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MATRIX AND OPERATIONS

A Matrix

Mechatronics

David Goo!

Maths basis °

hod

e Matrix

e “A group of numbers arranged in a rectangle which can be
used together as a single unit to solve particular
mathematical problems”

e The numbers are called elements

Elements are arranged in rows and columns
Each element has two subscripts to describe its position in a
matrix

e First subscript — index of row
e Second subscript — index of column
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MATRIX AND OPERATIONS

An Example of a Matrix

Mechatronics
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Maths basis

e A m-row and n-column matrix

ail ai2 QA1n
fm“ ““,‘ W\W } a21 a22 a2n
Frames
Qm1 Am2 Qmn

o 115t subscript — the element is in the 2"¢ row,
2" subscript — the element is in the 1°¢ column
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MATRIX AND OPERATIONS

Operations

Mechatronics
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Maths basis Y Operations
Method to find

SE e A + B (A and B must have the same number of rows and the
same number of columns

a11 a2 - Qip bii bz -0 bin
c azi 220 NisG a2n ba1 bap - bay,
Frames A = = = | . B = B

Am1  Am2 11" s Amn bml bm2 o bmn

a1 +bi1  ai2+bia - ain +biy
a1 +ba1  aga by - ag, +ba,
A+ B= \ . /

am1 + bml am2 + bm2 co° Amn + bmn
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MATRIX AND OPERATIONS

Multiplication by a constant

Mechatronics
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Maths basis

e Multiply a number k with A

ai;  ape Gin
azr  aze - Qg
Orientations o A =
end-effectol o .
Frames
Am1 Am?2 Amn
kayy  kaiz - kai,
kasy  kazy -+ kas,
FrAN N\ s .

kami kama 0 kamn
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MATRIX AND OPERATIONS

Matrix Multiplication (cross product)

Mechatronics
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Maths basis e Multiplication (The number of columns in A must be the
e same as the number rows of in B)

@11 a2 - QAin bir b1z - bk
az1 G2 - G2n bor  bap -+ bop

Frames = 8 . .
Am1 Am2 Amn bnl bn2 o bnk:

C11 Ci2 -+ Cig

Co1 \C22 -t Cog
Ci= A B —

Cm1 Cm2 - Cmk

Cij = (@1 X b1j) + (@s2 X byj) + -+ + (@m X byj)
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MATRIX AND OPERATIONS

Transpose of a Matrix
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MATRIX AND OPERATIONS

Inverse of a Matrix: The determinant

am1

e Determinant of a matrix A

@12 - Oln a11 a12
Q22 -+ Q2n |A| a21  A22
Am2  *°*  Amn Am1  Am2

e A determinant has a value

A1n
a2n

amn

e Value = sum (products starting from the first row) — sum (
products starting from the last column)

1
3
2

=N N

3
= 1

3
=((1x2x3)+(2x1x2)+(3x1x3))
—(Bx2x2)+(1x1x1)+(83x3x2))
=19 — 3l\= =12



MATRIX AND OPERATIONS

Properties of Determinants

Mechatronics

@ The value of a determinant remains unchanged if rows are changed
David Goodwin

to columns and columns are changed to rows. |** 92| = |“ by
Maths basis g J bl b2 \ & az b2
@ If two rows (or two columns) are interchanged, the sign of the
A ; az b a1 b
determinant is changed. G I
ail bl az b2

© If two rows (or two columns) are identical, the value of the
ai
a2

determinant is zero. =0

O |If the elements of any one row (or column) are all multiplied by a
common factor, the determinant is multiplied by that common

ka1 kb1 = ai bl

a2 b az b

© If the elements of any row (or column) are increased (or
decreased) by equal multiples of the corresponding elements of any
other row (or column), the value of the determinant is unchanged.

factor.
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MATRIX AND OPERATIONS

Inverse of a Matrix
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e |nverse matrix of a 2d-matrix A

a b
a=l2
_1_i d —C
AN\ [—b ]

AA =T

e 'l is called a unit matrix (or identity matrix) where all

elements in the diagonal line are 1
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The Problem

MediEreies We could have the following Matrix
David Gooduwin equation to be solved:

Maths basis . 2 4 3 x 8
ir\::;:\s(:: to find 3 5 6 Yy = 7
2 )

Descriptions 1.3 =2
which could be represented as
Ax=Db

Considering the interpretation,
opposite, this matrix equation could
also be written as

1 3 2] [z 5
29l =\
3 5 6 z 7
e BEl We have changed the position of
Technology the rows, and left the x column

University of

Bedfordshire @ matrix alone.

The interpretation of the opposite
matrix equation can be a set of
linear equations:

2¢ +4y+32 =28
3z + 5y +62=17
z+3y—2z=5
It is worth noting that each
equation has no perticular
hierarchical ranking, The set of

equations could equally be arranged
in any order. i.e.

z+3y—2z2=>5
20 +4y+32 =28
3x+5y+62=17



Finding the cofactors

Mechatronics

David Goodwin One solution lay in using the inverse

the the matrix, A, to find x The inverse of a matrix envolves
finding a matrix of cofactors, C.

Maths basis
Method to find

inverses Ax=Db

Descriptions A_le: A—lb Ci11 = (_1)1+1((4 6) (5 3
Ty 1z = (-1)'?((2-6) - (33
c13 = (-1 1+3((2 5) — (3 4

So this general method will need to
find an inverse of a matrix and then

perform a matrix multiplication. Co2 =
The njatrlx of c9factors, desc.rlbed 2as = (= 1)2+3((1 B (3 3
as a signed version of a matrix of [
minors, is e =(—1)""T((3-3)—(4--2
g =3-=_Y =3~ (22
C=]228 12 4 caz = (=1)°*3((1-4) - (2-3
Department of 17 =7 =9
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Finding the adjoint and the determinant

Mechatronics
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The other ingredient in finding the
Maths basis . . . . .
M;thod o find The matrix of cofactors is inverse is finding the determinant of
inverses matrix A. Here we can use the

Descriptions Dy S 72 signed mionors of the top row of
C= _1278 127 42 matrix A which we have already

worked out, and we multiply them

but we require the adjoint of by the elements in the top row,

A = adj(A) = CT’ ST then to be summed:

transpose is simply the reflection of _ 1+1
the matrix about i}:c's diagonal: n=(= 1)1+2((4 Ry Cy)
R RN 12 =(=1)""*((2-6) - (3-3))
adi(A) = CT = h-3 —12 _7 i3 =(=1)""3((2-5) — (3-4))
—2 4 —2| det(A)=(9-1)+(-3-3)+(-2--2)
=4
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Finding the inverse then using it
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Maths basis
Method to find @

inverses

No we have the adjoint and the
determinant, we simply divide the
adjoint by the determinant to find
the inverse matrix:

9l=281 1% )

Descriptions

—1_ adj(A) = i -3 12 -7|-18
~ det(A) -2 4 =2 7
1 9 28 17 T —15
=G =3 12 -7 yl =1 8
—2 -2 z 2
225 — 4.25 Therefore x = —15, y = 8, and
—0.75 3 —1.75 2=9
—0.5 —0.5
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DESCRIPTIONS

Mechatronics

DavidGa e Description of a position

e Description of a position in a coordinate system using a

vector P
Positi f
e ()
px
A . .
P=pi+pj+pk=|p,
P

e {A} is a coordinate system

Department of

Computer Science and ® Pz, Dy, and p, are the coordinates of a point in X, Y and Z
Technolo,
Universityng axes of {A}
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DESCRIPTIONS

Mechatronics

David Go e Sum of vectors
e P=Q-R
e S=Q4+ R

Positions of an @

end-effector
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DESCRIPTIONS

Mechatronics

o Description of an orientation

David Go

e Vector P also gives the orientation of an end-effector

¢ In robotics, we are more interested in representing the
orientation of an end-effector relatively to a coordinate
system {B} called reference

@rmeiTs of am @

end-effector
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DESCRIPTIONS

Mechatronics

e The way of giving the coordinate system {B} (known as the
attached coordinate system) is to write the unit vectors of
its 3 principle axes in terms of {A}

David Goodwin

Maths basis

Descriptions

® 3 unit vectors:

oot @ in,jp, and kp
e Using sum of vectors
=P 0
jB=P—-R
kp=P—-S
e As P, Q, R and S are vectors Y,
Department of defined in {A}, the unit vectors of g
o eenmelogy {B} can be represented with the

University of
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DESCRIPTIONS

Mechatronics

Translation
SR e Shifting {B} towards {A} along P and aligning {B}'s origin
to {A}'s origin (This is reasonable as {B} represents
orientation only.)
o This process actually involves shifting along 4 X, 4Y and 42
and the corresponding displacements can be represented in a
OrSnistions of an (>2) vertical vector P
e This makes the 3 unit vectors become 3 vectors in {A}
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DESCRIPTIONS

Mechatronics
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Rotation
e Rotating ip, jp and kp to align them with 74, ja and k4,
respectively

@rmeiTs of am @

end-effector e This process yields the following vectors:

“ip=(i,lliglcosa)i, +(J,lliglcosf)i, +(k,|lizlcosy,)k,
Y =(ligllislcosa )iy +(sllizlcosf)is+ (K llislcosy; )k,

“kp=(iyllkglcosap)iy+(i,llkzlcos )i+ (k,yllkg|cosy)k,
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DESCRIPTIONS

Mechatronics

e The 3 vectors can be rewritten as:

li,lip [cose li,lj5|cose; [i, kg |cosey
Yip=|ljsliglcosf |. Qs =|lillisleosf; | “ky=|liyllkp|cosfy
[k, [[ig]cosy; [k [[jplcosy; Ikl kg[cosy;

orenations of an  (G) SO Substituting elements of the vectors with 7, yields

end-effector

"1 2 13
Ay | 4 | A |
ig=|ry|. "ipg=|r2 | kg =]
31 32 33

e Matrix R (stands for rotation relation from A to B)

M1 T2 T3

Department of Ap _
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DESCRIPTIONS

Mechatronics

David G

Description of a frame

A frame represents both position and orientation
It has the form of

R P}

| rotation | | translation |

e Or more precisely, as any frame {B} is associated to another
frame {A}
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DESCRIPTIONS
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o Examples

¢ 1. Rotation of a X-Y coordinate system to an angle 6

x=|P|cos¢
y=P|sing

{ x'=| P |sin(90 —(p + ) =| P | cos(p + O)

Frames

'=| P |cos(90 — (@ + 0)) =| P | sin(p + 0)
x'=| P|(cos pcos @ —sinpsinf) = xcos § — ysin

y'=| P | (sin ¢ cos @ —cos ¢sin 8) = y cos & + xsin &

X' cos@ —sinf || x
y' sin@ cosé |y
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DESCRIPTIONS
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e This can be extended to a frame

4. cos@| . —sin &

Frames

sin@ | cos @
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Mechatronics

Frames
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e 2. Rotating P about Z-axis by degrees of # in a X-Y-Z
coordinate system

x=P|cosqp
[y=Psin¢f
z=z
X'=| P |sin(90— (¢ + 6)) =| P | cos(p + )
{yﬁ P|cos(90-(p+0)) = P|sin(p+0)
z=z
x'=| P|(cos@cos—sin ¢sin @) = xcos @ — ysin 6+ z0
ky‘= P|(sinpcos@+cosgsin &) = ycosd+ xsin 6+ z0
z=x0+y0+z

X' cos@ —sinf@ Ofx
V' |=|sin@ cos@ O]y
z' 0 0 1|z




SUMMARY
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Descriptions

e Matrix
Frames

e Frames
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