INTRODUCTION TO UML

LECTURE # 1

".‘ Universzy ot
Bedfordshire

Department of Computer Science and Technology
University of Bedfordshire

Written by David Goodwin,

based on the book Applying UML and Patterns (3" ed.)
by C. Larman (2005).

MODELLING AND SIMULATION, 2012

OUTLINE INTRO%U;;’EION 10

.,.’ Unverstyof
Bedfordshire

COURSE INFORMATION

UML
Structure Diagrams
Behaviour Diagrams
Interaction Diagrams

MoODELLING
Use Case

SUMMARY

INTRODUCTION TO
UML

.,.’ Unverstyof
Bedfordshire

COURSE
INFORMATION

COURSE INFORMATION

AIMS AND OBJECTIVES O N

.,., Unversty of
Bedfordshire

COURSE
INFORMATION

» To understand the software development process,
including requirement specification, analysis, design,
implementation and testing.

» To learn and use various methodologies in software
development,

» To understand the process of modelling real world
problems and systems using UML,

» To develop skills on object oriented software
development (OOSD).

ASSESMENT tmopomox o

.,.‘ Unverstyof
Bedfordshire

COURSE
INFORMATION

> Assignment:

» One long, report style assignment, 50% (due 1630 27
September 2012)

» Exam:

» Final exam (Perception), 50% (2 hours, 1900-2100 27t
September 2012)

INTRODUCTION TO
BooOKs UML

"., Unversty of
Bedfordshire

COURSE
INFORMATION

» Applying UML and patterns by Craig Larman

» Object-Oriented Software Engineering — a use case
driven approach (revised edition) by Ivar Jacobson

» UML Distilled (2nd Edition) by Martin Fowler
» Software Engineering (4th Edition) by lan Sommerville

» Developing Applications with Java and UML by Paul R
and Reed Jr

» Practical Software Engineering by Leszek A Maciaszek
and Bruc Lee Liong

INTRODUCTION TO
UML

.,. Unversty of
Bedfordshire

UML

WHAT IS U M L'P INTRO%L;SIEION TO

"., Unversty of
Bedfordshire

» UML stands for Unified Modelling Language.

UML

» An industry standard modelling language for
object-oriented software engineering.

> Developed in the mid-1990's and standardised in 1997
(UML 1.1).

» UML 2.x is the current revision in use (we will focus on
UML 2.0, revision from 2005).

» UML includes a set of graphic notation techniques to
create visual models of object-oriented
software-intensive systems.

LIST OF OBJECT-ORIENTED PROGRAMMING AR
LANGUAGE
CUSGES ll.l‘s.g;ﬁ:z‘;x.fé

UML

» Languages designed mainly for object-oriented
programming:
> C++
Java
C#
Python
» Languages with some object-oriented features:
» Visual Basic
» Fortran
> Perl
> PHP

v

v

v

LisT OF UNIFIED MODELLING LANGUAGE

TOOLS

Rational Rhapsody

Software Ideas Modeler

StarUML

Umbrello UML Modeller

Visual Paradigm for UML

Windows, Linux, MacOS X
Windows, Linux
Windows
Unix-like; Windows

Cross-platform (Java)

NAME PLATFORM LICENSE
ArgoUML Cross-platform (Java) Open source
astah* Multi-platform Commercial, Free Community version
Dia Cross-platform (GTK+) Open source
Modelio Windows, Linux Open source

Commercial

Commercial, Freeware for non-commercial

Open source

Open source

Commercial, Free Community Edition

INTRODUCTION TO
UML

.,., Unversty of
Bedfordshire

U 1\/IL 2 . 0 INTRO%LJIE'EON TO

.,.’ Unverstyof
Bedfordshire

» UML 2.0 defines thirteen types of diagrams:
> divided into three categories:

> Six diagram types represent static application
structure;

» Three diagram types represent general types of
behaviour;

» Four diagram types represent different aspects of
interactions.

CLASS DIAGRANI INTRO%JI\CEON TO

.,., Unversty of
Bedfordshire

Shows a collection of static model elements such as classes
and types, their contents, and their relationships. e

STRUCTURE

BankAccount

owener - Siring
halance @ Dollars =0

deposit { armount : Dollars)
withdraw! (amount : Dollars)

OBJECT DIAGRAI\/I INTRo%Ul\clEION TO

.,. Unversty of
Bedfordshire

Depicts objects and their relationships at a point in time,
typically a special case of either a class diagram or a
communication diagram.

Auvspragungsspezifikation fiir eine
Objekibeziehung

Hans:Person Peter:Person
vater A sohn
vormame = "Hans" vorname = "Pater”
nachname = "Maier" nachname = "Meier”

alter = "50" alter = "20"

COMPONENT DIAGRAM O N

.,.‘ Unversty of
Bedfordshire

Depicts the components that compose an application,
system, or enterprise. The components, their
interrelationships, interactions, and their public interfaces are
depicted.

STRUCTURE

DIAGRAMS

>o

Email H
emplangen H
‘=<t:c|rr1pc.\rlf,-ntg Cp " E SEUSET>
MailEingang Betrieh i
ﬂbarwadmni
= g]| Emai
- abholer
<gomponent=>
<<c0mponent$:| : EmailManagement 0
MailAusgang E
mail

versenden

COMPOSITE STRUCTURE DIAGRAM O N

.,., Unversty of
Bedfordshire

Depicts the internal structure of a classifier (such as a class,
component, or use case), including the interaction points of Srrvcrune

DIAGRAMS

the classifier to other parts of the system.

FibonacciSystem Variable |

: FibonacciFunction

var

depiar

: Wiewer [0..%]

PACKAGE DIAGRAM O N

.,. Unversty of
Bedfordshire

Shows how model elements are organized into packages as
well as the dependencies between packages.

.) . RUCTURE
offentlicher Paketimport DIAGRAMS
\
\
] o
<<import>>
Heizungssteuerung Sensoren
privater l\'-’akelimpnrl
\
[] \ []

“eaccess>> Datenbank-

Geschiftslogik zugriff

DEPLOYMENT DIAGRAM O N

.,., Unversty of
Bedfordshire

Shows the execution architecture of systems. This includes
nodes, either hardware or software execution environments,
as well as the middleware connecting them. Fr—

DIAGRAMS

[—
-
e

UseE CASE DIAGRAM O N

.‘.‘ Unverstyof
Bedfordshire

Shows use cases, actors, and their interrelationships.

BEHAVIOUR

DIAGRAMS

AcTIVITY DIAGRAM O N

.,.‘ Unverstyof
Bedfordshire

Depicts high-level business processes, including data flow, or
to model the logic of complex logic within a system.

Activity Diagram

Actor X Syistem ¥ AGRAMS
Y DIAGRAMS

BEHAVIOUR

INTRODUCTION TO
UML

.,., Unversty of
Bedfordshire

STATE MACHINE DIAGRAM

Describes the states an object or interaction may be in, as
well as the transitions between states. Formerly referred to
as a state diagram, state chart diagram, or a state-transition
diagram.

BEHAVIOUR

DIAGRAMS
Start]
i running Sl

[Unpause]

Simulator paused
do/walt

[Data rpquested]

Log retrivial
[Coniittie] do/outputlog

SEQUENCE DIAGRAM pmmoperion 1o

.'.‘ Unversty of
Bedfordshire

Models the sequential logic, in effect the time ordering of

messages between classifiers.

Koch ‘Herd

INTERACTION

DIAGRAMS

-

einschalten |
|

Wasser kochen

ausschalten

;
|
>l

COMMUNICATION DIAGRAM O N

.,., Unversty of
Bedfordshire

Shows instances of classes, their interrelationships, and the
message flow between them. Communication diagrams

typically focus on the structural organisation of objects that
send and receive messages. Formerly called a Collaboration

Diagram.

INTERACTION

DIAGRAMS

sd Kochen l

1: einschalten()

—»
:Koch ‘Herd
2: ausschalten()
—»

TIMING DIAGRAM O N

.,., Unversty of
Bedfordshire

Depicts the change in state or condition of a classifier
instance or role over time. Typically used to show the change — BEEEEE
in state of an object over time in response to external events.

INTERACTION

INTERACTION OVERVIEW DIAGRAM O N

.,.‘ Unversty of
Bedfordshire

A variant of an activity diagram which overviews the control
flow within a system or business process. Each node/activity
within the diagram can represent another interaction

diagram.

INTERACTION

sd Zusitskontrolle] T

DIAGRAMS

sd Gode eingeben

J— Zuritskontrall
System
Code eingeben

Code prifen

(Gode OKI [Code nicht OK]

<>
e l
®

INTRODUCTION TO
UML

.,., Unversty of
Bedfordshire

MODELLING

MODELLING

SYSTEM DEVELOPMENT O N

"., Unversty of
Bedfordshire

» System development is model building
» Complexity of a large project
> A large number of components
> A large amount of team work

» Linguistic communication between teams or between

team members is neither accurate nor reliable
» Models are standard representations and they are

accurate and reliable

Modelling is the process of developing a model
» Various types of models for different purposes and

stages in software development

TYPES OF MODELS O N

.,., Unversty of
Bedfordshire

» Various types of models
» Requirement model describes

> Users' requirements
» Functionality

Analysis model gives

v

> System specifications
> A robust and changeable structure and structured
components
Design model presents

> A refined structure to the current implementation
environment

v

» Implementation model documents
> Details of how a design is implemented
Test model gives

» Verification
» Validation

v

ARCHITECTURE INTRO%JI\CEON TO

.,., Unversty of
Bedfordshire

» Architecture of a modelling language

» Model architecture is a set of modelling language,
notation and modelling techniques.
» A modelling language contains:
» Syntax - how it looks
- -
> Semantics - what it means
» Pragmatics - heuristics and rules of thumb for using it

» UML

» Unified Modelling Language is commonly accepted
» |dea first came from lvar Jacocson in 1997

REQUIREMENTS MODEL e

"., Unversty of
Bedfordshire

> Users' requirements in software engineering

v

A client/end-user’s needs and expectations
Essential characteristics of the client/end-user’s goal
They are purely the user’s view of a system
Requirements should be problem-based and not describe
solutions (Remember that no solution has yet been
developed)
» Requirements are often given in terms of what actually
happens within a physical, chemical, biochemical,
business, transportation,. .. process.
» Requirements are modeled using Use Case diagrams

vV VvYyy

USkE CASE DIAGRAM - SYNTAX O N

» Actor - interaction with a process often initialised by ""mﬂgfr’é
outsiders

Actor

> Use case - a series events taking place within a process
and they are often triggered by an actor

» Relationship - information flow between an actor and a
use case or between two use cases

USE CASE

< ________

UseE CASE DIAGRAM - PRAGM O N

"., Unversty of
Bedfordshire

» Identify actors
» What are entities outside of a process which trigger
information exchange with the process?
» Can we classify them?

» Identify use cases

v

What are the main tasks of each actor?

How should the process response to each actor?

A use case should link to a scenario representing what
happens in the process in response to an actor

» A use case should contain a complete course of events
related to the scenario

» Add relationship

» We need to pay extra attention on those between use
cases

v

USE CASE

v

UskE CASE DIAGRAM - SEMANTICS O N

"., Unversty of
Bedfordshire

» An actor represents anything that is outside of a process
being described and that needs to exchange information
with the process

» An individual person (e.g. an end-user, an engineer)

» A group of people who play the same role (e.g. cashers
in a bank)

» An individual that can play different roles should be Usi Casp
represented as several actors according to his role in a
process (e.g. HoD, researcher, lecturer)

» A machine

> An object

USkE CASE DIAGRAM - EVENTS O N

"., Unversty of
Bedfordshire

» A use case represents a special sequence of events
triggered by an actor

» Example: initialising a process through a menu

Initialisation

An Actor

USE CASE

» The actor triggers a sequence of events which take
place in a process

» A Use Case can contain the following events
> display a list of variables
> Accept values given by the actor and assigned to the
variables
> give a warning signal if the values given are out of
range
> give acknowledgement

USE CASE DIAGRAM - RELATIONSHIP O N

.,., Unversty of
Bedfordshire

> Relationship represents information exchange between
an actor and a Use Case or between two Use Cases
» Different types of relationship exiting between an actor
and a use case and between two use cases:
» Ordinary relationship showing the simple information
exchanges between an actor and a use case or between

two use cases
» The symbol = is used to represent this

type of relationship

USE CASE

USE CASE DIAGRAM - RELATIONSHIP O N

"., Unversty of
Bedfordshire

» » An Extend relationship exists between two similar Use
Cases where the second one has some extra activities,
that is, the activities of the first Use Case are extended
in the second one

» The first Use Case sends information to the second
Use Case to invoke the extra activities

» Terms:
1) first Use Case: base Use Case;
2) second Use Case: extending Use Case (which has
two sections, one is name and the other is the
condition for the extra activities);
3) the condition: extension point.

<<Extend>>

USE CASE

» The Symbol
this type of relationship

is used to represent

USE CASE DIAGRAM - EXAMPLE fnmoReeN e

‘,., Unversty of
Bedfordshire

» Think about a cash machine (atm). You can withdrew
£10 and £20 notes from your account through a cash
machine. The cash machine will check your pin,
account balance, etc. If you withdrew £20, the machine
will simply dispense two £10 notes. If you withdrew,
say, £50, the machine will dispense two £20s and one
£10. This means that the machine check the withdrew
amount and then decide what notes will be given out.
This can be expressed as shown in the following.

<<Extend>>

Dispense Diff_notes
(=50)
_____________ extension points

Withdrew greater than

Base use case: Extending use case:))
Checking and Preparing £10 note Preparing £20 notes Extension point

INTRODUCTION TO
UML

.,., Unversty of
Bedfordshire

USE CASE DIAGRAM - RELATIONSHIP

> » A Generalisation relationship also exists between two
use cases
> A group of use cases may have some common activities
> A generalised use case contains those common
activities extracted from the group use cases
> What left to the group of use cases are the specific Usp Case
activities

» The Symbol > is used to represent this

type of relationship

USE CASE DIAGRAM - EXAMPLE fnmoReeN e

» » Think about auto-stamp machine where you can buy ".‘Seméﬁ‘
1st class and 2nd class stamps. Consider two Use Case,
one is for 1st class stamps and the other is for 2nd class
stamps. Both need to check coins you insert into the
machine, calculate balance, dispense changes but
dispense different stamps.
» The common activities are checking coins, calculating
balance and giving change.
» Special activities are dispensing 1st class stamps and
dispensing 2nd class stamps.
» Extracting the common activities from the two use
cases and placing them into a new use case forms a
generalised use case

Generalised
Stamp
</ \R

2nd Class Stamp

INTRODUCTION TO
UML

.,., Unversty of
Bedfordshire

SUMMARY

KEY TERI\IS INTRo%Ul\clEION TO

Y V-
Bedfordshire

SUMMARY

	Course Information
	UML
	Structure Diagrams
	Behaviour Diagrams
	Interaction Diagrams

	Modelling
	Use Case

	summary

