CIS009-2, Mechatronics Robot Coordination Systems II

Outline

Mechatronics
David Goodwin

Mapping
Translation
Rotational
Operators
Tranclation
Rotation
Transformation
multiplication
Inverting
transformation
equations
(1) Mapping

Translation
Rotational
(2) Operators

Translation
Rotation
(3) Transformation multiplication
Inverting
transformation equations

Mechatronics
David Goodwin

Mapping

Translation
Rotational

Operators
Translation

Transformation multiplication Inverting transformation equations

Department of Computer Science and Technology
University of
Bedfordshire

MAPPINGS

Mappings involving translated frames

Mechatronics
David Goodwin

Mapping

Translation
Rotational
Operators
Translation
Rotation
Transformation multiplication

Inverting
transformation equations

- A translated frame shifts without rotation

MAPPINGS

Mappings involving translated frames

Mechatronics
David Goodwin

- A translated frame shifts without rotation
- Translation takes place when ${ }^{A} X\left\|^{B} X,{ }^{A} Y\right\|{ }^{B} Y$ and ${ }^{A} Z \|{ }^{B} Z$

$$
{ }^{A} P={ }^{B} P+{ }^{A} P_{B O R G}
$$

MAPPINGS

Mappings involving translated frames

Mechatronics
David Goodwin

Mapping
Translation
Rotational
Operators
Translation
Rotation
Transformation multiolication

Inverting
transformation equations

- A translated frame shifts without rotation
- Translation takes place when ${ }^{A} X\left\|{ }^{B} X,{ }^{A} Y\right\|{ }^{B} Y$ and ${ }^{A} Z \|{ }^{B} Z$
- Mapping in this case means representing ${ }^{B} P$ in $\{B\}$ in $\{A\}$ in the form of ${ }^{A} P$

$$
{ }^{A} P={ }^{B} P+{ }^{A} P_{B O R G}
$$

MAPPINGS

Mappings involving translated frames

Mechatronics
David Goodwin

Mapping
Translation
Rotational
Operators
Translation
Rotation
Transformation multiplication Inverting
transformation equations

- A translated frame shifts without rotation
- Translation takes place when ${ }^{A} X\left\|^{B} X,{ }^{A} Y\right\|{ }^{B} Y$ and ${ }^{A} Z \|{ }^{B} Z$
- Mapping in this case means representing ${ }^{B} P$ in $\{B\}$ in $\{A\}$ in the form of ${ }^{A} P$

$$
{ }^{A} P={ }^{B} P+{ }^{A} P_{B O R G}
$$

MAPPINGS

Mappings involving rotated frames

Mechatronics
David Goodwin

- Rotate a vector about an axis means the projection to that axis remains the same

Mapping

Translation Rotational

MAPPINGS

Mappings involving rotated frames

Mechatronics
David Goodwin

Mapping

Translation
Rotational
Operators
Translation
Rotation
Transformation multiplication

Inverting
transformation equations

- Rotate a vector about an axis means the projection to that axis remains the same
- Mapping ${ }^{B} P$ in $\{B\}$ to ${ }^{A} P$ in $\{A\}$ is

$$
{ }^{A} P={ }_{B}^{B} R+{ }^{B} P
$$

MAPPINGS

Mappings involving rotated frames

Mechatronics
David Goodwin

Mapping

Translation
Rotational
Operators
Translation
Rotation
Transformation multiplication Inverting transformation equations

- Rotate a vector about an axis means the projection to that axis remains the same
- Mapping ${ }^{B} P$ in $\{B\}$ to ${ }^{A} P$ in $\{A\}$ is

$$
{ }^{A} P={ }_{B}^{B} R+{ }^{B} P
$$

MAPPINGS

Example

- A vector ${ }^{A} P$ is rotated about Z -axis by θ and is subsequently rotated about X -axis by ϕ. Give rotation matrix that accomplishes these rotations in the given order

MAPPINGS

Example

MAPPINGS

Mappings involving general frames

Mechatronics
David Goodwin

Mapping

Translation
Rotational
Operators
Translation
Rotation

$$
\left[\begin{array}{c}
{ }^{A} P \\
1
\end{array}\right]=\left[\begin{array}{ccc}
& { }_{B}^{A} R & \\
0 & 0 & 0 \\
{ }^{A} P_{B O R G} \\
1
\end{array}\right]\left[\begin{array}{c}
{ }^{B} P \\
1
\end{array}\right]
$$

Transformation multiplication

Inverting
transformation equations

- These mappings involve both translation and rotation

$$
{ }^{A} P={ }_{B}^{A} R^{B} P+{ }^{A} P_{B O R G}
$$

MAPPINGS

Mappings involving general frames

Mechatronics
David Goodwin

Mapping

Translation
Rotational
Operators
Translation
Rotation

$$
\left[\begin{array}{c}
{ }^{A} P \\
1
\end{array}\right]=\left[\begin{array}{ccc}
& { }_{B}^{A} R & \\
0 & 0 & 0 \\
{ }^{A} P_{B O R G} \\
1
\end{array}\right]\left[\begin{array}{c}
{ }^{B} P \\
1
\end{array}\right]
$$

Transformation multiolication

Inverting
transformation equations

- These mappings involve both translation and rotation

$$
{ }^{A} P={ }_{B}^{A} R^{B} P+{ }^{A} P_{B O R G}
$$

MAPPINGS

Example

Mechatronics

David Goodwin

Mapping
Translation
Rotational

Operators
Translation
Rotation
Transformation multiplication

Inverting
transformation equations

- Given $\{A\},\{B\},{ }^{B} P$ and ${ }^{A} P_{B O R G}$, calculate ${ }^{A} P$, where $\{B\}$ is rotated relative to $\{A\}$ about Z_{A}-axis by 30 degrees, translated 10 units in X_{A}-axis and translated 5 units in Y_{A}-axis, and ${ }^{B} P=\left[\begin{array}{lll}3.0 & 7.0 & 0.0\end{array}\right]$

MAPPINGS

Example

Mechatronics

David Goodwin

Mapping
Translation
Rotational

Operators
Translation
Rotation
Transformation multiplication

Inverting
transformation equations

- Given $\{A\},\{B\},{ }^{B} P$ and ${ }^{A} P_{B O R G}$, calculate ${ }^{A} P$, where $\{B\}$ is rotated relative to $\{A\}$ about Z_{A}-axis by 30 degrees, translated 10 units in X_{A}-axis and translated 5 units in Y_{A}-axis, and ${ }^{B} P=\left[\begin{array}{lll}3.0 & 7.0 & 0.0\end{array}\right]$

MAPPINGS

exercises

Mechatronics

David Goodwin

- Calculate rotation matrix

Mapping
Translation
Rotational

Operators
Translation
Rotation
Transformation multiplication

Inverting
transformation
equations

$$
{ }_{B}^{A} \mathbf{R}=\left[\begin{array}{ccc}
\cos 30 & -\sin 30 & 0 \\
\sin 30 & \cos 30 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
{ }^{A} \mathbf{P}={ }_{B}^{A} \mathbf{R}^{B} \mathbf{P}+{ }^{A} \mathbf{P}_{B O R G}
$$

$$
=\left[\begin{array}{cc}
{ }_{B}^{A} \mathbf{R} & { }^{A} \mathbf{P}_{\text {BORG }} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{c}
{ }^{B} \mathbf{P} \\
1
\end{array}\right]=\left[\begin{array}{ccc|c}
\cos 30 & -\sin 30 & 0 & 10 \\
\sin 30 & \cos 30 & 0 & 5 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
3.0 \\
7.0 \\
0 \\
1
\end{array}\right]
$$

MAPPINGS

exercises

Mechatronics

David Goodwin

- Calculate rotation matrix

Mapping
Translation
Rotational

Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation
equations

$$
{ }_{B}^{A} \mathbf{R}=\left[\begin{array}{ccc}
\cos 30 & -\sin 30 & 0 \\
\sin 30 & \cos 30 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
{ }^{A} \mathbf{P}={ }_{B}^{A} \mathbf{R}^{B} \mathbf{P}+{ }^{A} \mathbf{P}_{B O R G}
$$

$$
=\left[\begin{array}{cc}
{ }_{B}^{A} \mathbf{R} & { }^{A} \mathbf{P}_{\text {BORG }} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{c}
{ }^{B} \mathbf{P} \\
1
\end{array}\right]=\left[\begin{array}{ccc|c}
\cos 30 & -\sin 30 & 0 & 10 \\
\sin 30 & \cos 30 & 0 & 5 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
3.0 \\
7.0 \\
0 \\
1
\end{array}\right]
$$

MAPPINGS

exercises

Mechatronics

David Goodwin

- Calculate rotation matrix

Mapping
Translation
Rotational

Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation
equations

$$
{ }_{B}^{A} \mathbf{R}=\left[\begin{array}{ccc}
\cos 30 & -\sin 30 & 0 \\
\sin 30 & \cos 30 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Calculate ${ }^{A} P$

$$
\begin{aligned}
& { }^{A} \mathbf{P}={ }_{B}^{A} \mathbf{R}^{B} \mathbf{P}+{ }^{A} \mathbf{P}_{\text {BORG }} \\
& =\left[\begin{array}{cc}
{ }_{B}^{A} \mathbf{R} & { }^{A} \mathbf{P}_{\text {BORG }} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{c}
{ }^{B} \mathbf{P} \\
1
\end{array}\right]=\left[\begin{array}{ccc|c}
\cos 30 & -\sin 30 & 0 & 10 \\
\sin 30 & \cos 30 & 0 & 5 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
3.0 \\
7.0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

MAPPINGS

exercises

Mechatronics

David Goodwin

- Calculate rotation matrix

Mapping
Translation
Rotational

Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation
equations

$$
{ }_{B}^{A} \mathbf{R}=\left[\begin{array}{ccc}
\cos 30 & -\sin 30 & 0 \\
\sin 30 & \cos 30 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Calculate ${ }^{A} P$

$$
\begin{aligned}
& { }^{A} \mathbf{P}={ }_{B}^{A} \mathbf{R}^{B} \mathbf{P}+{ }^{A} \mathbf{P}_{B O R G} \\
& =\left[\begin{array}{cc}
{ }_{B}^{A} \mathbf{R} & { }^{A} \mathbf{P}_{\text {BORG }} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{c}
{ }^{B} \mathbf{P} \\
1
\end{array}\right]=\left[\begin{array}{ccc|c}
\cos 30 & -\sin 30 & 0 & 10 \\
\sin 30 & \cos 30 & 0 & 5 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
3.0 \\
7.0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

Mechatronics
David Goodwin

Mapping

Translation
Rotational
Operators
Translation
Rotation
Transformation multiplication Inverting transformation equations

Department of Computer Science and Technology University of Bedfordshire

OPERATORS

Mechatronics
David Goodwin

Mapping

Translation
Rotational
Operators
Translation

- T matrix

Rotation
Transformation multiplication

Inverting
transformation equations

$$
\left[\begin{array}{cc}
{ }_{B}^{A} \mathbf{R} & { }^{A} \mathbf{P}_{\text {ORRG }} \\
\mathbf{0} & 1
\end{array}\right]{ }_{B}^{A} \mathbf{T}
$$

$\operatorname{Trans}(a, b, c)=\left[\begin{array}{lll|l} & \\ {\left[\begin{array}{lll}1 & 0 & 0\end{array}\right.} & a \\ 0 & 1 & 0 & \\ b \\ 0 & 0 & 1 & \\ c \\ 0 & 0 & 0 & 1\end{array}\right] \longrightarrow$ No rotation
(19)

OPERATORS

Mechatronics
David Goodwin

Mapping
Translation
Rotational
Operators
Translation

- T matrix

Rotation
Transformation multiplication

Inverting
transformation equations

$$
\left[\begin{array}{cc}
{ }_{B}^{A} \mathbf{R} & { }^{A} \mathbf{P}_{B O R G} \\
\mathbf{0} & 1
\end{array}\right]={ }_{B}^{A} \mathbf{T}
$$

No rotation
$\operatorname{Trans}(a, b, c)=\left[\begin{array}{lll|l}1 & 0 & 0 & a \\ 0 & 1 & 0 & \\ 0 & 0 & 1 & \\ c \\ 0 & 0 & 0 & 1\end{array}\right] \longrightarrow$ Translation

OPERATORS

Mechatronics

David Goodwin

Mapping
Translation
Rotational

Operators

Translation

Rotation
Transformation
multiplication
Inverting
transformation equations

- T matrix

- Two special cases:

OPERATORS

Mechatronics
David Goodwin

Mapping
Translation
Rotational

Operators

Translation
Rotation
Transformation
multiplication
Inverting
transformation
equations

Department of Computer Science and Technology University of Bedfordshire

- T matrix

- Two special cases:
- Translation matrix of displacements a, b, and c along X, Y and Z axes

OPERATORS

Mechatronics
David Goodwin

Mapping
Translation
Rotational
Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation
equations

Department of Computer Science and Technology
University of Bedfordshire

- T matrix
- Two special cases:
- Translation matrix of displacements a, b, and c along X, Y and Z axes

OPERATORS

Mechatronics

David Goodwin

Mapping

Translation
Rotational
Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation equations

Department of

$$
\begin{aligned}
& { }^{A} \mathbf{P}^{\prime}={ }^{A} \mathbf{Q}+{ }^{A} \mathbf{P} \\
& {\left[\begin{array}{c}
{ }^{A} \mathbf{P}^{\prime} \\
1
\end{array}\right]=\operatorname{Trans}\left({ }^{A} q_{x},{ }^{A} q_{y},{ }^{A} q_{z}\right)\left[\begin{array}{c}
{ }^{A} \mathbf{P} \\
1
\end{array}\right]} \\
& =\left[\begin{array}{cccc}
1 & & & { }^{A} q_{x} \\
& 1 & & { }^{A} q_{y} \\
& & 1 & { }^{A} q_{z} \\
& & & 1
\end{array}\right]\left[\begin{array}{c}
{ }^{A} \mathbf{P} \\
1
\end{array}\right]
\end{aligned}
$$

OPERATORS

Mechatronics
David Goodwin

Mapping
Translation
Rotational

Operators
Translation

- Rotation

Rotation
(13)

OPERATORS

Mechatronics
David Goodwin

Mapping
Translation
Rotational

Operators
Translation

- Rotation

- Rotation about X-axis

Rotation
Transformation
multiplication
Inverting
transformation
equations

OPERATORS

Mechatronics
David Goodwin

Mapping
Translation
Rotational

Operators
Translation

- Rotation

- Rotation about X -axis
- Rotation about Y-axis

Rotation
Transformation
multiplication
Inverting
transformation
equations

OPERATORS

Mechatronics
David Goodwin

Mapping
Translation
Rotational

Operators
Translation

- Rotation

- Rotation about X -axis
- Rotation about Y-axis
- Rotation about Z-axis

Rotation
Transformation
multiplication
Inverting
transformation
equations

OPERATORS

Mechatronics
David Goodwin

Mapping
Translation
Rotational

Operators
Translation

- Rotation

- Rotation about X -axis
- Rotation about Y-axis
- Rotation about Z-axis

Rotation
Transformation
multiplication
Inverting
transformation
equations

Mechatronics

David Goodwin

Mapping

Translation
Rotational

Operators
Translation

TRANSFORMATION

Rotation

Transformation

multiplication
Inverting
transformation equations

Department of Computer Science and Technology University of Bedfordshire

TRANSFORMATION

Mechatronics

David Goodwin

- Multiplication transformation

Translation
Rotational

Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation
equations

(19)

TRANSFORMATION

Mechatronics

David Goodwin

Mapping
Translation
Rotational

Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation
equations

- Multiplication transformation
- Known a point in $\{C\}$ and ${ }_{C}^{B} T$ matrix from $\{C\}$ to $\{B\}$ and ${ }_{B}^{A} T$ matrix from $\{B\}$ to $\{A\}$

(19)

TRANSFORMATION

- Multiplication transformation
- Known a point in $\{C\}$ and ${ }_{C}^{B} T$ matrix from $\{C\}$ to $\{B\}$ and ${ }_{B}^{A} T$ matrix from $\{B\}$ to $\{A\}$
- Find its position and orientation in $\{A\}$

puter Science and Technology

TRANSFORMATION

Mechatronics

David Goodwin

Mapping
Translation
Rotational

Operators
Translation
Potation
Transformation
multiplication
Inverting
transformation
equations

- Multiplication transformation
- Known a point in $\{C\}$ and ${ }_{C}^{B} T$ matrix from $\{C\}$ to $\{B\}$ and ${ }_{B}^{A} T$ matrix from $\{B\}$ to $\{A\}$
- Find its position and orientation in $\{A\}$

TRANSFORMATION

Mechatronics

David Goodwin

Mapping
Translation
Rotational

Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation
equations

- ${ }_{C}^{A} T$ matrix from $\{C\}$ to $\{A\}$ is the multiplication of ${ }_{C}^{B} T$ matrix from $\{C\}$ to $\{B\}$ and ${ }_{B}^{A} T$ matrix from $\{B\}$ to $\{A\}$

$$
\begin{aligned}
& { }^{B} \mathbf{P}={ }_{C}^{B} \mathbf{T}^{C} \mathbf{P} \text { and }{ }^{A} \mathbf{P}={ }_{B}^{A} \mathbf{T}^{B} \mathbf{P} \\
& { }^{A} \mathbf{P}={ }_{B}^{A} \mathbf{T}_{C}^{B} \mathbf{T}^{C} \mathbf{P} \\
& { }_{C}^{A} \mathbf{T}={ }_{B}^{A} \mathbf{T}_{C}^{B} \mathbf{T} \\
& { }_{C}^{A} \mathbf{T}=\left[\begin{array}{cc|c}
{ }_{B}^{A} \mathbf{R}{ }_{C}^{B} \mathbf{R} & { }_{B}^{A} \mathbf{R}^{B} \mathbf{P}_{C O R G}+{ }^{A} \mathbf{P}_{B O R G} \\
\hline 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

TRANSFORMATION

Mechatronics
David Goodwin

Mapping
Translation
Rotational

Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation
equations

- ${ }_{C}^{A} T$ matrix from $\{C\}$ to $\{A\}$ is the multiplication of ${ }_{C}^{B} T$ matrix from $\{C\}$ to $\{B\}$ and ${ }_{B}^{A} T$ matrix from $\{B\}$ to $\{A\}$

$$
\begin{aligned}
& { }^{B} \mathbf{P}={ }_{C}^{B} \mathbf{T}^{C} \mathbf{P} \text { and }{ }^{A} \mathbf{P}={ }_{B}^{A} \mathbf{T}^{B} \mathbf{P} \\
& { }^{A} \mathbf{P}={ }_{B}^{A} \mathbf{T}_{C}^{B} \mathbf{T}^{C} \mathbf{P} \\
& { }_{C}^{A} \mathbf{T}={ }_{B}^{A} \mathbf{T}_{C}^{B} \mathbf{T} \\
& { }_{C}^{A} \mathbf{T}=\left[\begin{array}{cc|c}
{ }_{B}^{A} \mathbf{R}{ }_{C}^{B} \mathbf{R} & & { }_{B}^{A} \mathbf{R}^{B} \mathbf{P}_{C O R G}+{ }^{A} \mathbf{P}_{B O R G} \\
\hline 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

TRANSFORMATION

Mechatronics

David Goodwin

Mapping

- Inverting a transformation

Translation
Rotational
Operators
Translation
Rotation
Transformation multiplication Inverting
transformation equations

Department of Computer Science and Technology University of Bedfordshire
(17) ${ }^{B} \mathbf{P}={ }_{A}^{B} \mathbf{R}^{A} \mathbf{P}+{ }^{B} \mathbf{P}_{A O R G}$
$={ }_{B}^{A} \mathbf{R}^{T A} \mathbf{P}+{ }^{B} \mathbf{P}_{A O R G}$
$={ }_{B}^{A} \mathbf{R}^{T A} \mathbf{P}-{ }_{B}^{A} \mathbf{R}^{T A} \mathbf{P}_{B O R G}$
${ }_{A}^{B} \mathbf{T}=[$
$={ }_{B}^{A} \mathbf{T}^{-1}$

TRANSFORMATION

Mechatronics

David Goodwin

Mapping
Translation
Rotational

Operators
Translation
Rotation
Transformation multiplication

Inverting
transformation
equations

- Inverting a transformation
- Known T matrix from $\{B\}$ to $\{A\}$

TRANSFORMATION

Mechatronics

David Goodwin

Mapping
Translation
Rotational

Operators

- Inverting a transformation
- Known T matrix from $\{B\}$ to $\{A\}$
- Find T matrix from $\{A\}$ to $\{B\}$

Translation
Rotation
Transformation multiplication

Inverting
transformation
equations

TRANSFORMATION

Mechatronics

David Goodwin

Mapping
Translation
Rotational

Operators

- Inverting a transformation
- Known T matrix from $\{B\}$ to $\{A\}$
- Find T matrix from $\{A\}$ to $\{B\}$

Translation
Rotation
Transformation multiplication

Inverting
transformation
equations

TRANSFORMATION

Example

Mechatronics

David Goodwin

Mapping
Translation
Rotational

- Frame $\{B\}$ is rotated relative to Frame $\{A\}$ about Z-axis by 30 degrees and translated 4 units in X -axis and 3 units in Y -axis. Find T matrix from $\{A\}$ to $\{B\}$.
Operators
Translation
Rotation
Transformation
multiplication Inverting
transformation
equations

TRANSFORMATION

Example

Mechatronics

David Goodwin

Mapping
Translation
Rotational

- Frame $\{B\}$ is rotated relative to Frame $\{A\}$ about Z-axis by 30 degrees and translated 4 units in X -axis and 3 units in Y -axis. Find T matrix from $\{A\}$ to $\{B\}$.
Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation
equations

$$
{ }_{A}^{B} \mathbf{T}={ }_{B}^{A} \mathbf{T}^{-1}=\left[\begin{array}{cccc}
0.866 & 0.500 & 0 & -4.964 \\
-0.500 & 0.866 & 0 & -0.598 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

TRANSFORMATION

Transform equations

Mechatronics

David Goodwin

Mapping

Translation
Rotational
Operators
Tranclation
Rotation
Transformation
multiplication
Inverting
transformation equations

$$
{ }_{B}^{U} \boldsymbol{T}={ }_{A}^{U} \boldsymbol{T}_{D}^{A} \boldsymbol{T}_{D}^{C} \boldsymbol{T}_{C}^{-1 B} \boldsymbol{T}^{-1}
$$

TRANSFORMATION

Transform equations

Mechatronics

David Goodwin

Mapping

Translation
Rotational
Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation equations

$$
{ }_{B}^{U} \boldsymbol{T}={ }_{A}^{U} \boldsymbol{T}_{D}^{A} \boldsymbol{T}_{D}^{C} \boldsymbol{T}_{C}^{-1 B} \boldsymbol{T}^{-1}
$$

$\because \quad D^{U} \boldsymbol{T}={ }_{A}^{U} \boldsymbol{T}^{A} \mathbf{T}$
$\because{ }_{D}^{U} \mathbf{T}_{{ }_{B}^{U}}^{U} T_{C}^{B} \mathbf{T}_{D}^{C} \mathbf{T}$
$\therefore{ }_{A}^{U} \mathbf{T}_{D}^{A} \mathbf{T}={ }_{B}^{U} \mathbf{T}_{C}^{B} \mathbf{T}_{D}^{C} \mathbf{T}$
19

(19)

TRANSFORMATION

Transform equations

Mechatronics

David Goodwin

Mapping

Translation
Rotational

Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation equations

$$
{ }_{B}^{U} \mathbf{T}={ }_{A}^{U} \mathbf{T}_{D}^{A} \mathbf{T}_{D}^{C} \mathbf{T}^{-1 B} \mathbf{T}^{-1}
$$

TRANSFORMATION

Transform equations

Mechatronics

David Goodwin

Mapping

Translation
Rotational

Operators
Tranclation
Rotation
Transformation
multiplication
Inverting
transformation equations

- Transform equation
$\because{ }_{D}^{U} \mathbf{T}={ }_{A}^{U} \mathbf{T}_{D}^{A} \mathbf{T}$
$\because{ }_{D}^{U} \mathbf{T}={ }_{B}^{U} \mathbf{T}_{C}^{B} \mathbf{T}_{D}^{C} \mathbf{T}$
$\therefore{ }_{A}^{U} \mathbf{T}_{D}^{A} \mathbf{T}={ }_{B}^{U} \mathbf{T}_{C}^{B} \mathbf{T}_{D}^{C} \mathbf{T}$
19

$$
{ }_{B}^{U} \mathbf{T}={ }_{A}^{U} \mathbf{T}_{D}^{A} \mathbf{T}_{D}^{C} \mathbf{T}^{-1 B} \mathbf{T}^{-1}
$$

TRANSFORMATION

Transform equations

Mechatronics

David Goodwin

Mapping

Translation
Rotational

Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation equations

- Transform equation
$\because{ }_{D}^{U} \mathbf{T}={ }_{A}^{U} \mathbf{T}_{D}^{A} \mathbf{T}$
$\because{ }_{D}^{U} \mathbf{T}^{U}{ }_{B}^{U} \mathbf{T}_{C}^{B} \mathbf{T}_{D}^{C} \mathbf{T}$
$\therefore{ }_{A}^{U} \mathbf{T}_{D}^{A} \mathbf{T}={ }_{B}^{U} \mathbf{T}_{C}^{B} \mathbf{T}_{D}^{C} \mathbf{T}$
19

TRANSFORMATION

Transform equations

Mechatronics
David Goodwin

Mapping

Translation
Rotational

Operators
Tranclation
Rotation
Transformation
multiplication
Inverting
transformation equations

- Transform equation
$\because{ }_{D}^{U} \mathbf{T}={ }_{A}^{U} \mathbf{T}_{D}^{A} \mathbf{T}$
$\because{ }_{D}^{U} \mathbf{T}={ }_{B}^{U} \mathbf{T}_{C}^{B} \mathbf{T}_{D}^{C} \mathbf{T}$
$\therefore{ }_{A}^{U} \mathbf{T}_{D}^{A} \mathbf{T}={ }_{B}^{U} \mathbf{T}_{C}^{B} \mathbf{T}_{D}^{C} \mathbf{T}$
19

$$
{ }_{B}^{U} \mathbf{T}={ }_{A}^{U} \mathbf{T}_{D}^{A} \mathbf{T}_{D}^{C} \mathbf{T}^{-1 B} \mathbf{T}^{-1}
$$

TRANSFORMATION

Transform equations

Mechatronics
David Goodwin

Mapping

Translation
Rotational

Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation equations

$$
{ }_{B}^{U} \boldsymbol{T}={ }_{A}^{U} \boldsymbol{T}_{D}^{A} \boldsymbol{T}_{D}^{C} \boldsymbol{T}_{C}^{-1 B} \boldsymbol{T}^{-1}
$$

TRANSFORMATION

Transform equations

Mechatronics
David Goodwin

Mapping

Translation
Rotational

Operators
Translation
Rotation
Transformation
multiplication
Inverting
transformation equations

$$
{ }_{B}^{U} \mathbf{T}={ }_{A}^{U} \mathbf{T}_{D}^{A} \mathbf{T}_{D}^{C} \mathbf{T}_{C}^{-1 B} \mathbf{T}^{-1}
$$

- Any unknown T matrix can then be calculated from the ones given

