CIS009-2, Mechatronics Static Kinematics

David Goodwin
Department of Computer Science and Technology University of Bedfordshire
$06^{\text {th }}$ February 2013

Outline

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames
Link and Joint
together
Schematic
representation of a

robot

Manipulator
kinematics
Position
(3) Schematic representation of a robot

Transformation
(1) Structure of a manipulator Link Joint
(2) Assigning frames

Link and Joint together
(4) Manipulator kinematics

Position
Transformation
(44)

STATIC KINEMATICS

Mechatronics
David Goodwin

Structure of a manipulator
Link
Joint
Assigning frames
Link and Joint
together
Schematic

Definition Science of motion that treats a subject without considering forces that cause the motion positions (x) velocity (x^{\prime}) accelerate (x ") high order of derivatives of position ($\mathrm{x}(\mathrm{n}$)) Static kinematics of a manipulator Study of position of a manipulator (x)

Structure of A MANIPULATOR

Schematic

representation of a robot

Manipulator kinematics
Position
Transformation

Department of Computer Science and Technology University of Bedfordshire

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a manipulator
Link
Joint
Assigning frames Link and Joint together

Schematic

representation of a robot

Manipulator
kinematics
Position
Transformation

A manipulator consists of a set of links and joints that connect the links Links - rigid bodies Joints - different types

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a manipulator
Link
Joint
Assigning frames
Link and Joint
together
Schematic
representation of a robot

Manipulator
kinematics
Position
Transformation

Degree of freedom (DOF) DOF are the set of independent displacements that specify completely the displaced or deformed position of the body. In general, a rigid body in d-dimensions has $\mathrm{d}(\mathrm{d}+1) / 2$ degrees of freedom (d translations $+\mathrm{d}(\mathrm{d}-1) / 2$ rotations).

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a manipulator
Link
Joint
Assigning frames
Link and Joint
together
Schematic
representation of a robot

Manipulator
kinematics
Position
Transformation

DOF of a robot arm A robot with 4 axes of motion but 3 DOF 3-DOF allows a robot to place its end-effector in any position but not at any angle Adding mechanical wrist increases DOF which allows end-effector to be placed at any angle

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a manipulator Link
Joint
Assigning frames
Link and Joint
together
Schematic

Link Rigid body between two neighbouring joints Position of a link - described using the following two parameters: Link length (a) measured along a line that is mutually perpendicular to the axes of both joints Link twist (a) - angle of the projections of the two axes onto a plane whose normal is mutually perpendicular to the two axes

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames Link and Joint together

Schematic

representation of a robot

Manipulator
kinematics
Position
Transformation

Department of Computer Science and Technology University of Bedfordshire

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a manipulator Link

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a manipulator Link
Joint
Assigning frames
Link and Joint
together
Schematic
representation of a robot

Manipulator
kinematics
Position
Transformation

Department of Computer Science and Technology University of Bedfordshire

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a manipulator Link

Assigning frames Link and Joint together

Schematic

representation of a robot

Manipulator
kinematics
Position
Transformation

Department of Computer Science and Technology University of Bedfordshire

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a manipulator Link
Joint
Assigning frames Link and Joint together

Schematic

representation of a robot

Manipulator
kinematics
Position
Transformation

Department of Computer Science and Technology University of Bedfordshire

Exercise 1 The arm with three degrees of freedom. Calculate a1, a1, and a2, a2

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames
Link and Joint
together
Schematic

Joint Connection of two neighbouring links Two parameters Link offset (d) - a measure about how far the two links are away from each other Joint angle (?) - a measure about difference between directions of the two links

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a manipulator
Link
Joint

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a
manipulator

Assigning frames
Link and Joint
together
Schematic

Calculation of link offset and joint angle for intermediate links in a chain Link offset calculation: distance from one link to its neighbouring one along a common axis Joint angle calculation rotation on the common axis between two neighbouring links Assumptions to the first and last links in the chain If Joint 1 is revolute, $\mathrm{d} 1=0$ and $? 1$ is arbitrary If Joint 1 is prismatic, $? 1=0$ and $d 1$ is arbitrary

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a manipulator
Link
Joint
Assigning frames
Link and Joint
together

Schematic

representation of a

robot

Manipulator
kinematics
Position
Transformation

Department of Computer Science and Technology University of Bedfordshire

Exercise 2: Calculate d2 Two links given ion slide 2 are jointed together with Joint $2 \mathrm{~d} 2=0$

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a manipulator
Link
Joint
Assigning frames Link and Joint together

Schematic

representation of a

robot

Manipulator
kinematics
Position
Transformation

Department of Computer Science and Technology University of Bedfordshire

Special cases Case1 - all joints are revolute Axes of all joints are in parallel a1 = L1 a1 = $0 \mathrm{~d} 2=0$? 2 arbitrary

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin

Structure of a manipulator
Link
Joint
Assigning frames
Link and Joint
together
Schematic
representation of a

robot

Manipulator
kinematics
Position
Transformation

Case2 - cylindrical joints involved Axis of Joint 1 intersects the axis of Joint $2 \mathrm{a} 1=\min (\mathrm{L} 1, \mathrm{~L} 2), \mathrm{L} 1+\mathrm{L} 2 \mathrm{a} 1=90 \mathrm{~d} 2=0 ? 2=0$

STRUCTURE OF A MANIPULATOR

Mechatronics
David Goodwin
Structure of a manipulator
link
Joint

Case3 - prismatic joint involved Axis of Joint 1 and axis of joint 2 are in perpendicular a1 $=\mathrm{L} 1 \mathrm{a} 1=90 \mathrm{~d} 2=0, \mathrm{Lj} 2 ? 2=0$

Mechatronics
David Goodwin

Structure of a manipulator
Link
Joint
Assigning frames
Link and Joint together

Schematic

representation of a robot

Vianipulator kinematics
Position
Transformation

Department of Computer Science and Technology University of Bedfordshire

Assigning FRAMES

ASSIGNING FRAME

Mechatronics
David Goodwin

Structure of a
manipulator
Link
Joint

Assigning frames

Link and Joint
together
Schematic
representation of a robot

Manipulator
kinematics
Pesition
Transformation

For intermediate links in the chain Frame I defined for Joint i in the following way: Zi - coincident with the joint axis Xi pointing along link length ai Origin - the point where ai perpendicular intersects the joint axis i First and last links in the chain Conventions: Frame 0 coincides with frame 1 Frame N : Revolute: Xn aligns with $\mathrm{Xn}-1$ so that $\mathrm{n} \mathrm{n}=0$ and origin chosen to let $\mathrm{dn}=0$ Prismatic: Xn chosen so that $\mathrm{n} \mathrm{n}=0$ and the origin chosen to let $\mathrm{dn}=0$

ASSIGNING FRAME

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames
Link and Joint together

Schematic
representation of a robot

Manipulator
kinematics
Position
Transformation

Department of Computer Science and Technology University of Bedfordshire

ASSIGNING FRAME

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames Link and Joint together

Schematic

representation of a robot

Manipulator
kinematics
Position
Transformation

Example 1: three-link planar arm

ASSIGNING FRAME

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames Link and Joint together

Schematic
representation of a robot

Manipulator
kinematics
Position
Transformation

Department of Computer Science and Technology University of Bedfordshire

Mechatronics
David Goodwin

Structure of a

 manipulatorLink
Joint
Assigning frames
Link and Joint together

Schematic
representation of a robot

Manipulator

 kinematicsPosition
Transformation

Department of Computer Science and Technology University of Bedfordshire

SCHEMATIC

 REPRESENTATION OF A ROBOT
SCHEMATIC REPRESENTATION

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames Link and Joint together

Schematic
representation of a robot

Manipulator
kinematics
Position
Transformation

Department of Computer Science and Technology University of Bedfordshire

SCHEMATIC REPRESENTATION

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames
Link and Joint
together
Schematic
representation of a robot

Manipulator
kinematics
Position
Transformation

Department of Computer Science and Technology University of Bedfordshire

SCHEMATIC REPRESENTATION

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames
Link and Joint
together
Schematic
representation of a robot

Manipulator
kinematics
Position
Transformation
Example 2: A 3 DOF manipulator with two revolute and one prismatic joints

SCHEMATIC REPRESENTATION

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames Link and Joint together

Schematic

representation of a robot

Manipulator
kinematics
Position
Transformation

Department of Computer Science and Technology University of Bedfordshire
(30) Schematic diagram Assign frames

SCHEMATIC REPRESENTATION

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames
Link and Joint
together
Schematic
representation of a robot

Manipulator
kinematics
Position
Transformation
(31) Example 3: a 3 DOF manipulator with three revolute joints

SCHEMATIC REPRESENTATION

Mechatronics
David Goodwin

Structure of a manipulator
Link
Joint
Assigning frames
Link and Joint
together
Schematic
representation of a robot

Manipulator
kinematics
Position
Transformation

Schematic diagram Assign frames
Calculate parameters a1 $=\mathrm{L} 1, \mathrm{a} 1=90 \mathrm{o}, \mathrm{d} 1=0, \mathrm{q} 1=\mathrm{xa} 2=$ $\mathrm{L} 2, \mathrm{a} 2=0 \mathrm{o}, \mathrm{d} 2=\mathrm{L} 1, \mathrm{q} 2=90 \mathrm{o} 3=0, \mathrm{a} 3=0 \mathrm{o}, \mathrm{d} 3=0, \mathrm{q} 3=\mathrm{x}$

Mechatronics
David Goodwin

Structure of a manipulator
Link
Joint

Manipulator

 KINEMATICSDepartment of Computer Science and Technology University of Bedfordshire

Schematic

representation of a robot

Manipulator kinematics
Position
Transformation
Assigning frames
Link and Joint together

唯

STATIC KINEMATICS

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames
Link and Joint
together
Schematic representation of a robot

Manipulator kinematics
Position
Transformation

Department of Computer Science and Technology University of Bedfordshire

Position and Transformation Position of end-effector in different frames Transform from frame i to frame i-1 - representing joint i's position in frame i-1

STATIC KINEMATICS

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames Link and Joint together

Schematic
representation of a robot

Manipulator
kinematics
Position
Transformation

STATIC KINEMATICS

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames
Link and Joint
together
Schematic

robot

Manipulator
kinematics
Position
Transformation

Three intermediate frames R, Q, and P Translating i di units along axis i derives P : Rotating P ? i along $Z p$ yields Q : Translating Q ai-1 units along $X q$ gives R : Rotating R ai gives $i-1$:

STATIC KINEMATICS

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames Link and Joint together

Schematic
representation of a robot

Manipulator
kinematics
Position
Transformation

STATIC KINEMATICS

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames Link and Joint together

Schematic

representation of a robot

Manipulator
kinematics
Position
Transformation

STATIC KINEMATICS

Mechatronics
David Goodwin

Structure of a

 manipulatorLink
Joint
Assigning frames
Link and Joint
together

Schematic

representation of a

 robotManipulator kinematics
Position
Transformation

6 DOFs Details of joints 3, 4,5, and 6 are shown in the diagram

STATIC KINEMATICS

Mechatronics
David Goodwin

Structure of a

 manipulatorLink
Joint
Assigning frames
Link and Joint
together

Schematic

representation of a

 robotManipulator
kinematics
Position
Transformation

STATIC KINEMATICS

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint

Assigning frames
Link and Joint
together
Schematic

robot:

Manipulator
kinematics
Position
Transformation

Example 4 For a 2-link manipulator shown in the following figures, the link-transformation matrices were constructed

STATIC KINEMATICS

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames
Link and Joint
together
Schematic

Manipulator
kinematics

Transformation

The product is
The link-frame assignment used are indicated in figure (b). Note that the frame 0 is coincident with frame 1 when q1 ? 0 . The length of the second link is 12 . Find an expression for the vector 0 Ptip which locates the tip of the arm relative to the 0 frame.

STATIC KINEMATICS

Mechatronics
David Goodwin

Structure of a manipulator

Link
Joint
Assigning frames
Link and Joint
together
Schematic

Example 5 The figure in the following shows the schematic of a wrist which has three intersecting axes that are not orthogonal. Assign link frames to the wrist (as if it were a 3-DOF manipulator), and give the link parameters.

SUMMARY

Mechatronics
David Goodwin

Manipulator Position of a link Description of connections Frame Schematic representation Assigning frames Static kinematics

