of equations could equally be arranged in any order. i.e.

$$
\begin{array}{r}
x+3 y-2 z=5 \\
2 x+4 y+3 z=8 \\
3 x+5 y+6 z=7
\end{array}
$$

Finding the cofactors

Mechatronics
David Goodwin

Maths basis

Method to find inverses

Descriptions
Positions of an end-effector

Orientations of an end-effector

Frames

Department of Computer Science and Technology University of Bedfordshire

One solution lay in using the inverse the the matrix, \mathbf{A}, to find \mathbf{x}

$$
\begin{array}{r}
\mathbf{A x}=\mathbf{b} \\
\mathbf{A}^{-1} \mathbf{A} \mathbf{x}=\mathbf{A}^{-1} \mathbf{b} \\
\mathbf{x}=\mathbf{A}^{-\mathbf{1}} \mathbf{b}
\end{array}
$$

So this general method will need to find an inverse of a matrix and then perform a matrix multiplication. The matrix of cofactors, described as a signed version of a matrix of minors, is

$$
\mathbf{C}=\left[\begin{array}{ccc}
9 & -3 & -2 \\
-28 & 12 & 4 \\
17 & -7 & -2
\end{array}\right]
$$

The inverse of a matrix envolves finding a matrix of cofactors, \mathbf{C}.

$$
\begin{gathered}
c_{11}=(-1)^{1+1}((4 \cdot 6)-(5 \cdot 3)) \\
\overline{c_{12}}=(-1)^{1+2}((2 \cdot 6)-(3 \cdot 3)) \\
c_{13}=(-1)^{1+3}((2 \cdot 5)-(3 \cdot 4)) \\
c_{21}=(-1)^{2+1}((3 \cdot 6)-(5 \cdot-2)) \\
c_{22}=(-1)^{2+2}((1 \cdot 6)-(3 \cdot-2)) \\
c_{23}=(-1)^{2+3}((1 \cdot 5)-(3 \cdot 3)) \\
c_{31}=(-1)^{3+1}((3 \cdot 3)-(4 \cdot-2)) \\
c_{32}=(-1)^{3+2}((1 \cdot 3)-(2 \cdot-2)) \\
c_{33}=(-1)^{3+3}((1 \cdot 4)-(2 \cdot 3))
\end{gathered}
$$

Finding the adjoint and the determinant

Maths basis
Method to find inverses

Descriptions
Positions of an end-effector
Orientations of an end-effector

Frames
(15) The matrix of cofactors is

$$
\mathbf{C}=\left[\begin{array}{ccc}
9 & -3 & -2 \\
-28 & 12 & 4 \\
17 & -7 & -2
\end{array}\right]
$$

but we require the adjoint of $\mathbf{A}=\operatorname{adj}(A)=C^{T}$, where the transpose is simply the reflection of the matrix about it's diagonal:

$$
\operatorname{adj}(\mathbf{A})=\mathbf{C}^{T}=\left[\begin{array}{ccc}
9 & -28 & 17 \\
-3 & 12 & -7 \\
-2 & 4 & -2
\end{array}\right]
$$

The other ingredient in finding the inverse is finding the determinant of matrix A. Here we can use the signed mionors of the top row of matrix A which we have already worked out, and we multiply them by the elements in the top row, then to be summed:

$$
\begin{aligned}
c_{11} & =(-1)^{1+1}((4 \cdot 6)-(5 \cdot 3)) \\
c_{12} & =(-1)^{1+2}((2 \cdot 6)-(3 \cdot 3)) \\
c_{13} & =(-1)^{1+3}((2 \cdot 5)-(3 \cdot 4)) \\
\operatorname{det}(\mathbf{A}) & =(9 \cdot 1)+(-3 \cdot 3)+(-2 \cdot-2) \\
& =4
\end{aligned}
$$

Finding the inverse then using it

Mechatronics
David Goodwin

Maths basis
Method to find inverses

Descriptions
Positions of an end-effector
Orientations of an end-effector Frames

No we have the adjoint and the
${ }^{16}$ determinant, we simply divide the adjoint by the determinant to find the inverse matrix:

$$
\begin{aligned}
& \mathbf{A}^{-1}=\frac{\operatorname{adj}(\mathbf{A})}{\operatorname{det}(\mathbf{A})} \\
& =\frac{1}{4}\left[\begin{array}{ccc}
9 & -28 & 17 \\
-3 & 12 & -7 \\
-2 & 4 & -2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2.25 & -7 & 4.25 \\
-0.75 & 3 & -1.75 \\
-0.5 & 1 & -0.5
\end{array}\right]
\end{aligned}
$$

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

$$
=\frac{1}{4}\left[\begin{array}{ccc}
9 & -28 & 17 \\
-3 & 12 & -7 \\
-2 & 4 & -2
\end{array}\right] \cdot\left[\begin{array}{l}
5 \\
8 \\
7
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-15 \\
8 \\
2
\end{array}\right]
$$

Therefore $x=-15, y=8$, and

$$
z=2
$$

Mechatronics
David Goodwin

Maths basis

Method to find inverses

Descriptions
Positions of an end-effector

Orientations of an end-effector

Frames

Department of Computer Science and Technology University of Bedfordshire

DESCRIPTIONS

DESCRIPTIONS

Mechatronics
David Goodwin

Maths basis
Method to find
inverses
Descriptions
Positions of an end-effector
Orientations of an
end-effector
Frames

- Description of a position
- Description of a position in a coordinate system using a vector \mathbf{P}

- $\{\mathrm{A}\}$ is a coordinate system
- p_{x}, p_{y}, and p_{z} are the coordinates of a point in X, Y and Z axes of $\{A\}$

DESCRIPTIONS

Mechatronics
David Goodwin

Maths basis

Method to find inverses

Descriptions

- Sum of vectors
- $P=Q-R$
- $S=Q+R$

Positions of an end-effector
Orientations of an end-effector
Frames

Department of Computer Science and Technology University of Bedfordshire
(29)

DESCRIPTIONS

Mechatronics
David Goodwin

Maths basis
Method to find inverses

Descriptions
Positions of an end-effector

- Description of an orientation
- Vector \mathbf{P} also gives the orientation of an end-effector
- In robotics, we are more interested in representing the orientation of an end-effector relatively to a coordinate system $\{B\}$ called reference
Orientations of an end-effector
Frames

DESCRIPTIONS

$$
\begin{aligned}
& i_{B}=P-Q \\
& j_{B}=P-R \\
& k_{B}=P-S
\end{aligned}
$$

- As P, Q, R and S are vectors
 defined in $\{A\}$, the unit vectors of $\{B\}$ can be represented with the unit vectors of $\{A\}$.

DESCRIPTIONS

DESCRIPTIONS

Mechatronics
David Goodwin

Maths basis

Method to find inverses

Descriptions
Positions of an end-effector
Orientations of an end-effector

- Rotation
- Rotating i_{B}, j_{B} and k_{B} to align them with i_{A}, j_{A} and k_{A}, respectively
- This process yields the following vectors:

$$
\begin{aligned}
& { }^{A} \mathbf{i}_{B}=\left(\left|\mathbf{i}_{A} \| \mathbf{i}_{B}\right| \cos \alpha_{i}\right) \mathbf{i}_{A}+\left(\left|\mathbf{j}_{A} \| \mathbf{i}_{B}\right| \cos \beta_{i}\right) \mathbf{j}_{A}+\left(\left|\mathbf{k}_{A} \| \mathbf{i}_{B}\right| \cos \gamma_{i}\right) \mathbf{k}_{A} \\
& { }^{A} \mathbf{j}_{B}=\left(\left|\mathbf{i}_{A} \| \mathbf{j}_{B}\right| \cos \alpha_{j}\right) \mathbf{i}_{A}+\left(\left|\mathbf{j}_{A} \| \mathbf{j}_{B}\right| \cos \beta_{j}\right) \mathbf{j}_{A}+\left(\left|\mathbf{k}_{A} \| \mathbf{j}_{B}\right| \cos \gamma_{j}\right) \mathbf{k}_{A} \\
& { }^{A} \mathbf{k}_{B}=\left(\left|\mathbf{i}_{A} \| \mathbf{k}_{B}\right| \cos \alpha_{k}\right) \mathbf{i}_{A}+\left(\left|\mathbf{j}_{A} \| \mathbf{k}_{B}\right| \cos \beta_{k}\right) \mathbf{j}_{A}+\left(\left|\mathbf{k}_{A} \| \mathbf{k}_{B}\right| \cos \gamma_{k}\right) \mathbf{k}_{A}
\end{aligned}
$$

DESCRIPTIONS

Mechatronics

David Goodwin

Maths basis
Method to find
inverses
Descriptions

- The 3 vectors can be rewritten as:

Positions of an end-effector
Orientations of an end-effector

Frames

- Substituting elements of the vectors with $r_{m n}$ yields

$$
{ }^{{ }_{A}} \mathbf{i}_{B}=\left[\begin{array}{l}
\left|\mathbf{i}_{A} \| \mathbf{i}_{B}\right| \cos \alpha_{i} \\
\left|\mathbf{j}_{A} \| \mathbf{i}_{B}\right| \cos \beta_{i} \\
\left|\mathbf{k}_{A} \| \mathbf{i}_{B}\right| \cos \gamma_{i}
\end{array}\right],{ }_{A} \mathbf{j}_{B}=\left[\begin{array}{l}
\left|\mathbf{i}_{A} \| \mathbf{j}_{B}\right| \cos \alpha_{j} \\
\left|\mathbf{j}_{A} \| \mathbf{j}_{B}\right| \cos \beta_{j} \\
\left|\mathbf{k}_{A} \| \mathbf{j}_{B}\right| \cos \gamma_{j}
\end{array}\right],{ }_{A} \mathbf{k}_{B}=\left[\begin{array}{l}
\left|\mathbf{i}_{A} \| \mathbf{k}_{B}\right| \cos \alpha_{k} \\
\left|\mathbf{j}_{A} \| \mathbf{k}_{B}\right| \cos \beta_{k} \\
\left|\mathbf{k}_{A} \| \mathbf{k}_{B}\right| \cos \gamma_{k}
\end{array}\right]
$$

$$
{ }^{A} \mathbf{i}_{B}=\left[\begin{array}{l}
r_{11} \\
r_{21} \\
r_{31}
\end{array}\right],{ }_{\mathbf{j}_{B}}=\left[\begin{array}{l}
r_{12} \\
r_{22} \\
r_{32}
\end{array}\right],{ }_{A} \mathbf{k}_{B}=\left[\begin{array}{l}
r_{13} \\
r_{23} \\
r_{33}
\end{array}\right]
$$

- Matrix R (stands for rotation relation from A to B)

$$
{ }_{B}^{A} \mathbf{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

DESCRIPTIONS

Mechatronics
David Goodwin

Maths basis
Method to find
inverses
Descriptions
Positions of an end-effector
Orientations of an end-effector

Frames

- Description of a frame
- A frame represents both position and orientation
- It has the form of

- Or more precisely, as any frame $\{B\}$ is associated to another frame $\{\mathrm{A}\}$

$$
\{B\}=\left\{\begin{array}{lllll}
{ }_{B}^{A} \mathbf{R} & \left.{ }^{A} \mathbf{P}_{\text {BORG }}\right\}
\end{array}\right\}=\left\{\begin{array}{llll}
{ }^{A} \mathbf{i}_{B} & { }^{A} \mathbf{j}_{B} \mathbf{k}_{B} & { }^{A} \mathbf{P}_{\text {BORG }}
\end{array}\right\}
$$

DESCRIPTIONS

Mechatronics
David Goodwin

Maths basis
Method to find inverses

- Examples

- 1. Rotation of a X-Y coordinate system to an angle θ

Descriptions
Positions of an end-effector

Orientations of an end-effector

Frames

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=|\mathbf{P}| \cos \varphi \\
y=|\mathbf{P}| \sin \varphi
\end{array}\right. \\
& \left\{\begin{array}{l}
x^{\prime}=|\mathbf{P}| \sin (90-(\varphi+\theta))=|\mathbf{P}| \cos (\varphi+\theta) \\
y^{\prime}=|\mathbf{P}| \cos (90-(\varphi+\theta))=|\mathbf{P}| \sin (\varphi+\theta)
\end{array}\right.
\end{aligned}
$$

$$
\left\{\begin{array}{l}
x^{\prime}=|\mathbf{P}|(\cos \varphi \cos \theta-\sin \varphi \sin \theta)=x \cos \theta-y \sin \theta \\
y^{\prime}=|\mathbf{P}|(\sin \varphi \cos \theta-\cos \varphi \sin \theta)=y \cos \theta+x \sin \theta
\end{array}\right.
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

DESCRIPTIONS

Mechatronics
David Goodwin

Maths basis

Method to find inverses

Descriptions
Positions of an end-effector
Orientations of an end-effector

Frames

Department of Computer Science and Technology
University of Bedfordshire

- This can be extended to a frame

DESCRIPTIONS

Mechatronics
David Goodwin

Maths basis
Method to find inverses

Descriptions
Positions of an
end-effector
Orientations of an end-effector

Frames

- 2. Rotating P about Z -axis by degrees of θ in a $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ coordinate system

$$
\left.\left.\left.\begin{array}{ll}
& \left\{\begin{array}{l}
x=|\mathbf{P}| \cos \varphi \\
y=|\mathbf{P}| \sin \varphi \\
z=z
\end{array}\right. \\
X^{\prime}=\mathbf{P}|\sin (90-(\varphi+\theta))=|\mathbf{P}| \cos (\varphi+\theta) \\
y^{\prime}=|\mathbf{P}| \cos (90-(\varphi+\theta))=|\mathbf{P}| \sin (\varphi+\theta) \\
z=z
\end{array}\right\} \begin{array}{l}
x^{\prime}=\mathbf{P} \mid(\cos \varphi \cos \theta-\sin \varphi \sin \theta)=x \cos \theta-y \sin \theta+z 0 \\
y^{\prime}=|\mathbf{P}|(\sin \varphi \cos \theta+\cos \varphi \sin \theta)=y \cos \theta+x \sin \theta+z 0 \\
z=x 0+y 0+z
\end{array}\right\} \begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] .
$$

SUMMARY

Mechatronics
David Goodwin

Maths basis
Method to find inverses

Descriptions
Positions of an end-effector

Orientations of an end-effector

Frames

Department of Computer Science and Technology
University of
Bedfordshire

